// SPDX-License-Identifier: GPL-2.0 OR MIT /************************************************************************** * * Copyright 2009-2015 VMware, Inc., Palo Alto, CA., USA * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sub license, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice (including the * next paragraph) shall be included in all copies or substantial portions * of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE * USE OR OTHER DEALINGS IN THE SOFTWARE. * **************************************************************************/ #include "vmwgfx_drv.h" #include #include static const struct ttm_place vram_placement_flags = { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_VRAM, .flags = 0 }; static const struct ttm_place sys_placement_flags = { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_SYSTEM, .flags = 0 }; static const struct ttm_place gmr_placement_flags = { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_GMR, .flags = 0 }; static const struct ttm_place mob_placement_flags = { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_MOB, .flags = 0 }; struct ttm_placement vmw_vram_placement = { .num_placement = 1, .placement = &vram_placement_flags, .num_busy_placement = 1, .busy_placement = &vram_placement_flags }; static const struct ttm_place vram_gmr_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_VRAM, .flags = 0 }, { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_GMR, .flags = 0 } }; static const struct ttm_place gmr_vram_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_GMR, .flags = 0 }, { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_VRAM, .flags = 0 } }; struct ttm_placement vmw_vram_gmr_placement = { .num_placement = 2, .placement = vram_gmr_placement_flags, .num_busy_placement = 1, .busy_placement = &gmr_placement_flags }; struct ttm_placement vmw_vram_sys_placement = { .num_placement = 1, .placement = &vram_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_placement_flags }; struct ttm_placement vmw_sys_placement = { .num_placement = 1, .placement = &sys_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_placement_flags }; static const struct ttm_place evictable_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_SYSTEM, .flags = 0 }, { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_VRAM, .flags = 0 }, { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_GMR, .flags = 0 }, { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_MOB, .flags = 0 } }; static const struct ttm_place nonfixed_placement_flags[] = { { .fpfn = 0, .lpfn = 0, .mem_type = TTM_PL_SYSTEM, .flags = 0 }, { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_GMR, .flags = 0 }, { .fpfn = 0, .lpfn = 0, .mem_type = VMW_PL_MOB, .flags = 0 } }; struct ttm_placement vmw_evictable_placement = { .num_placement = 4, .placement = evictable_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_placement_flags }; struct ttm_placement vmw_srf_placement = { .num_placement = 1, .num_busy_placement = 2, .placement = &gmr_placement_flags, .busy_placement = gmr_vram_placement_flags }; struct ttm_placement vmw_mob_placement = { .num_placement = 1, .num_busy_placement = 1, .placement = &mob_placement_flags, .busy_placement = &mob_placement_flags }; struct ttm_placement vmw_nonfixed_placement = { .num_placement = 3, .placement = nonfixed_placement_flags, .num_busy_placement = 1, .busy_placement = &sys_placement_flags }; struct vmw_ttm_tt { struct ttm_tt dma_ttm; struct vmw_private *dev_priv; int gmr_id; struct vmw_mob *mob; int mem_type; struct sg_table sgt; struct vmw_sg_table vsgt; uint64_t sg_alloc_size; bool mapped; bool bound; }; const size_t vmw_tt_size = sizeof(struct vmw_ttm_tt); /** * __vmw_piter_non_sg_next: Helper functions to advance * a struct vmw_piter iterator. * * @viter: Pointer to the iterator. * * These functions return false if past the end of the list, * true otherwise. Functions are selected depending on the current * DMA mapping mode. */ static bool __vmw_piter_non_sg_next(struct vmw_piter *viter) { return ++(viter->i) < viter->num_pages; } static bool __vmw_piter_sg_next(struct vmw_piter *viter) { bool ret = __vmw_piter_non_sg_next(viter); return __sg_page_iter_dma_next(&viter->iter) && ret; } static dma_addr_t __vmw_piter_dma_addr(struct vmw_piter *viter) { return viter->addrs[viter->i]; } static dma_addr_t __vmw_piter_sg_addr(struct vmw_piter *viter) { return sg_page_iter_dma_address(&viter->iter); } /** * vmw_piter_start - Initialize a struct vmw_piter. * * @viter: Pointer to the iterator to initialize * @vsgt: Pointer to a struct vmw_sg_table to initialize from * @p_offset: Pointer offset used to update current array position * * Note that we're following the convention of __sg_page_iter_start, so that * the iterator doesn't point to a valid page after initialization; it has * to be advanced one step first. */ void vmw_piter_start(struct vmw_piter *viter, const struct vmw_sg_table *vsgt, unsigned long p_offset) { viter->i = p_offset - 1; viter->num_pages = vsgt->num_pages; viter->pages = vsgt->pages; switch (vsgt->mode) { case vmw_dma_alloc_coherent: viter->next = &__vmw_piter_non_sg_next; viter->dma_address = &__vmw_piter_dma_addr; viter->addrs = vsgt->addrs; break; case vmw_dma_map_populate: case vmw_dma_map_bind: viter->next = &__vmw_piter_sg_next; viter->dma_address = &__vmw_piter_sg_addr; __sg_page_iter_start(&viter->iter.base, vsgt->sgt->sgl, vsgt->sgt->orig_nents, p_offset); break; default: BUG(); } } /** * vmw_ttm_unmap_from_dma - unmap device addresses previsouly mapped for * TTM pages * * @vmw_tt: Pointer to a struct vmw_ttm_backend * * Used to free dma mappings previously mapped by vmw_ttm_map_for_dma. */ static void vmw_ttm_unmap_from_dma(struct vmw_ttm_tt *vmw_tt) { struct device *dev = vmw_tt->dev_priv->drm.dev; dma_unmap_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); vmw_tt->sgt.nents = vmw_tt->sgt.orig_nents; } /** * vmw_ttm_map_for_dma - map TTM pages to get device addresses * * @vmw_tt: Pointer to a struct vmw_ttm_backend * * This function is used to get device addresses from the kernel DMA layer. * However, it's violating the DMA API in that when this operation has been * performed, it's illegal for the CPU to write to the pages without first * unmapping the DMA mappings, or calling dma_sync_sg_for_cpu(). It is * therefore only legal to call this function if we know that the function * dma_sync_sg_for_cpu() is a NOP, and dma_sync_sg_for_device() is at most * a CPU write buffer flush. */ static int vmw_ttm_map_for_dma(struct vmw_ttm_tt *vmw_tt) { struct device *dev = vmw_tt->dev_priv->drm.dev; return dma_map_sgtable(dev, &vmw_tt->sgt, DMA_BIDIRECTIONAL, 0); } /** * vmw_ttm_map_dma - Make