/* * Copyright (C) 2015 Broadcom * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ /** * DOC: VC4 plane module * * Each DRM plane is a layer of pixels being scanned out by the HVS. * * At atomic modeset check time, we compute the HVS display element * state that would be necessary for displaying the plane (giving us a * chance to figure out if a plane configuration is invalid), then at * atomic flush time the CRTC will ask us to write our element state * into the region of the HVS that it has allocated for us. */ #include #include #include #include #include "vc4_drv.h" #include "vc4_regs.h" enum vc4_scaling_mode { VC4_SCALING_NONE, VC4_SCALING_TPZ, VC4_SCALING_PPF, }; struct vc4_plane_state { struct drm_plane_state base; /* System memory copy of the display list for this element, computed * at atomic_check time. */ u32 *dlist; u32 dlist_size; /* Number of dwords allocated for the display list */ u32 dlist_count; /* Number of used dwords in the display list. */ /* Offset in the dlist to various words, for pageflip or * cursor updates. */ u32 pos0_offset; u32 pos2_offset; u32 ptr0_offset; /* Offset where the plane's dlist was last stored in the * hardware at vc4_crtc_atomic_flush() time. */ u32 __iomem *hw_dlist; /* Clipped coordinates of the plane on the display. */ int crtc_x, crtc_y, crtc_w, crtc_h; /* Clipped area being scanned from in the FB. */ u32 src_x, src_y; u32 src_w[2], src_h[2]; /* Scaling selection for the RGB/Y plane and the Cb/Cr planes. */ enum vc4_scaling_mode x_scaling[2], y_scaling[2]; bool is_unity; bool is_yuv; /* Offset to start scanning out from the start of the plane's * BO. */ u32 offsets[3]; /* Our allocation in LBM for temporary storage during scaling. */ struct drm_mm_node lbm; }; static inline struct vc4_plane_state * to_vc4_plane_state(struct drm_plane_state *state) { return (struct vc4_plane_state *)state; } static const struct hvs_format { u32 drm; /* DRM_FORMAT_* */ u32 hvs; /* HVS_FORMAT_* */ u32 pixel_order; bool has_alpha; bool flip_cbcr; } hvs_formats[] = { { .drm = DRM_FORMAT_XRGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, }, { .drm = DRM_FORMAT_ARGB8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, }, { .drm = DRM_FORMAT_ABGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = true, }, { .drm = DRM_FORMAT_XBGR8888, .hvs = HVS_PIXEL_FORMAT_RGBA8888, .pixel_order = HVS_PIXEL_ORDER_ARGB, .has_alpha = false, }, { .drm = DRM_FORMAT_RGB565, .hvs = HVS_PIXEL_FORMAT_RGB565, .pixel_order = HVS_PIXEL_ORDER_XRGB, .has_alpha = false, }, { .drm = DRM_FORMAT_BGR565, .hvs = HVS_PIXEL_FORMAT_RGB565, .pixel_order = HVS_PIXEL_ORDER_XBGR, .has_alpha = false, }, { .drm = DRM_FORMAT_ARGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = true, }, { .drm = DRM_FORMAT_XRGB1555, .hvs = HVS_PIXEL_FORMAT_RGBA5551, .pixel_order = HVS_PIXEL_ORDER_ABGR, .has_alpha = false, }, { .drm = DRM_FORMAT_YUV422, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, }, { .drm = DRM_FORMAT_YVU422, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_3PLANE, .flip_cbcr = true, }, { .drm = DRM_FORMAT_YUV420, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, }, { .drm = DRM_FORMAT_YVU420, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE, .flip_cbcr = true, }, { .drm = DRM_FORMAT_NV12, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV420_2PLANE, }, { .drm = DRM_FORMAT_NV16, .hvs = HVS_PIXEL_FORMAT_YCBCR_YUV422_2PLANE, }, }; static const struct hvs_format *vc4_get_hvs_format(u32 drm_format) { unsigned i; for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { if (hvs_formats[i].drm == drm_format) return &hvs_formats[i]; } return NULL; } static enum vc4_scaling_mode vc4_get_scaling_mode(u32 src, u32 dst) { if (dst > src) return VC4_SCALING_PPF; else if (dst < src) return VC4_SCALING_TPZ; else return VC4_SCALING_NONE; } static bool plane_enabled(struct drm_plane_state *state) { return state->fb && state->crtc; } static struct drm_plane_state *vc4_plane_duplicate_state(struct drm_plane *plane) { struct vc4_plane_state *vc4_state; if (WARN_ON(!plane->state)) return NULL; vc4_state = kmemdup(plane->state, sizeof(*vc4_state), GFP_KERNEL); if (!vc4_state) return NULL; memset(&vc4_state->lbm, 0, sizeof(vc4_state->lbm)); __drm_atomic_helper_plane_duplicate_state(plane, &vc4_state->base); if (vc4_state->dlist) { vc4_state->dlist = kmemdup(vc4_state->dlist, vc4_state->dlist_count * 4, GFP_KERNEL); if (!vc4_state->dlist) { kfree(vc4_state); return NULL; } vc4_state->dlist_size = vc4_state->dlist_count; } return &vc4_state->base; } static void vc4_plane_destroy_state(struct drm_plane *plane, struct drm_plane_state *state) { struct vc4_dev *vc4 = to_vc4_dev(plane->dev); struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); if (vc4_state->lbm.allocated) { unsigned long irqflags; spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); drm_mm_remove_node(&vc4_state->lbm); spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); } kfree(vc4_state->dlist); __drm_atomic_helper_plane_destroy_state(&vc4_state->base); kfree(state); } /* Called during init to allocate the plane's atomic state. */ static void vc4_plane_reset(struct drm_plane *plane) { struct vc4_plane_state *vc4_state; WARN_ON(plane->state); vc4_state = kzalloc(sizeof(*vc4_state), GFP_KERNEL); if (!vc4_state) return; plane->state = &vc4_state->base; vc4_state->base.plane = plane; } static void vc4_dlist_write(struct vc4_plane_state *vc4_state, u32 val) { if (vc4_state->dlist_count == vc4_state->dlist_size) { u32 new_size = max(4u, vc4_state->dlist_count * 2); u32 *new_dlist = kmalloc(new_size * 4, GFP_KERNEL); if (!new_dlist) return; memcpy(new_dlist, vc4_state->dlist, vc4_state->dlist_count * 4); kfree(vc4_state->dlist); vc4_state->dlist = new_dlist; vc4_state->dlist_size = new_size; } vc4_state->dlist[vc4_state->dlist_count++] = val; } /* Returns the scl0/scl1 field based on whether the dimensions need to * be up/down/non-scaled. * * This is a replication of a table from the spec. */ static u32 vc4_get_scl_field(struct drm_plane_state *state, int plane) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); switch (vc4_state->x_scaling[plane] << 2 | vc4_state->y_scaling[plane]) { case VC4_SCALING_PPF << 2 | VC4_SCALING_PPF: return SCALER_CTL0_SCL_H_PPF_V_PPF; case VC4_SCALING_TPZ << 2 | VC4_SCALING_PPF: return SCALER_CTL0_SCL_H_TPZ_V_PPF; case VC4_SCALING_PPF << 2 | VC4_SCALING_TPZ: return SCALER_CTL0_SCL_H_PPF_V_TPZ; case VC4_SCALING_TPZ << 2 | VC4_SCALING_TPZ: return SCALER_CTL0_SCL_H_TPZ_V_TPZ; case VC4_SCALING_PPF << 2 | VC4_SCALING_NONE: return SCALER_CTL0_SCL_H_PPF_V_NONE; case VC4_SCALING_NONE << 2 | VC4_SCALING_PPF: return SCALER_CTL0_SCL_H_NONE_V_PPF; case VC4_SCALING_NONE << 2 | VC4_SCALING_TPZ: return SCALER_CTL0_SCL_H_NONE_V_TPZ; case VC4_SCALING_TPZ << 2 | VC4_SCALING_NONE: return SCALER_CTL0_SCL_H_TPZ_V_NONE; default: case VC4_SCALING_NONE << 2 | VC4_SCALING_NONE: /* The unity case is