// SPDX-License-Identifier: GPL-2.0+ // Copyright IBM Corp 2019 /* * The DPS310 is a barometric pressure and temperature sensor. * Currently only reading a single temperature is supported by * this driver. * * https://www.infineon.com/dgdl/?fileId=5546d462576f34750157750826c42242 * * Temperature calculation: * c0 * 0.5 + c1 * T_raw / kT °C * * TODO: * - Optionally support the FIFO */ #include #include #include #include #include #include #include #define DPS310_DEV_NAME "dps310" #define DPS310_PRS_B0 0x00 #define DPS310_PRS_B1 0x01 #define DPS310_PRS_B2 0x02 #define DPS310_TMP_B0 0x03 #define DPS310_TMP_B1 0x04 #define DPS310_TMP_B2 0x05 #define DPS310_PRS_CFG 0x06 #define DPS310_PRS_RATE_BITS GENMASK(6, 4) #define DPS310_PRS_PRC_BITS GENMASK(3, 0) #define DPS310_TMP_CFG 0x07 #define DPS310_TMP_RATE_BITS GENMASK(6, 4) #define DPS310_TMP_PRC_BITS GENMASK(3, 0) #define DPS310_TMP_EXT BIT(7) #define DPS310_MEAS_CFG 0x08 #define DPS310_MEAS_CTRL_BITS GENMASK(2, 0) #define DPS310_PRS_EN BIT(0) #define DPS310_TEMP_EN BIT(1) #define DPS310_BACKGROUND BIT(2) #define DPS310_PRS_RDY BIT(4) #define DPS310_TMP_RDY BIT(5) #define DPS310_SENSOR_RDY BIT(6) #define DPS310_COEF_RDY BIT(7) #define DPS310_CFG_REG 0x09 #define DPS310_INT_HL BIT(7) #define DPS310_TMP_SHIFT_EN BIT(3) #define DPS310_PRS_SHIFT_EN BIT(4) #define DPS310_FIFO_EN BIT(5) #define DPS310_SPI_EN BIT(6) #define DPS310_RESET 0x0c #define DPS310_RESET_MAGIC 0x09 #define DPS310_COEF_BASE 0x10 /* Make sure sleep time is <= 20ms for usleep_range */ #define DPS310_POLL_SLEEP_US(t) min(20000, (t) / 8) /* Silently handle error in rate value here */ #define DPS310_POLL_TIMEOUT_US(rc) ((rc) <= 0 ? 1000000 : 1000000 / (rc)) #define DPS310_PRS_BASE DPS310_PRS_B0 #define DPS310_TMP_BASE DPS310_TMP_B0 /* * These values (defined in the spec) indicate how to scale the raw register * values for each level of precision available. */ static const int scale_factors[] = { 524288, 1572864, 3670016, 7864320, 253952, 516096, 1040384, 2088960, }; struct dps310_data { struct i2c_client *client; struct regmap *regmap; struct mutex lock; /* Lock for sequential HW access functions */ s32 c0, c1; s32 c00, c10, c20, c30, c01, c11, c21; s32 pressure_raw; s32 temp_raw; }; static const struct iio_chan_spec dps310_channels[] = { { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_PRESSURE, .info_mask_separate = BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO) | BIT(IIO_CHAN_INFO_SAMP_FREQ) | BIT(IIO_CHAN_INFO_PROCESSED), }, }; /* To be called after checking the COEF_RDY bit in MEAS_CFG */ static int dps310_get_coefs(struct dps310_data *data) { int rc; u8 coef[18]; u32 c0, c1; u32 c00, c10, c20, c30, c01, c11, c21; /* Read all sensor calibration coefficients from the COEF registers. */ rc = regmap_bulk_read(data->regmap, DPS310_COEF_BASE, coef, sizeof(coef)); if (rc < 0) return rc; /* * Calculate temperature calibration coefficients c0 and c1. The * numbers are 12-bit 2's complement numbers. */ c0 = (coef[0] << 4) | (coef[1] >> 4); data->c0 = sign_extend32(c0, 11); c1 = ((coef[1] & GENMASK(3, 0)) << 8) | coef[2]; data->c1 = sign_extend32(c1, 11); /* * Calculate pressure calibration coefficients. c00 and c10 are 20 bit * 2's complement numbers, while the rest are 16 bit 2's complement * numbers. */ c00 = (coef[3] << 12) | (coef[4] << 4) | (coef[5] >> 4); data->c00 = sign_extend32(c00, 19); c10 = ((coef[5] & GENMASK(3, 0)) << 16) | (coef[6] << 8) | coef[7]; data->c10 = sign_extend32(c10, 19); c01 = (coef[8] << 8) | coef[9]; data->c01 = sign_extend32(c01, 15); c11 = (coef[10] << 8) | coef[11]; data->c11 = sign_extend32(c11, 15); c20 = (coef[12] << 8) | coef[13]; data->c20 = sign_extend32(c20, 15); c21 = (coef[14] << 8) | coef[15]; data->c21 = sign_extend32(c21, 15); c30 = (coef[16] << 8) | coef[17]; data->c30 = sign_extend32(c30, 15); return 0; } static int dps310_get_pres_precision(struct dps310_data *data) { int rc; int val; rc = regmap_read(data->regmap, DPS310_PRS_CFG, &val); if (rc < 0) return rc; return BIT(val & GENMASK(2, 0)); } static int dps310_get_temp_precision(struct dps310_data *data) { int rc; int val; rc = regmap_read(data->regmap, DPS310_TMP_CFG, &val); if (rc < 0) return rc; /* * Scale factor is bottom 4 bits of the register, but 1111 is * reserved so just grab bottom three */ return BIT(val & GENMASK(2, 0)); } /* Called with lock held */ static int dps310_set_pres_precision(struct dps310_data *data, int val) { int rc; u8 shift_en; if (val < 0 || val > 128) return -EINVAL; shift_en = val >= 16 ? DPS310_PRS_SHIFT_EN : 0; rc = regmap_write_bits(data->regmap, DPS310_CFG_REG, DPS310_PRS_SHIFT_EN, shift_en); if (rc) return rc; return regmap_update_bits(data->regmap, DPS310_PRS_CFG, DPS310_PRS_PRC_BITS, ilog2(val)); } /* Called with lock held */ static int dps310_set_temp_precision(struct dps310_data *data, int val) { int rc; u8 shift_en; if (val < 0 || val > 128) return -EINVAL; shift_en = val >= 16 ? DPS310_TMP_SHIFT_EN : 0; rc = regmap_write_bits(data->regmap, DPS310_CFG_REG, DPS310_TMP_SHIFT_EN, shift_en); if (rc) return rc; return regmap_update_bits(data->regmap, DPS310_TMP_CFG, DPS310_TMP_PRC_BITS, ilog2(val)); } /* Called with lock held */ static int dps310_set_pres_samp_freq(struct dps310_data *data, int freq) { u8 val; if (freq < 0 || freq > 128) return -EINVAL; val = ilog2(freq) << 4; return regmap_update_bits(data->regmap, DPS310_PRS_CFG, DPS310_PRS_RATE_BITS, val); } /* Called with lock held */ static int dps310_set_temp_samp_freq(struct dps310_data *data, int freq) { u8 val; if (freq < 0 || freq > 128) return -EINVAL; val = ilog2(freq) << 4; return regmap_update_bits(data->regmap, DPS310_TMP_CFG, DPS310_TMP_RATE_BITS, val); } static int dps310_get_pres_samp_freq(struct dps310_data *data) { int rc; int val; rc = regmap_read(data->regmap, DPS310_PRS_CFG, &val); if (rc < 0) return rc; return BIT((val & DPS310_PRS_RATE_BITS) >> 4); } static int dps310_get_temp_samp_freq(struct dps310_data *data) { int rc; int val; rc = regmap_read(data->regmap, DPS310_TMP_CFG, &val); if (rc < 0) return rc; return BIT((val & DPS310_TMP_RATE_BITS) >> 4); } static int dps310_get_pres_k(struct dps310_data *data) { int rc = dps310_get_pres_precision(data); if (rc < 0) return rc; return scale_factors[ilog2(rc)]; } static int dps310_get_temp_k(struct dps310_data *data) { int rc = dps310_get_temp_precision(data); if (rc < 0) return rc; return scale_factors[ilog2(rc)]; } static int dps310_read_pres_raw(struct dps310_data *data) { int rc; int rate; int ready; int timeout; s32 raw; u8 val[3]; if (mutex_lock_interruptible(&data->lock)) return -EINTR; rate = dps310_get_pres_samp_freq(data); timeout = DPS310_POLL_TIMEOUT_US(rate); /* Poll for sensor readiness; base the timeout upon the sample rate. */ rc = regmap_read_poll_timeout(data->regmap, DPS310_MEAS_CFG, ready, ready & DPS310_PRS_RDY, DPS310_POLL_SLEEP_US(timeout), timeout); if (rc) goto done; rc = regmap_bulk_read(data->regmap, DPS310_PRS_BASE, val, sizeof(val)); if (rc < 0) goto done; raw = (val[0] << 16) | (val[1] << 8) | val[2]; data->pressure_raw = sign_extend32(raw, 23); done: mutex_unlock(&data->lock); return rc; } /* Called with lock held */ static int dps310_read_temp_ready(struct