/* * Provides I2C support for Philips PNX010x/PNX4008 boards. * * Authors: Dennis Kovalev * Vitaly Wool * * 2004-2006 (c) MontaVista Software, Inc. This file is licensed under * the terms of the GNU General Public License version 2. This program * is licensed "as is" without any warranty of any kind, whether express * or implied. */ #include #include #include #include #include #include #include #include #include #include #include #include #define I2C_PNX_TIMEOUT 10 /* msec */ #define I2C_PNX_SPEED_KHZ 100 #define I2C_PNX_REGION_SIZE 0x100 #define PNX_DEFAULT_FREQ 13 /* MHz */ static inline int wait_timeout(long timeout, struct i2c_pnx_algo_data *data) { while (timeout > 0 && (ioread32(I2C_REG_STS(data)) & mstatus_active)) { mdelay(1); timeout--; } return (timeout <= 0); } static inline int wait_reset(long timeout, struct i2c_pnx_algo_data *data) { while (timeout > 0 && (ioread32(I2C_REG_CTL(data)) & mcntrl_reset)) { mdelay(1); timeout--; } return (timeout <= 0); } static inline void i2c_pnx_arm_timer(struct i2c_adapter *adap) { struct i2c_pnx_algo_data *data = adap->algo_data; struct timer_list *timer = &data->mif.timer; int expires = I2C_PNX_TIMEOUT / (1000 / HZ); del_timer_sync(timer); dev_dbg(&adap->dev, "Timer armed at %lu plus %u jiffies.\n", jiffies, expires); timer->expires = jiffies + expires; timer->data = (unsigned long)adap; add_timer(timer); } /** * i2c_pnx_start - start a device * @slave_addr: slave address * @adap: pointer to adapter structure * * Generate a START signal in the desired mode. */ static int i2c_pnx_start(unsigned char slave_addr, struct i2c_adapter *adap) { struct i2c_pnx_algo_data *alg_data = adap->algo_data; dev_dbg(&adap->dev, "%s(): addr 0x%x mode %d\n", __FUNCTION__, slave_addr, alg_data->mif.mode); /* Check for 7 bit slave addresses only */ if (slave_addr & ~0x7f) { dev_err(&adap->dev, "%s: Invalid slave address %x. " "Only 7-bit addresses are supported\n", adap->name, slave_addr); return -EINVAL; } /* First, make sure bus is idle */ if (wait_timeout(I2C_PNX_TIMEOUT, alg_data)) { /* Somebody else is monopolizing the bus */ dev_err(&adap->dev, "%s: Bus busy. Slave addr = %02x, " "cntrl = %x, stat = %x\n", adap->name, slave_addr, ioread32(I2C_REG_CTL(alg_data)), ioread32(I2C_REG_STS(alg_data))); return -EBUSY; } else if (ioread32(I2C_REG_STS(alg_data)) & mstatus_afi) { /* Sorry, we lost the bus */ dev_err(&adap->dev, "%s: Arbitration failure. " "Slave addr = %02x\n", adap->name, slave_addr); return -EIO; } /* * OK, I2C is enabled and we have the bus. * Clear the current TDI and AFI status flags. */ iowrite32(ioread32(I2C_REG_STS(alg_data)) | mstatus_tdi | mstatus_afi, I2C_REG_STS(alg_data)); dev_dbg(&adap->dev, "%s(): sending %#x\n", __FUNCTION__, (slave_addr << 1) | start_bit | alg_data->mif.mode); /* Write the slave address, START bit and R/W bit */ iowrite32((slave_addr << 1) | start_bit | alg_data->mif.mode, I2C_REG_TX(alg_data)); dev_dbg(&adap->dev, "%s(): exit\n", __FUNCTION__); return 0; } /** * i2c_pnx_stop - stop a device * @adap: pointer to I2C adapter structure * * Generate a STOP signal to terminate the master transaction. */ static void i2c_pnx_stop(struct i2c_adapter *adap) { struct i2c_pnx_algo_data *alg_data = adap->algo_data; /* Only 1 msec max timeout due to interrupt context */ long timeout = 1000; dev_dbg(&adap->dev, "%s(): entering: stat = %04x.\n", __FUNCTION__, ioread32(I2C_REG_STS(alg_data))); /* Write a STOP bit to TX FIFO */ iowrite32(0xff | stop_bit, I2C_REG_TX(alg_data)); /* Wait until the STOP is seen. */ while (timeout > 0 && (ioread32(I2C_REG_STS(alg_data)) & mstatus_active)) { /* may be called from interrupt context */ udelay(1); timeout--; } dev_dbg(&adap->dev, "%s(): exiting: stat = %04x.