sure TTM pages are visible to the device * * @vmw_tt: Pointer to a struct vmw_ttm_tt * * Select the correct function for and make sure the TTM pages are * visible to the device. Allocate storage for the device mappings. * If a mapping has already been performed, indicated by the storage * pointer being non NULL, the function returns success. */ static int vmw_ttm_map_dma(struct vmw_ttm_tt *vmw_tt) { struct vmw_private *dev_priv = vmw_tt->dev_priv; struct ttm_mem_global *glob = vmw_mem_glob(dev_priv); struct vmw_sg_table *vsgt = &vmw_tt->vsgt; struct ttm_operation_ctx ctx = { .interruptible = true, .no_wait_gpu = false }; struct vmw_piter iter; dma_addr_t old; int ret = 0; static size_t sgl_size; static size_t sgt_size; if (vmw_tt->mapped) return 0; vsgt->mode = dev_priv->map_mode; vsgt->pages = vmw_tt->dma_ttm.pages; vsgt->num_pages = vmw_tt->dma_ttm.num_pages; vsgt->addrs = vmw_tt->dma_ttm.dma_address; vsgt->sgt = &vmw_tt->sgt; switch (dev_priv->map_mode) { case vmw_dma_map_bind: case vmw_dma_map_populate: if (unlikely(!sgl_size)) { sgl_size = ttm_round_pot(sizeof(struct scatterlist)); sgt_size = ttm_round_pot(sizeof(struct sg_table)); } vmw_tt->sg_alloc_size = sgt_size + sgl_size * vsgt->num_pages; ret = ttm_mem_global_alloc(glob, vmw_tt->sg_alloc_size, &ctx); if (unlikely(ret != 0)) return ret; ret = sg_alloc_table_from_pages_segment( &vmw_tt->sgt, vsgt->pages, vsgt->num_pages, 0, (unsigned long)vsgt->num_pages << PAGE_SHIFT, dma_get_max_seg_size(dev_priv->drm.dev), GFP_KERNEL); if (ret) goto out_sg_alloc_fail; if (vsgt->num_pages > vmw_tt->sgt.orig_nents) { uint64_t over_alloc = sgl_size * (vsgt->num_pages - vmw_tt->sgt.orig_nents); ttm_mem_global_free(glob, over_alloc); vmw_tt->sg_alloc_size -= over_alloc; } ret = vmw_ttm_map_for_dma(vmw_tt); if (unlikely(ret != 0)) goto out_map_fail; break; default: break; } old = ~((dma_addr_t) 0); vmw_tt->vsgt.num_regions = 0; for (vmw_piter_start(&iter, vsgt, 0); vmw_piter_next(&iter);) { dma_addr_t cur = vmw_piter_dma_addr(&iter); if (cur != old + PAGE_SIZE) vmw_tt->vsgt.num_regions++; old = cur; } vmw_tt->mapped = true; return 0; out_map_fail: sg_free_table(vmw_tt->vsgt.sgt); vmw_tt->vsgt.sgt = NULL; out_sg_alloc_fail: ttm_mem_global_free(glob, vmw_tt->sg_alloc_size); return ret; } /** * vmw_ttm_unmap_dma - Tear down any TTM page device mappings * * @vmw_tt: Pointer to a struct vmw_ttm_tt * * Tear down any previously set up device DMA mappings and free * any storage space allocated for them. If there are no mappings set up, * this function is a NOP. */ static void vmw_ttm_unmap_dma(struct vmw_ttm_tt *vmw_tt) { struct vmw_private *dev_priv = vmw_tt->dev_priv; if (!vmw_tt->vsgt.sgt) return; switch (dev_priv->map_mode) { case vmw_dma_map_bind: case vmw_dma_map_populate: vmw_ttm_unmap_from_dma(vmw_tt); sg_free_table(vmw_tt->vsgt.sgt); vmw_tt->vsgt.sgt = NULL; ttm_mem_global_free(vmw_mem_glob(dev_priv), vmw_tt->sg_alloc_size); break; default: break; } vmw_tt->mapped = false; } /** * vmw_bo_sg_table - Return a struct vmw_sg_table object for a * TTM buffer object * * @bo: Pointer to a struct ttm_buffer_object * * Returns a pointer to a struct vmw_sg_table object. The object should * not be freed after use. * Note that for the device addresses to be valid, the buffer object must * either be reserved or pinned. */ const struct vmw_sg_table *vmw_bo_sg_table(struct