independently handled by * SCALER_CTL0_UNITY. */ return 0; } } static int vc4_plane_setup_clipping_and_scaling(struct drm_plane_state *state) { struct drm_plane *plane = state->plane; struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); struct drm_framebuffer *fb = state->fb; struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); u32 subpixel_src_mask = (1 << 16) - 1; u32 format = fb->format->format; int num_planes = fb->format->num_planes; u32 h_subsample = 1; u32 v_subsample = 1; int i; for (i = 0; i < num_planes; i++) vc4_state->offsets[i] = bo->paddr + fb->offsets[i]; /* We don't support subpixel source positioning for scaling. */ if ((state->src_x & subpixel_src_mask) || (state->src_y & subpixel_src_mask) || (state->src_w & subpixel_src_mask) || (state->src_h & subpixel_src_mask)) { return -EINVAL; } vc4_state->src_x = state->src_x >> 16; vc4_state->src_y = state->src_y >> 16; vc4_state->src_w[0] = state->src_w >> 16; vc4_state->src_h[0] = state->src_h >> 16; vc4_state->crtc_x = state->crtc_x; vc4_state->crtc_y = state->crtc_y; vc4_state->crtc_w = state->crtc_w; vc4_state->crtc_h = state->crtc_h; vc4_state->x_scaling[0] = vc4_get_scaling_mode(vc4_state->src_w[0], vc4_state->crtc_w); vc4_state->y_scaling[0] = vc4_get_scaling_mode(vc4_state->src_h[0], vc4_state->crtc_h); if (num_planes > 1) { vc4_state->is_yuv = true; h_subsample = drm_format_horz_chroma_subsampling(format); v_subsample = drm_format_vert_chroma_subsampling(format); vc4_state->src_w[1] = vc4_state->src_w[0] / h_subsample; vc4_state->src_h[1] = vc4_state->src_h[0] / v_subsample; vc4_state->x_scaling[1] = vc4_get_scaling_mode(vc4_state->src_w[1], vc4_state->crtc_w); vc4_state->y_scaling[1] = vc4_get_scaling_mode(vc4_state->src_h[1], vc4_state->crtc_h); /* YUV conversion requires that scaling be enabled, * even on a plane that's otherwise 1:1. Choose TPZ * for simplicity. */ if (vc4_state->x_scaling[0] == VC4_SCALING_NONE) vc4_state->x_scaling[0] = VC4_SCALING_TPZ; if (vc4_state->y_scaling[0] == VC4_SCALING_NONE) vc4_state->y_scaling[0] = VC4_SCALING_TPZ; } vc4_state->is_unity = (vc4_state->x_scaling[0] == VC4_SCALING_NONE && vc4_state->y_scaling[0] == VC4_SCALING_NONE && vc4_state->x_scaling[1] == VC4_SCALING_NONE && vc4_state->y_scaling[1] == VC4_SCALING_NONE); /* No configuring scaling on the cursor plane, since it gets non-vblank-synced updates, and scaling requires requires LBM changes which have to be vblank-synced. */ if (plane->type == DRM_PLANE_TYPE_CURSOR && !vc4_state->is_unity) return -EINVAL; /* Clamp the on-screen start x/y to 0. The hardware doesn't * support negative y, and negative x wastes bandwidth. */ if (vc4_state->crtc_x < 0) { for (i = 0; i < num_planes; i++) { u32 cpp = fb->format->cpp[i]; u32 subs = ((i == 0) ? 1 : h_subsample); vc4_state->offsets[i] += (cpp * (-vc4_state->crtc_x) / subs); } vc4_state->src_w[0] += vc4_state->crtc_x; vc4_state->src_w[1] += vc4_state->crtc_x / h_subsample; vc4_state->crtc_x = 0; } if (vc4_state->crtc_y < 0) { for (i = 0; i < num_planes; i++) { u32 subs = ((i == 0) ? 