\n", __FUNCTION__, ioread32(I2C_REG_STS(alg_data))); } /** * i2c_pnx_master_xmit - transmit data to slave * @adap: pointer to I2C adapter structure * * Sends one byte of data to the slave */ static int i2c_pnx_master_xmit(struct i2c_adapter *adap) { struct i2c_pnx_algo_data *alg_data = adap->algo_data; u32 val; dev_dbg(&adap->dev, "%s(): entering: stat = %04x.\n", __FUNCTION__, ioread32(I2C_REG_STS(alg_data))); if (alg_data->mif.len > 0) { /* We still have something to talk about... */ val = *alg_data->mif.buf++; if (alg_data->mif.len == 1) { val |= stop_bit; if (!alg_data->last) val |= start_bit; } alg_data->mif.len--; iowrite32(val, I2C_REG_TX(alg_data)); dev_dbg(&adap->dev, "%s(): xmit %#x [%d]\n", __FUNCTION__, val, alg_data->mif.len + 1); if (alg_data->mif.len == 0) { if (alg_data->last) { /* Wait until the STOP is seen. */ if (wait_timeout(I2C_PNX_TIMEOUT, alg_data)) dev_err(&adap->dev, "The bus is still " "active after timeout\n"); } /* Disable master interrupts */ iowrite32(ioread32(I2C_REG_CTL(alg_data)) & ~(mcntrl_afie | mcntrl_naie | mcntrl_drmie), I2C_REG_CTL(alg_data)); del_timer_sync(&alg_data->mif.timer); dev_dbg(&adap->dev, "%s(): Waking up xfer routine.\n", __FUNCTION__); complete(&alg_data->mif.complete); } } else if (alg_data->mif.len == 0) { /* zero-sized transfer */ i2c_pnx_stop(adap); /* Disable master interrupts. */ iowrite32(ioread32(I2C_REG_CTL(alg_data)) & ~(mcntrl_afie | mcntrl_naie | mcntrl_drmie), I2C_REG_CTL(alg_data)); /* Stop timer. */ del_timer_sync(&alg_data->mif.timer); dev_dbg(&adap->dev, "%s(): Waking up xfer routine after " "zero-xfer.\n", __FUNCTION__); complete(&alg_data->mif.complete); } dev_dbg(&adap->dev, "%s(): exiting: stat = %04x.\n", __FUNCTION__, ioread32(I2C_REG_STS(alg_data))); return 0; } /** * i2c_pnx_master_rcv - receive data from slave * @adap: pointer to I2C adapter structure * * Reads one byte data from the slave */ static int i2c_pnx_master_rcv(struct i2c_adapter *adap) { struct i2c_pnx_algo_data *alg_data = adap->algo_data; unsigned int val = 0; u32 ctl = 0; dev_dbg(&adap->dev, "%s(): entering: stat = %04x.\n", __FUNCTION__, ioread32(I2C_REG_STS(alg_data))); /* Check, whether there is already data, * or we didn't 'ask' for it yet. */ if (ioread32(I2C_REG_STS(alg_data)) & mstatus_rfe) { dev_dbg(&adap->dev, "%s(): Write dummy data to fill " "Rx-fifo...\n", __FUNCTION__); if (alg_data->mif.len == 1) { /* Last byte, do not acknowledge next rcv. */ val |= stop_bit; if (!alg_data->last) val |= start_bit; /* * Enable interrupt RFDAIE (data in Rx fifo), * and disable DRMIE (need data for Tx) */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl |= mcntrl_rffie | mcntrl_daie; ctl &= ~mcntrl_drmie; iowrite32(ctl, I2C_REG_CTL(alg_data)); } /* * Now we'll 'ask' for data: * For each byte we want to receive, we must * write a (dummy) byte to the Tx-FIFO. */ iowrite32(val, I2C_REG_TX(alg_data)); return 0; } /* Handle data. */ if (alg_data->mif.len > 0) { val = ioread32(I2C_REG_RX(alg_data)); *alg_data->mif.buf++ = (u8) (val & 0xff); dev_dbg(&adap->dev, "%s(): rcv 0x%x [%d]\n", __FUNCTION__, val, alg_data->mif.len); alg_data->mif.len--; if (alg_data->mif.len == 0) { if (alg_data->last) /* Wait until the STOP is seen. */ if (wait_timeout(I2C_PNX_TIMEOUT, alg_data)) dev_err(&adap->dev, "The bus is still " "active after timeout\n"); /* Disable master interrupts */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie | mcntrl_daie); iowrite32(ctl, I2C_REG_CTL(alg_data)); /* Kill timer. */ del_timer_sync(&alg_data->mif.timer); complete(&alg_data->mif.complete); } } dev_dbg(&adap->dev, "%s(): exiting: stat = %04x.