ttm_buffer_object *bo) { struct vmw_ttm_tt *vmw_tt = container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); return &vmw_tt->vsgt; } static int vmw_ttm_bind(struct ttm_device *bdev, struct ttm_tt *ttm, struct ttm_resource *bo_mem) { struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, dma_ttm); int ret = 0; if (!bo_mem) return -EINVAL; if (vmw_be->bound) return 0; ret = vmw_ttm_map_dma(vmw_be); if (unlikely(ret != 0)) return ret; vmw_be->gmr_id = bo_mem->start; vmw_be->mem_type = bo_mem->mem_type; switch (bo_mem->mem_type) { case VMW_PL_GMR: ret = vmw_gmr_bind(vmw_be->dev_priv, &vmw_be->vsgt, ttm->num_pages, vmw_be->gmr_id); break; case VMW_PL_MOB: if (unlikely(vmw_be->mob == NULL)) { vmw_be->mob = vmw_mob_create(ttm->num_pages); if (unlikely(vmw_be->mob == NULL)) return -ENOMEM; } ret = vmw_mob_bind(vmw_be->dev_priv, vmw_be->mob, &vmw_be->vsgt, ttm->num_pages, vmw_be->gmr_id); break; default: BUG(); } vmw_be->bound = true; return ret; } static void vmw_ttm_unbind(struct ttm_device *bdev, struct ttm_tt *ttm) { struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, dma_ttm); if (!vmw_be->bound) return; switch (vmw_be->mem_type) { case VMW_PL_GMR: vmw_gmr_unbind(vmw_be->dev_priv, vmw_be->gmr_id); break; case VMW_PL_MOB: vmw_mob_unbind(vmw_be->dev_priv, vmw_be->mob); break; default: BUG(); } if (vmw_be->dev_priv->map_mode == vmw_dma_map_bind) vmw_ttm_unmap_dma(vmw_be); vmw_be->bound = false; } static void vmw_ttm_destroy(struct ttm_device *bdev, struct ttm_tt *ttm) { struct vmw_ttm_tt *vmw_be = container_of(ttm, struct vmw_ttm_tt, dma_ttm); vmw_ttm_unbind(bdev, ttm); ttm_tt_destroy_common(bdev, ttm); vmw_ttm_unmap_dma(vmw_be); if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) ttm_tt_fini(&vmw_be->dma_ttm); else ttm_tt_fini(ttm); if (vmw_be->mob) vmw_mob_destroy(vmw_be->mob); kfree(vmw_be); } static int vmw_ttm_populate(struct ttm_device *bdev, struct ttm_tt *ttm, struct ttm_operation_ctx *ctx) { unsigned int i; int ret; /* TODO: maybe completely drop this ? */ if (ttm_tt_is_populated(ttm)) return 0; ret = ttm_pool_alloc(&bdev->pool, ttm, ctx); if (ret) return ret; for (i = 0; i < ttm->num_pages; ++i) { ret = ttm_mem_global_alloc_page(&ttm_mem_glob, ttm->pages[i], PAGE_SIZE, ctx); if (ret) goto error; } return 0; error: while (i--) ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i], PAGE_SIZE); ttm_pool_free(&bdev->pool, ttm); return ret; } static void vmw_ttm_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm) { struct vmw_ttm_tt *vmw_tt = container_of(ttm, struct vmw_ttm_tt, dma_ttm); unsigned int i; if (vmw_tt->mob) { vmw_mob_destroy(vmw_tt->mob); vmw_tt->mob = NULL; } vmw_ttm_unmap_dma(vmw_tt); for (i = 0; i < ttm->num_pages; ++i) ttm_mem_global_free_page(&ttm_mem_glob, ttm->pages[i], PAGE_SIZE); ttm_pool_free(&bdev->pool, ttm); } static struct ttm_tt *vmw_ttm_tt_create(struct ttm_buffer_object *bo, uint32_t page_flags) { struct vmw_ttm_tt *vmw_be; int ret; vmw_be = kzalloc(sizeof(*vmw_be), GFP_KERNEL); if (!vmw_be) return NULL; vmw_be->dev_priv = container_of(bo->bdev, struct vmw_private, bdev); vmw_be->mob = NULL; if (vmw_be->dev_priv->map_mode == vmw_dma_alloc_coherent) ret = ttm_sg_tt_init(&vmw_be->dma_ttm, bo, page_flags, ttm_cached); else ret = ttm_tt_init(&vmw_be->dma_ttm, bo, page_flags, ttm_cached); if (unlikely(ret != 0)) goto out_no_init; return &vmw_be->dma_ttm; out_no_init: kfree(vmw_be); return NULL; } static void vmw_evict_flags(struct ttm_buffer_object *bo, struct ttm_placement *placement) { *placement = vmw_sys_placement; } static int vmw_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem) { struct vmw_private *dev_priv = container_of(bdev, struct vmw_private, bdev); switch (mem->mem_type) { case TTM_PL_SYSTEM: case VMW_PL_GMR: case VMW_PL_MOB: return 0; case TTM_PL_VRAM: mem->bus.offset = (mem->start << PAGE_SHIFT) + dev_priv->vram_start; mem->bus.is_iomem = true; mem->bus.caching = ttm_cached; break; default: return -EINVAL; } return 0; } /** * vmw_move_notify - TTM move_notify_callback * * @bo: The TTM buffer object about to move. * @old_mem: The old memory where we move from * @new_mem: The struct ttm_resource indicating to what memory * region the move is taking place. * * Calls move_notify for all subsystems needing it. * (currently only resources). */ static void vmw_move_notify(struct ttm_buffer_object *bo, struct ttm_resource *old_mem, struct ttm_resource *new_mem) { vmw_bo_move_notify(bo, new_mem); vmw_query_move_notify(bo, old_mem, new_mem); } /** * vmw_swap_notify - TTM move_notify_callback * * @bo: The TTM buffer object about to be swapped out. */ static void vmw_swap_notify(struct ttm_buffer_object *bo) { vmw_bo_swap_notify(bo); (void) ttm_bo_wait(bo, false, false); } static int vmw_move(struct ttm_buffer_object *bo, bool evict, struct ttm_operation_ctx *ctx, struct ttm_resource *new_mem, struct ttm_place *hop) { struct ttm_resource_manager *old_man = ttm_manager_type(bo->bdev, bo->resource->mem_type); struct ttm_resource_manager *new_man = ttm_manager_type(bo->bdev, new_mem->mem_type); int ret; if (new_man->use_tt && new_mem->mem_type != TTM_PL_SYSTEM) { ret = vmw_ttm_bind(bo->bdev, bo->ttm, new_mem); if (ret) return ret; } vmw_move_notify(bo, bo->resource, new_mem); if (old_man->use_tt && new_man->use_tt) { if (bo->resource->mem_type == TTM_PL_SYSTEM) { ttm_bo_move_null(bo, new_mem); return 0; } ret = ttm_bo_wait_ctx(bo, ctx); if (ret) goto fail; vmw_ttm_unbind(bo->bdev, bo->ttm); ttm_resource_free(bo, &bo->resource); ttm_bo_assign_mem(bo, new_mem); return 0; } else { ret = ttm_bo_move_memcpy(bo, ctx, new_mem); if (ret) goto fail; } return 0; fail: vmw_move_notify(bo, new_mem, bo->resource); return ret; } struct ttm_device_funcs vmw_bo_driver = { .ttm_tt_create = &vmw_ttm_tt_create, .ttm_tt_populate = &vmw_ttm_populate, .ttm_tt_unpopulate = &vmw_ttm_unpopulate, .ttm_tt_destroy = &vmw_ttm_destroy, .eviction_valuable = ttm_bo_eviction_valuable, .evict_flags = vmw_evict_flags, .move = vmw_move, .swap_notify = vmw_swap_notify, .io_mem_reserve = &vmw_ttm_io_mem_reserve, }; int vmw_bo_create_and_populate(struct vmw_private *dev_priv, unsigned long bo_size, struct ttm_buffer_object **bo_p) { struct ttm_operation_ctx ctx = { .interruptible = false, .no_wait_gpu = false }; struct ttm_buffer_object *bo; int ret; ret = vmw_bo_create_kernel(dev_priv, bo_size, &vmw_sys_placement, &bo); if (unlikely(ret != 0)) return ret; ret = ttm_bo_reserve(bo, false, true, NULL); BUG_ON(ret != 0); ret = vmw_ttm_populate(bo->bdev, bo->ttm, &ctx); if (likely(ret == 0)) { struct vmw_ttm_tt *vmw_tt = container_of(bo->ttm, struct vmw_ttm_tt, dma_ttm); ret = vmw_ttm_map_dma(vmw_tt); } ttm_bo_unreserve(bo); if (likely(ret == 0)) *bo_p = bo; return ret; }