1 : v_subsample); vc4_state->offsets[i] += (fb->pitches[i] * (-vc4_state->crtc_y) / subs); } vc4_state->src_h[0] += vc4_state->crtc_y; vc4_state->src_h[1] += vc4_state->crtc_y / v_subsample; vc4_state->crtc_y = 0; } return 0; } static void vc4_write_tpz(struct vc4_plane_state *vc4_state, u32 src, u32 dst) { u32 scale, recip; scale = (1 << 16) * src / dst; /* The specs note that while the reciprocal would be defined * as (1<<32)/scale, ~0 is close enough. */ recip = ~0 / scale; vc4_dlist_write(vc4_state, VC4_SET_FIELD(scale, SCALER_TPZ0_SCALE) | VC4_SET_FIELD(0, SCALER_TPZ0_IPHASE)); vc4_dlist_write(vc4_state, VC4_SET_FIELD(recip, SCALER_TPZ1_RECIP)); } static void vc4_write_ppf(struct vc4_plane_state *vc4_state, u32 src, u32 dst) { u32 scale = (1 << 16) * src / dst; vc4_dlist_write(vc4_state, SCALER_PPF_AGC | VC4_SET_FIELD(scale, SCALER_PPF_SCALE) | VC4_SET_FIELD(0, SCALER_PPF_IPHASE)); } static u32 vc4_lbm_size(struct drm_plane_state *state) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); /* This is the worst case number. One of the two sizes will * be used depending on the scaling configuration. */ u32 pix_per_line = max(vc4_state->src_w[0], (u32)vc4_state->crtc_w); u32 lbm; if (!vc4_state->is_yuv) { if (vc4_state->is_unity) return 0; else if (vc4_state->y_scaling[0] == VC4_SCALING_TPZ) lbm = pix_per_line * 8; else { /* In special cases, this multiplier might be 12. */ lbm = pix_per_line * 16; } } else { /* There are cases for this going down to a multiplier * of 2, but according to the firmware source, the * table in the docs is somewhat wrong. */ lbm = pix_per_line * 16; } lbm = roundup(lbm, 32); return lbm; } static void vc4_write_scaling_parameters(struct drm_plane_state *state, int channel) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); /* Ch0 H-PPF Word 0: Scaling Parameters */ if (vc4_state->x_scaling[channel] == VC4_SCALING_PPF) { vc4_write_ppf(vc4_state, vc4_state->src_w[channel], vc4_state->crtc_w); } /* Ch0 V-PPF Words 0-1: Scaling Parameters, Context */ if (vc4_state->y_scaling[channel] == VC4_SCALING_PPF) { vc4_write_ppf(vc4_state, vc4_state->src_h[channel], vc4_state->crtc_h); vc4_dlist_write(vc4_state, 0xc0c0c0c0); } /* Ch0 H-TPZ Words 0-1: Scaling Parameters, Recip */ if (vc4_state->x_scaling[channel] == VC4_SCALING_TPZ) { vc4_write_tpz(vc4_state, vc4_state->src_w[channel], vc4_state->crtc_w); } /* Ch0 V-TPZ Words 0-2: Scaling Parameters, Recip, Context */ if (vc4_state->y_scaling[channel] == VC4_SCALING_TPZ) { vc4_write_tpz(vc4_state, vc4_state->src_h[channel], vc4_state->crtc_h); vc4_dlist_write(vc4_state, 0xc0c0c0c0); } } /* Writes out a full display list for an active plane to the plane's * private dlist state. */ static int vc4_plane_mode_set(struct drm_plane *plane, struct drm_plane_state *state) { struct vc4_dev *vc4 = to_vc4_dev(plane->dev); struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); struct drm_framebuffer *fb = state->fb; u32 ctl0_offset = vc4_state->dlist_count; const struct hvs_format *format = vc4_get_hvs_format(fb->format->format); int num_planes = drm_format_num_planes(format->drm); u32 scl0, scl1, pitch0; u32 lbm_size, tiling; unsigned long irqflags; int ret, i; ret = vc4_plane_setup_clipping_and_scaling(state); if (ret) return ret; /* Allocate the LBM memory that the HVS will use for temporary * storage due to our scaling/format conversion. */ lbm_size = vc4_lbm_size(state); if (lbm_size) { if (!vc4_state->lbm.allocated) { spin_lock_irqsave(&vc4->hvs->mm_lock, irqflags); ret = drm_mm_insert_node_generic(&vc4->hvs->lbm_mm, &vc4_state->lbm, lbm_size, 32, 0, 0); spin_unlock_irqrestore(&vc4->hvs->mm_lock, irqflags); } else { WARN_ON_ONCE(lbm_size != vc4_state->lbm.size); } } if (ret) return ret; /* SCL1 is used for Cb/Cr scaling of planar formats. For RGB * and 4:4:4, scl1 should be set to scl0 so both channels of * the scaler