\n", __FUNCTION__, ioread32(I2C_REG_STS(alg_data))); return 0; } static irqreturn_t i2c_pnx_interrupt(int irq, void *dev_id, struct pt_regs *regs) { u32 stat, ctl; struct i2c_adapter *adap = dev_id; struct i2c_pnx_algo_data *alg_data = adap->algo_data; dev_dbg(&adap->dev, "%s(): mstat = %x mctrl = %x, mode = %d\n", __FUNCTION__, ioread32(I2C_REG_STS(alg_data)), ioread32(I2C_REG_CTL(alg_data)), alg_data->mif.mode); stat = ioread32(I2C_REG_STS(alg_data)); /* let's see what kind of event this is */ if (stat & mstatus_afi) { /* We lost arbitration in the midst of a transfer */ alg_data->mif.ret = -EIO; /* Disable master interrupts. */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie); iowrite32(ctl, I2C_REG_CTL(alg_data)); /* Stop timer, to prevent timeout. */ del_timer_sync(&alg_data->mif.timer); complete(&alg_data->mif.complete); } else if (stat & mstatus_nai) { /* Slave did not acknowledge, generate a STOP */ dev_dbg(&adap->dev, "%s(): " "Slave did not acknowledge, generating a STOP.\n", __FUNCTION__); i2c_pnx_stop(adap); /* Disable master interrupts. */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie); iowrite32(ctl, I2C_REG_CTL(alg_data)); /* Our return value. */ alg_data->mif.ret = -EIO; /* Stop timer, to prevent timeout. */ del_timer_sync(&alg_data->mif.timer); complete(&alg_data->mif.complete); } else { /* * Two options: * - Master Tx needs data. * - There is data in the Rx-fifo * The latter is only the case if we have requested for data, * via a dummy write. (See 'i2c_pnx_master_rcv'.) * We therefore check, as a sanity check, whether that interrupt * has been enabled. */ if ((stat & mstatus_drmi) || !(stat & mstatus_rfe)) { if (alg_data->mif.mode == I2C_SMBUS_WRITE) { i2c_pnx_master_xmit(adap); } else if (alg_data->mif.mode == I2C_SMBUS_READ) { i2c_pnx_master_rcv(adap); } } } /* Clear TDI and AFI bits */ stat = ioread32(I2C_REG_STS(alg_data)); iowrite32(stat | mstatus_tdi | mstatus_afi, I2C_REG_STS(alg_data)); dev_dbg(&adap->dev, "%s(): exiting, stat = %x ctrl = %x.\n", __FUNCTION__, ioread32(I2C_REG_STS(alg_data)), ioread32(I2C_REG_CTL(alg_data))); return IRQ_HANDLED; } static void i2c_pnx_timeout(unsigned long data) { struct i2c_adapter *adap = (struct i2c_adapter *)data; struct i2c_pnx_algo_data *alg_data = adap->algo_data; u32 ctl; dev_err(&adap->dev, "Master timed out. stat = %04x, cntrl = %04x. " "Resetting master...\n", ioread32(I2C_REG_STS(alg_data)), ioread32(I2C_REG_CTL(alg_data))); /* Reset master and disable interrupts */ ctl = ioread32(I2C_REG_CTL(alg_data)); ctl &= ~(mcntrl_afie | mcntrl_naie | mcntrl_rffie | mcntrl_drmie); iowrite32(ctl, I2C_REG_CTL(alg_data)); ctl |= mcntrl_reset; iowrite32(ctl, I2C_REG_CTL(alg_data)); wait_reset(I2C_PNX_TIMEOUT, alg_data); alg_data->mif.ret = -EIO; complete(&alg_data->mif.complete); } static inline void bus_reset_if_active(struct i2c_adapter *adap) { struct i2c_pnx_algo_data *alg_data = adap->algo_data; u32 stat; if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_active) { dev_err(&adap->dev, "%s: Bus is still active after xfer. Reset it...\n", adap->name); iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset, I2C_REG_CTL(alg_data)); wait_reset(I2C_PNX_TIMEOUT, alg_data); } else if (!(stat & mstatus_rfe) || !