/* * BMI160 - Bosch IMU (accel, gyro plus external magnetometer) * * Copyright (c) 2016, Intel Corporation. * * This file is subject to the terms and conditions of version 2 of * the GNU General Public License. See the file COPYING in the main * directory of this archive for more details. * * IIO core driver for BMI160, with support for I2C/SPI busses * * TODO: magnetometer, interrupts, hardware FIFO */ #include #include #include #include #include #include #include #include #include #include "bmi160.h" #define BMI160_REG_CHIP_ID 0x00 #define BMI160_CHIP_ID_VAL 0xD1 #define BMI160_REG_PMU_STATUS 0x03 /* X axis data low byte address, the rest can be obtained using axis offset */ #define BMI160_REG_DATA_MAGN_XOUT_L 0x04 #define BMI160_REG_DATA_GYRO_XOUT_L 0x0C #define BMI160_REG_DATA_ACCEL_XOUT_L 0x12 #define BMI160_REG_ACCEL_CONFIG 0x40 #define BMI160_ACCEL_CONFIG_ODR_MASK GENMASK(3, 0) #define BMI160_ACCEL_CONFIG_BWP_MASK GENMASK(6, 4) #define BMI160_REG_ACCEL_RANGE 0x41 #define BMI160_ACCEL_RANGE_2G 0x03 #define BMI160_ACCEL_RANGE_4G 0x05 #define BMI160_ACCEL_RANGE_8G 0x08 #define BMI160_ACCEL_RANGE_16G 0x0C #define BMI160_REG_GYRO_CONFIG 0x42 #define BMI160_GYRO_CONFIG_ODR_MASK GENMASK(3, 0) #define BMI160_GYRO_CONFIG_BWP_MASK GENMASK(5, 4) #define BMI160_REG_GYRO_RANGE 0x43 #define BMI160_GYRO_RANGE_2000DPS 0x00 #define BMI160_GYRO_RANGE_1000DPS 0x01 #define BMI160_GYRO_RANGE_500DPS 0x02 #define BMI160_GYRO_RANGE_250DPS 0x03 #define BMI160_GYRO_RANGE_125DPS 0x04 #define BMI160_REG_CMD 0x7E #define BMI160_CMD_ACCEL_PM_SUSPEND 0x10 #define BMI160_CMD_ACCEL_PM_NORMAL 0x11 #define BMI160_CMD_ACCEL_PM_LOW_POWER 0x12 #define BMI160_CMD_GYRO_PM_SUSPEND 0x14 #define BMI160_CMD_GYRO_PM_NORMAL 0x15 #define BMI160_CMD_GYRO_PM_FAST_STARTUP 0x17 #define BMI160_CMD_SOFTRESET 0xB6 #define BMI160_REG_DUMMY 0x7F #define BMI160_ACCEL_PMU_MIN_USLEEP 3800 #define BMI160_GYRO_PMU_MIN_USLEEP 80000 #define BMI160_SOFTRESET_USLEEP 1000 #define BMI160_CHANNEL(_type, _axis, _index) { \ .type = _type, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_LE, \ }, \ } /* scan indexes follow DATA register order */ enum bmi160_scan_axis { BMI160_SCAN_EXT_MAGN_X = 0, BMI160_SCAN_EXT_MAGN_Y, BMI160_SCAN_EXT_MAGN_Z, BMI160_SCAN_RHALL, BMI160_SCAN_GYRO_X, BMI160_SCAN_GYRO_Y, BMI160_SCAN_GYRO_Z, BMI160_SCAN_ACCEL_X, BMI160_SCAN_ACCEL_Y, BMI160_SCAN_ACCEL_Z, BMI160_SCAN_TIMESTAMP, }; enum bmi160_sensor_type { BMI160_ACCEL = 0, BMI160_GYRO, BMI160_EXT_MAGN, BMI160_NUM_SENSORS /* must be last */ }; struct bmi160_data { struct regmap *regmap; }; const struct regmap_config bmi160_regmap_config = { .reg_bits = 8, .val_bits = 8, }; EXPORT_SYMBOL(bmi160_regmap_config); struct bmi160_regs { u8 data; /* LSB byte register for X-axis */ u8 config; u8 config_odr_mask; u8 config_bwp_mask; u8 range; u8 pmu_cmd_normal; u8 pmu_cmd_suspend; }; static struct bmi160_regs bmi160_regs[] = { [BMI160_ACCEL] = { .data = BMI160_REG_DATA_ACCEL_XOUT_L, .config = BMI160_REG_ACCEL_CONFIG, .config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK, .config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK, .range = BMI160_REG_ACCEL_RANGE, .pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL, .pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND, }, [BMI160_GYRO] = { .data = BMI160_REG_DATA_GYRO_XOUT_L, .config = BMI160_REG_GYRO_CONFIG, .config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK, .config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK, .range = BMI160_REG_GYRO_RANGE, .pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL, .pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND, }, }; static unsigned long bmi160_pmu_time[] = { [BMI160_ACCEL] = BMI160_ACCEL_PMU_MIN_USLEEP, [BMI160_GYRO] = BMI160_GYRO_PMU_MIN_USLEEP, }; struct bmi160_scale { u8 bits; int uscale; }; struct bmi160_odr { u8 bits; int odr; int uodr; }; static const struct bmi160_scale bmi160_accel_scale[] = { { BMI160_ACCEL_RANGE_2G, 598}, { BMI160_ACCEL_RANGE_4G, 1197}, { BMI160_ACCEL_RANGE_8G, 2394}, { BMI160_ACCEL_RANGE_16G, 4788}, }; static const struct bmi160_scale bmi160_gyro_scale[] = { { BMI160_GYRO_RANGE_2000DPS, 1065}, { BMI160_GYRO_RANGE_1000DPS, 532}, { BMI160_GYRO_RANGE_500DPS, 266}, { BMI160_GYRO_RANGE_250DPS, 133}, { BMI160_GYRO_RANGE_125DPS, 66}, }; struct bmi160_scale_item { const struct