do the same thing. For YUV, the Y plane needs * to be put in channel 1 and Cb/Cr in channel 0, so we swap * the scl fields here. */ if (num_planes == 1) { scl0 = vc4_get_scl_field(state, 1); scl1 = scl0; } else { scl0 = vc4_get_scl_field(state, 1); scl1 = vc4_get_scl_field(state, 0); } switch (fb->modifier) { case DRM_FORMAT_MOD_LINEAR: tiling = SCALER_CTL0_TILING_LINEAR; pitch0 = VC4_SET_FIELD(fb->pitches[0], SCALER_SRC_PITCH); break; case DRM_FORMAT_MOD_BROADCOM_VC4_T_TILED: tiling = SCALER_CTL0_TILING_256B_OR_T; pitch0 = (VC4_SET_FIELD(0, SCALER_PITCH0_TILE_Y_OFFSET), VC4_SET_FIELD(0, SCALER_PITCH0_TILE_WIDTH_L), VC4_SET_FIELD((vc4_state->src_w[0] + 31) >> 5, SCALER_PITCH0_TILE_WIDTH_R)); break; default: DRM_DEBUG_KMS("Unsupported FB tiling flag 0x%16llx", (long long)fb->modifier); return -EINVAL; } /* Control word */ vc4_dlist_write(vc4_state, SCALER_CTL0_VALID | (format->pixel_order << SCALER_CTL0_ORDER_SHIFT) | (format->hvs << SCALER_CTL0_PIXEL_FORMAT_SHIFT) | VC4_SET_FIELD(tiling, SCALER_CTL0_TILING) | (vc4_state->is_unity ? SCALER_CTL0_UNITY : 0) | VC4_SET_FIELD(scl0, SCALER_CTL0_SCL0) | VC4_SET_FIELD(scl1, SCALER_CTL0_SCL1)); /* Position Word 0: Image Positions and Alpha Value */ vc4_state->pos0_offset = vc4_state->dlist_count; vc4_dlist_write(vc4_state, VC4_SET_FIELD(0xff, SCALER_POS0_FIXED_ALPHA) | VC4_SET_FIELD(vc4_state->crtc_x, SCALER_POS0_START_X) | VC4_SET_FIELD(vc4_state->crtc_y, SCALER_POS0_START_Y)); /* Position Word 1: Scaled Image Dimensions. */ if (!vc4_state->is_unity) { vc4_dlist_write(vc4_state, VC4_SET_FIELD(vc4_state->crtc_w, SCALER_POS1_SCL_WIDTH) | VC4_SET_FIELD(vc4_state->crtc_h, SCALER_POS1_SCL_HEIGHT)); } /* Position Word 2: Source Image Size, Alpha Mode */ vc4_state->pos2_offset = vc4_state->dlist_count; vc4_dlist_write(vc4_state, VC4_SET_FIELD(format->has_alpha ? SCALER_POS2_ALPHA_MODE_PIPELINE : SCALER_POS2_ALPHA_MODE_FIXED, SCALER_POS2_ALPHA_MODE) | VC4_SET_FIELD(vc4_state->src_w[0], SCALER_POS2_WIDTH) | VC4_SET_FIELD(vc4_state->src_h[0], SCALER_POS2_HEIGHT)); /* Position Word 3: Context. Written by the HVS. */ vc4_dlist_write(vc4_state, 0xc0c0c0c0); /* Pointer Word 0/1/2: RGB / Y / Cb / Cr Pointers * * The pointers may be any byte address. */ vc4_state->ptr0_offset = vc4_state->dlist_count; if (!format->flip_cbcr) { for (i = 0; i < num_planes; i++) vc4_dlist_write(vc4_state, vc4_state->offsets[i]); } else { WARN_ON_ONCE(num_planes != 3); vc4_dlist_write(vc4_state, vc4_state->offsets[0]); vc4_dlist_write(vc4_state, vc4_state->offsets[2]); vc4_dlist_write(vc4_state, vc4_state->offsets[1]); } /* Pointer Context Word 0/1/2: Written by the HVS */ for (i = 0; i < num_planes; i++) vc4_dlist_write(vc4_state, 0xc0c0c0c0); /* Pitch word 0 */ vc4_dlist_write(vc4_state, pitch0); /* Pitch word 1/2 */ for (i = 1; i < num_planes; i++) { vc4_dlist_write(vc4_state, VC4_SET_FIELD(fb->pitches[i], SCALER_SRC_PITCH)); } /* Colorspace conversion words */ if (vc4_state->is_yuv) { vc4_dlist_write(vc4_state, SCALER_CSC0_ITR_R_601_5); vc4_dlist_write(vc4_state, SCALER_CSC1_ITR_R_601_5); vc4_dlist_write(vc4_state, SCALER_CSC2_ITR_R_601_5); } if (!vc4_state->is_unity) { /* LBM Base Address. */ if (vc4_state->y_scaling[0] != VC4_SCALING_NONE || vc4_state->y_scaling[1] != VC4_SCALING_NONE) { vc4_dlist_write(vc4_state, vc4_state->lbm.start); } if (num_planes > 1) { /* Emit Cb/Cr as channel 0 and Y as channel * 1. This matches how we set up scl0/scl1 * above. */ vc4_write_scaling_parameters(state, 