(stat & mstatus_tfe)) { /* If there is data in the fifo's after transfer, * flush fifo's by reset. */ iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset, I2C_REG_CTL(alg_data)); wait_reset(I2C_PNX_TIMEOUT, alg_data); } else if (stat & mstatus_nai) { iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_reset, I2C_REG_CTL(alg_data)); wait_reset(I2C_PNX_TIMEOUT, alg_data); } } /** * i2c_pnx_xfer - generic transfer entry point * @adap: pointer to I2C adapter structure * @msgs: array of messages * @num: number of messages * * Initiates the transfer */ static int i2c_pnx_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct i2c_msg *pmsg; int rc = 0, completed = 0, i; struct i2c_pnx_algo_data *alg_data = adap->algo_data; u32 stat = ioread32(I2C_REG_STS(alg_data)); dev_dbg(&adap->dev, "%s(): entering: %d messages, stat = %04x.\n", __FUNCTION__, num, ioread32(I2C_REG_STS(alg_data))); bus_reset_if_active(adap); /* Process transactions in a loop. */ for (i = 0; rc >= 0 && i < num; i++) { u8 addr; pmsg = &msgs[i]; addr = pmsg->addr; if (pmsg->flags & I2C_M_TEN) { dev_err(&adap->dev, "%s: 10 bits addr not supported!\n", adap->name); rc = -EINVAL; break; } alg_data->mif.buf = pmsg->buf; alg_data->mif.len = pmsg->len; alg_data->mif.mode = (pmsg->flags & I2C_M_RD) ? I2C_SMBUS_READ : I2C_SMBUS_WRITE; alg_data->mif.ret = 0; alg_data->last = (i == num - 1); dev_dbg(&adap->dev, "%s(): mode %d, %d bytes\n", __FUNCTION__, alg_data->mif.mode, alg_data->mif.len); i2c_pnx_arm_timer(adap); /* initialize the completion var */ init_completion(&alg_data->mif.complete); /* Enable master interrupt */ iowrite32(ioread32(I2C_REG_CTL(alg_data)) | mcntrl_afie | mcntrl_naie | mcntrl_drmie, I2C_REG_CTL(alg_data)); /* Put start-code and slave-address on the bus. */ rc = i2c_pnx_start(addr, adap); if (rc < 0) break; /* Wait for completion */ wait_for_completion(&alg_data->mif.complete); if (!(rc = alg_data->mif.ret)) completed++; dev_dbg(&adap->dev, "%s(): Complete, return code = %d.\n", __FUNCTION__, rc); /* Clear TDI and AFI bits in case they are set. */ if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_tdi) { dev_dbg(&adap->dev, "%s: TDI still set... clearing now.\n", adap->name); iowrite32(stat, I2C_REG_STS(alg_data)); } if ((stat = ioread32(I2C_REG_STS(alg_data))) & mstatus_afi) { dev_dbg(&adap->dev, "%s: AFI still set... clearing now.\n", adap->name); iowrite32(stat, I2C_REG_STS(alg_data)); } } bus_reset_if_active(adap); /* Cleanup to be sure... */ alg_data->mif.buf = NULL; alg_data->mif.len = 0; dev_dbg(&adap->dev, "%s(): exiting, stat = %x\n", __FUNCTION__, ioread32(I2C_REG_STS(alg_data))); if (completed != num) return ((rc < 0) ? rc : -EREMOTEIO); return num; } static u32 i2c_pnx_func(struct i2c_adapter *adapter) { return I2C_FUNC_I2C | I2C_FUNC_SMBUS_EMUL; } static struct i2c_algorithm pnx_algorithm = { .master_xfer = i2c_pnx_xfer, .functionality = i2c_pnx_func, }; static int i2c_pnx_controller_suspend(struct platform_device *pdev, pm_message_t state) { struct i2c_pnx_data *i2c_pnx = platform_get_drvdata(pdev); return i2c_pnx->suspend(pdev, state); } static int i2c_pnx_controller_resume(struct platform_device *pdev) { struct i2c_pnx_data *i2c_pnx = platform_get_drvdata(pdev); return i2c_pnx->resume(pdev); } static int __devinit i2c_pnx_probe(struct platform_device *pdev) { unsigned long tmp; int ret = 0; struct i2c_pnx_algo_data *alg_data; int freq_mhz; struct i2c_pnx_data *i2c_pnx = pdev->dev.platform_data; if (!i2c_pnx || !i2c_pnx->adapter) { dev_err(&pdev->dev, "%s: no platform data supplied\n", __FUNCTION__); ret = -EINVAL; goto out; } platform_set_drvdata(pdev, i2c_pnx); if (i2c_pnx->calculate_input_freq) freq_mhz = i2c_pnx->calculate_input_freq(pdev); else { freq_mhz = PNX_DEFAULT_FREQ; dev_info(&pdev->dev, "Setting bus frequency to default value: " "%d MHz", freq_mhz); } i2c_pnx->adapter->algo = &pnx_algorithm; alg_data = i2c_pnx->adapter->algo_data; init_timer(&alg_data->mif.timer); alg_data->mif.timer.function = i2c_pnx_timeout; alg_data->mif.timer.data = (unsigned long)i2c_pnx->adapter; /* Register I/O resource */ if (!request_region(alg_data->base, I2C_PNX_REGION_SIZE, pdev->name)) { dev_err(&pdev->dev, "I/O region 0x%08x for I2C already in use.\n", alg_data->base); ret = -ENODEV; goto out_drvdata; } if (!(alg_data->ioaddr = (u32)ioremap(alg_data->base, I2C_PNX_REGION_SIZE))) { dev_err(&pdev->dev, "Couldn't ioremap I2C I/O region\n"); ret = -ENOMEM; goto out_release; } i2c_pnx->set_clock_run(pdev); /* * Clock Divisor High This value is the number of system clocks * the serial clock (SCL) will be high. * For example, if the system clock period is 50 ns and the maximum * desired serial period is 10000 ns (100 kHz), then CLKHI would be * set to 0.5*(f_sys/f_i2c)-2=0.5*(20e6/100e3)-2=98. The actual value * programmed into CLKHI will vary from this slightly due to * variations in the output pad's rise and fall times as well as * the deglitching filter length. */ tmp = ((freq_mhz * 1000) / I2C_PNX_SPEED_KHZ) / 2 - 2; iowrite32(tmp, I2C_REG_CKH(alg_data)); iowrite32(tmp, I2C_REG_CKL(alg_data)); iowrite32(mcntrl_reset, I2C_REG_CTL(alg_data)); if (wait_reset(I2C_PNX_TIMEOUT, alg_data)) { ret = -ENODEV; goto out_unmap; } init_completion(&alg_data->mif.complete); ret = request_irq(alg_data->irq, i2c_pnx_interrupt, 0, pdev->name, i2c_pnx->adapter); if (ret) goto out_clock; /* Register this adapter with the I2C subsystem */ i2c_pnx->adapter->dev.parent = &pdev->dev; ret = i2c_add_adapter(i2c_pnx->adapter); if (ret < 0) { dev_err(&pdev->dev, "I2C: Failed to add bus\n"); goto out_irq; } dev_dbg(&pdev->dev, "%s: Master at %#8x, irq %d.\n", i2c_pnx->adapter->name, alg_data->base, alg_data->irq); return 0; out_irq: free_irq(alg_data->irq, alg_data); out_clock: i2c_pnx->set_clock_stop(pdev); out_unmap: iounmap((void *)alg_data->ioaddr); out_release: release_region(alg_data->base, I2C_PNX_REGION_SIZE); out_drvdata: platform_set_drvdata(pdev, NULL); out: return ret; } static int __devexit i2c_pnx_remove(struct platform_device *pdev) { struct i2c_pnx_data *i2c_pnx = platform_get_drvdata(pdev); struct i2c_adapter *adap = i2c_pnx->adapter; struct i2c_pnx_algo_data *alg_data = adap->algo_data; free_irq(alg_data->irq, alg_data); i2c_del_adapter(adap); i2c_pnx->set_clock_stop(pdev); iounmap((void *)alg_data->ioaddr); release_region(alg_data->base, I2C_PNX_REGION_SIZE); platform_set_drvdata(pdev, NULL); return 0; } static struct platform_driver i2c_pnx_driver = { .driver = { .name = "pnx-i2c", .owner = THIS_MODULE, }, .probe = i2c_pnx_probe, .remove = __devexit_p(i2c_pnx_remove), .suspend = i2c_pnx_controller_suspend, .resume = i2c_pnx_controller_resume, }; static int __init i2c_adap_pnx_init(void) { return platform_driver_register(&i2c_pnx_driver); } static void __exit i2c_adap_pnx_exit(void) { platform_driver_unregister(&i2c_pnx_driver); } MODULE_AUTHOR("Vitaly Wool, Dennis Kovalev "); MODULE_DESCRIPTION("I2C driver for Philips IP3204-based I2C busses"); MODULE_LICENSE("GPL"); #ifdef CONFIG_I2C_PNX_EARLY /* We need to make sure I2C is initialized before USB */ subsys_initcall(i2c_adap_pnx_init); #else mudule_init(i2c_adap_pnx_init); #endif module_exit(i2c_adap_pnx_exit);