bmi160_scale *tbl; int num; }; static const struct bmi160_scale_item bmi160_scale_table[] = { [BMI160_ACCEL] = { .tbl = bmi160_accel_scale, .num = ARRAY_SIZE(bmi160_accel_scale), }, [BMI160_GYRO] = { .tbl = bmi160_gyro_scale, .num = ARRAY_SIZE(bmi160_gyro_scale), }, }; static const struct bmi160_odr bmi160_accel_odr[] = { {0x01, 0, 781250}, {0x02, 1, 562500}, {0x03, 3, 125000}, {0x04, 6, 250000}, {0x05, 12, 500000}, {0x06, 25, 0}, {0x07, 50, 0}, {0x08, 100, 0}, {0x09, 200, 0}, {0x0A, 400, 0}, {0x0B, 800, 0}, {0x0C, 1600, 0}, }; static const struct bmi160_odr bmi160_gyro_odr[] = { {0x06, 25, 0}, {0x07, 50, 0}, {0x08, 100, 0}, {0x09, 200, 0}, {0x0A, 400, 0}, {0x0B, 800, 0}, {0x0C, 1600, 0}, {0x0D, 3200, 0}, }; struct bmi160_odr_item { const struct bmi160_odr *tbl; int num; }; static const struct bmi160_odr_item bmi160_odr_table[] = { [BMI160_ACCEL] = { .tbl = bmi160_accel_odr, .num = ARRAY_SIZE(bmi160_accel_odr), }, [BMI160_GYRO] = { .tbl = bmi160_gyro_odr, .num = ARRAY_SIZE(bmi160_gyro_odr), }, }; static const struct iio_chan_spec bmi160_channels[] = { BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X), BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y), BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z), BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X), BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y), BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z), IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP), }; static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type) { switch (iio_type) { case IIO_ACCEL: return BMI160_ACCEL; case IIO_ANGL_VEL: return BMI160_GYRO; default: return -EINVAL; } } static int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t, bool mode) { int ret; u8 cmd; if (mode) cmd = bmi160_regs[t].pmu_cmd_normal; else cmd = bmi160_regs[t].pmu_cmd_suspend; ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd); if (ret < 0) return ret; usleep_range(bmi160_pmu_time[t], bmi160_pmu_time[t] + 1000); return 0; } static int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t, int uscale) { int i; for (i = 0; i < bmi160_scale_table[t].num; i++) if (bmi160_scale_table[t].tbl[i].uscale == uscale) break; if (i == bmi160_scale_table[t].num) return -EINVAL; return regmap_write(data->regmap, bmi160_regs[t].range, bmi160_scale_table[t].tbl[i].bits); } static int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t, int *uscale) { int i, ret, val; ret = regmap_read(data->regmap, bmi160_regs[t].range, &val); if (ret < 0) return ret; for (i = 0; i < bmi160_scale_table[t].num; i++) if (bmi160_scale_table[t].tbl[i].bits == val) { *uscale = bmi160_scale_table[t].tbl[i].uscale; return 0; } return -EINVAL; } static int bmi160_get_data(struct bmi160_data *data, int chan_type, int axis, int *val) { u8 reg; int ret; __le16 sample; enum bmi160_sensor_type t = bmi160_to_sensor(chan_type); reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(sample); ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(sample)); if (ret < 0) return ret; *val = sign_extend32(le16_to_cpu(sample), 15); return 0; } static int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t, int odr, int uodr) { int i; for (i = 0; i < bmi160_odr_table[t].num; i++) if (bmi160_odr_table[t].tbl[i].odr == odr && bmi160_odr_table[t].tbl[i].uodr == uodr) break; if (i >= bmi160_odr_table[t].num) return -EINVAL; return regmap_update_bits(data->regmap, bmi160_regs[t].config, bmi160_regs[t].config_odr_mask, bmi160_odr_table[t].tbl[i].bits); } static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t, int *odr, int *uodr) { int i, val, ret; ret = regmap_read(data->regmap, bmi160_regs[t].config, &val); if (ret < 0) return ret; val &= bmi160_regs[t].config_odr_mask; for (i = 0; i < bmi160_odr_table[t].num; i++) if (val == bmi160_odr_table[t].tbl[i].bits) break; if (i >= bmi160_odr_table[t].num) return -EINVAL; *odr = bmi160_odr_table[t].tbl[i].odr; *uodr = bmi160_odr_table[t].tbl[i].uodr; return 0; } static irqreturn_t bmi160_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct bmi160_data *data = iio_priv(indio_dev); __le16 buf[16]; /* 3 sens x 3 axis x __le16 + 3 x __le16 pad + 4 x __le16 tstamp */ int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L; __le16 sample; for_each_set_bit(i, indio_dev->active_scan_mask, indio_dev->masklength) { ret = regmap_bulk_read(data->regmap, base + i * sizeof(sample), &sample, sizeof(sample)); if (ret < 0) goto done; buf[j++] = sample; } iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns(indio_dev)); done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int bmi160_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { int ret; struct bmi160_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: ret = bmi160_get_data(data, chan->type, chan->channel2, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_CHAN_INFO_SCALE: *val = 0; ret = bmi160_get_scale(data, bmi160_to_sensor(chan->type), val2); return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SAMP_FREQ: ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type), val, val2); return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } return 0; } static int bmi160_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct bmi160_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SCALE: return bmi160_set_scale(data, bmi160_to_sensor(chan->type), val2); break; case IIO_CHAN_INFO_SAMP_FREQ: return bmi160_set_odr(data, bmi160_to_sensor(chan->type), val, val2); default: return -EINVAL; } return 0; } static IIO_CONST_ATTR(in_accel_sampling_frequency_available, "0.78125 1.5625 3.125 6.25 12.5 25 50 100 200 400 800 1600"); static IIO_CONST_ATTR(in_anglvel_sampling_frequency_available, "25 50 100 200 400 800 1600 3200"); static IIO_CONST_ATTR(in_accel_scale_available, "0.000598 0.001197 0.002394 0.004788"); static IIO_CONST_ATTR(in_anglvel_scale_available, "0.001065 0.000532 0.000266 0.000133 0.000066"); static struct attribute *bmi160_attrs[] = { &iio_const_attr_in_accel_sampling_frequency_available.dev_attr.attr, &iio_const_attr_in_anglvel_sampling_frequency_available.dev_attr.attr, &iio_const_attr_in_accel_scale_available.dev_attr.attr, &iio_const_attr_in_anglvel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group bmi160_attrs_group = { .attrs = bmi160_attrs, }; static const struct iio_info bmi160_info = { .read_raw = bmi160_read_raw, .write_raw = bmi160_write_raw, .attrs = &bmi160_attrs_group, }; static const char *bmi160_match_acpi_device(struct device *dev) { const struct acpi_device_id *id; id = acpi_match_device(dev->driver->acpi_match_table, dev); if (!id) return NULL; return dev_name(dev); } static int bmi160_chip_init(struct bmi160_data *data, bool use_spi) { int ret; unsigned int val; struct device *dev = regmap_get_device(data->regmap); ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET); if (ret < 0) return ret; usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1); /* * CS rising edge is needed before starting SPI, so do a dummy read * See Section 3.2.1, page 86 of the datasheet */ if (use_spi) { ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val); if (ret < 0) return ret; } ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val); if (ret < 0) { dev_err(dev, "Error reading chip id\n"); return ret; } if (val != BMI160_CHIP_ID_VAL) { dev_err(dev, "Wrong chip id, got %x expected %x\n", val, BMI160_CHIP_ID_VAL); return -ENODEV; } ret = bmi160_set_mode(data, BMI160_ACCEL, true); if (ret < 0) return ret; ret = bmi160_set_mode(data, BMI160_GYRO, true); if (ret < 0) return ret; return 0; } static void bmi160_chip_uninit(void *data) { struct bmi160_data *bmi_data = data; bmi160_set_mode(bmi_data, BMI160_GYRO, false); bmi160_set_mode(bmi_data, BMI160_ACCEL, false); } int bmi160_core_probe(struct device *dev, struct regmap *regmap, const char *name, bool use_spi) { struct iio_dev *indio_dev; struct bmi160_data *data; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); data->regmap = regmap; ret = bmi160_chip_init(data, use_spi); if (ret < 0) return ret; ret = devm_add_action_or_reset(dev, bmi160_chip_uninit, data); if (ret < 0) return ret; if (!name && ACPI_HANDLE(dev)) name = bmi160_match_acpi_device(dev); indio_dev->dev.parent = dev; indio_dev->channels = bmi160_channels; indio_dev->num_channels = ARRAY_SIZE(bmi160_channels); indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &bmi160_info; ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, bmi160_trigger_handler, NULL); if (ret < 0) return ret; ret = devm_iio_device_register(dev, indio_dev); if (ret < 0) return ret; return 0; } EXPORT_SYMBOL_GPL(bmi160_core_probe); MODULE_AUTHOR("Daniel Baluta