1); } vc4_write_scaling_parameters(state, 0); /* If any PPF setup was done, then all the kernel * pointers get uploaded. */ if (vc4_state->x_scaling[0] == VC4_SCALING_PPF || vc4_state->y_scaling[0] == VC4_SCALING_PPF || vc4_state->x_scaling[1] == VC4_SCALING_PPF || vc4_state->y_scaling[1] == VC4_SCALING_PPF) { u32 kernel = VC4_SET_FIELD(vc4->hvs->mitchell_netravali_filter.start, SCALER_PPF_KERNEL_OFFSET); /* HPPF plane 0 */ vc4_dlist_write(vc4_state, kernel); /* VPPF plane 0 */ vc4_dlist_write(vc4_state, kernel); /* HPPF plane 1 */ vc4_dlist_write(vc4_state, kernel); /* VPPF plane 1 */ vc4_dlist_write(vc4_state, kernel); } } vc4_state->dlist[ctl0_offset] |= VC4_SET_FIELD(vc4_state->dlist_count, SCALER_CTL0_SIZE); return 0; } /* If a modeset involves changing the setup of a plane, the atomic * infrastructure will call this to validate a proposed plane setup. * However, if a plane isn't getting updated, this (and the * corresponding vc4_plane_atomic_update) won't get called. Thus, we * compute the dlist here and have all active plane dlists get updated * in the CRTC's flush. */ static int vc4_plane_atomic_check(struct drm_plane *plane, struct drm_plane_state *state) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(state); vc4_state->dlist_count = 0; if (plane_enabled(state)) return vc4_plane_mode_set(plane, state); else return 0; } static void vc4_plane_atomic_update(struct drm_plane *plane, struct drm_plane_state *old_state) { /* No contents here. Since we don't know where in the CRTC's * dlist we should be stored, our dlist is uploaded to the * hardware with vc4_plane_write_dlist() at CRTC atomic_flush * time. */ } u32 vc4_plane_write_dlist(struct drm_plane *plane, u32 __iomem *dlist) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); int i; vc4_state->hw_dlist = dlist; /* Can't memcpy_toio() because it needs to be 32-bit writes. */ for (i = 0; i < vc4_state->dlist_count; i++) writel(vc4_state->dlist[i], &dlist[i]); return vc4_state->dlist_count; } u32 vc4_plane_dlist_size(const struct drm_plane_state *state) { const struct vc4_plane_state *vc4_state = container_of(state, typeof(*vc4_state), base); return vc4_state->dlist_count; } /* Updates the plane to immediately (well, once the FIFO needs * refilling) scan out from at a new framebuffer. */ void vc4_plane_async_set_fb(struct drm_plane *plane, struct drm_framebuffer *fb) { struct vc4_plane_state *vc4_state = to_vc4_plane_state(plane->state); struct drm_gem_cma_object *bo = drm_fb_cma_get_gem_obj(fb, 0); uint32_t addr; /* We're skipping the address adjustment for negative origin, * because this is only called on the primary plane. */ WARN_ON_ONCE(plane->state->crtc_x < 0 || plane->state->crtc_y < 0); addr = bo->paddr + fb->offsets[0]; /* Write the new address into the hardware immediately. The * scanout will start from this address as soon as the FIFO * needs to refill with pixels. */ writel(addr, &vc4_state->hw_dlist[vc4_state->ptr0_offset]); /* Also update the CPU-side dlist copy, so that any later * atomic updates that don't do a new modeset on our plane * also use our updated address. */ vc4_state->dlist[vc4_state->ptr0_offset] = addr; } static int vc4_prepare_fb(struct drm_plane *plane, struct drm_plane_state *state) { struct vc4_bo *bo; struct dma_fence *fence; if ((plane->state->fb == state->fb) || !state->fb) return 0; bo = to_vc4_bo(&drm_fb_cma_get_gem_obj(state->fb, 0)->base); fence = reservation_object_get_excl_rcu(bo->resv); drm_atomic_set_fence_for_plane(state, fence); return 0; } static const struct drm_plane_helper_funcs vc4_plane_helper_funcs = { .atomic_check = vc4_plane_atomic_check, .atomic_update = vc4_plane_atomic_update, .prepare_fb = vc4_prepare_fb, }; static void vc4_plane_destroy(struct drm_plane *plane) { drm_plane_helper_disable(plane); drm_plane_cleanup(plane); } /* Implements immediate (non-vblank-synced) updates of the cursor * position, or falls back to the atomic helper otherwise. */ static int vc4_update_plane(struct drm_plane *plane, struct drm_crtc *crtc, struct drm_framebuffer *fb, int crtc_x, int crtc_y, unsigned int crtc_w, unsigned int crtc_h, uint32_t src_x, uint32_t src_y, uint32_t src_w, uint32_t src_h, struct drm_modeset_acquire_ctx *ctx) { struct drm_plane_state *plane_state; struct vc4_plane_state *vc4_state; if (plane != crtc->cursor) goto out; plane_state = plane->state; vc4_state = to_vc4_plane_state(plane_state); if (!plane_state) goto out; /* No configuring new scaling in the fast path. */ if (crtc_w != plane_state->crtc_w || crtc_h != plane_state->crtc_h || src_w != plane_state->src_w || src_h != plane_state->src_h) { goto out; } if (fb != plane_state->fb) { drm_atomic_set_fb_for_plane(plane->state, fb); vc4_plane_async_set_fb(plane, fb); } /* Set the cursor's position on the screen. This is the * expected change from the drm_mode_cursor_universal() * helper. */ plane_state->crtc_x = crtc_x; plane_state->crtc_y = crtc_y; /* Allow changing the start position within the cursor BO, if * that matters. */ plane_state->src_x = src_x; plane_state->src_y = src_y; /* Update the display list based on the new crtc_x/y. */ vc4_plane_atomic_check(plane, plane_state); /* Note that we can't just call vc4_plane_write_dlist() * because that would smash the context data that the HVS is * currently using. */ writel(vc4_state->dlist[vc4_state->pos0_offset], &vc4_state->hw_dlist[vc4_state->pos0_offset]); writel(vc4_state->dlist[vc4_state->pos2_offset], &vc4_state->hw_dlist[vc4_state->pos2_offset]); writel(vc4_state->dlist[vc4_state->ptr0_offset], &vc4_state->hw_dlist[vc4_state->ptr0_offset]); return 0; out: return drm_atomic_helper_update_plane(plane, crtc, fb, crtc_x, crtc_y, crtc_w, crtc_h, src_x, src_y, src_w, src_h, ctx); } static const struct drm_plane_funcs vc4_plane_funcs = { .update_plane = vc4_update_plane, .disable_plane = drm_atomic_helper_disable_plane, .destroy = vc4_plane_destroy, .set_property = NULL, .reset = vc4_plane_reset, .atomic_duplicate_state = vc4_plane_duplicate_state, .atomic_destroy_state = vc4_plane_destroy_state, }; struct drm_plane *vc4_plane_init(struct drm_device *dev, enum drm_plane_type type) { struct drm_plane *plane = NULL; struct vc4_plane *vc4_plane; u32 formats[ARRAY_SIZE(hvs_formats)]; u32 num_formats = 0; int ret = 0; unsigned i; vc4_plane = devm_kzalloc(dev->dev, sizeof(*vc4_plane), GFP_KERNEL); if (!vc4_plane) return ERR_PTR(-ENOMEM); for (i = 0; i < ARRAY_SIZE(hvs_formats); i++) { /* Don't allow YUV in cursor planes, since that means * tuning on the scaler, which we don't allow for the * cursor. */ if (type != DRM_PLANE_TYPE_CURSOR || hvs_formats[i].hvs < HVS_PIXEL_FORMAT_YCBCR_YUV420_3PLANE) { formats[num_formats++] = hvs_formats[i].drm; } } plane = &vc4_plane->base; ret = drm_universal_plane_init(dev, plane, 0, &vc4_plane_funcs, formats, num_formats, NULL, type, NULL); drm_plane_helper_add(plane, &vc4_plane_helper_funcs); return plane; }