dps310_data *data) { int rc; u8 val[3]; s32 raw; rc = regmap_bulk_read(data->regmap, DPS310_TMP_BASE, val, sizeof(val)); if (rc < 0) return rc; raw = (val[0] << 16) | (val[1] << 8) | val[2]; data->temp_raw = sign_extend32(raw, 23); return 0; } static int dps310_read_temp_raw(struct dps310_data *data) { int rc; int rate; int ready; int timeout; if (mutex_lock_interruptible(&data->lock)) return -EINTR; rate = dps310_get_temp_samp_freq(data); timeout = DPS310_POLL_TIMEOUT_US(rate); /* Poll for sensor readiness; base the timeout upon the sample rate. */ rc = regmap_read_poll_timeout(data->regmap, DPS310_MEAS_CFG, ready, ready & DPS310_TMP_RDY, DPS310_POLL_SLEEP_US(timeout), timeout); if (rc < 0) goto done; rc = dps310_read_temp_ready(data); done: mutex_unlock(&data->lock); return rc; } static bool dps310_is_writeable_reg(struct device *dev, unsigned int reg) { switch (reg) { case DPS310_PRS_CFG: case DPS310_TMP_CFG: case DPS310_MEAS_CFG: case DPS310_CFG_REG: case DPS310_RESET: /* No documentation available on the registers below */ case 0x0e: case 0x0f: case 0x62: return true; default: return false; } } static bool dps310_is_volatile_reg(struct device *dev, unsigned int reg) { switch (reg) { case DPS310_PRS_B0: case DPS310_PRS_B1: case DPS310_PRS_B2: case DPS310_TMP_B0: case DPS310_TMP_B1: case DPS310_TMP_B2: case DPS310_MEAS_CFG: case 0x32: /* No documentation available on this register */ return true; default: return false; } } static int dps310_write_raw(struct iio_dev *iio, struct iio_chan_spec const *chan, int val, int val2, long mask) { int rc; struct dps310_data *data = iio_priv(iio); if (mutex_lock_interruptible(&data->lock)) return -EINTR; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: switch (chan->type) { case IIO_PRESSURE: rc = dps310_set_pres_samp_freq(data, val); break; case IIO_TEMP: rc = dps310_set_temp_samp_freq(data, val); break; default: rc = -EINVAL; break; } break; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: switch (chan->type) { case IIO_PRESSURE: rc = dps310_set_pres_precision(data, val); break; case IIO_TEMP: rc = dps310_set_temp_precision(data, val); break; default: rc = -EINVAL; break; } break; default: rc = -EINVAL; break; } mutex_unlock(&data->lock); return rc; } static int dps310_calculate_pressure(struct dps310_data *data) { int i; int rc; int t_ready; int kpi = dps310_get_pres_k(data); int kti = dps310_get_temp_k(data); s64 rem = 0ULL; s64 pressure = 0ULL; s64 p; s64 t; s64 denoms[7]; s64 nums[7]; s64 rems[7]; s64 kp; s64 kt; if (kpi < 0) return kpi; if (kti < 0) return kti; kp = (s64)kpi; kt = (s64)kti; /* Refresh temp if it's ready, otherwise just use the latest value */ if (mutex_trylock(&data->lock)) { rc = regmap_read(data->regmap, DPS310_MEAS_CFG, &t_ready); if (rc >= 0 && t_ready & DPS310_TMP_RDY) dps310_read_temp_ready(data); mutex_unlock(&data->lock); } p = (s64)data->pressure_raw; t = (s64)data->temp_raw; /* Section 4.9.1 of the DPS310 spec; algebra'd to avoid underflow */ nums[0] = (s64)data->c00; denoms[0] = 1LL; nums[1] = p * (s64)data->c10; denoms[1] = kp; nums[2] = p * p * (s64)data->c20; denoms[2] = kp * kp; nums[3] = p * p * p * (s64)data->c30; denoms[3] = kp * kp * kp; nums[4] = t * (s64)data->c01; denoms[4] = kt; nums[5] = t * p * (s64)data->c11; denoms[5] = kp * kt; nums[6] = t * p * p * (s64)data->c21; denoms[6] = kp * kp * kt; /* Kernel lacks a div64_s64_rem function; denoms are all positive */ for (i = 0; i < 7; ++i) { u64 irem; if (nums[i] < 0LL) { pressure -= div64_u64_rem(-nums[i], denoms[i], &irem); rems[i] = -irem; } else { pressure += div64_u64_rem(nums[i], denoms[i], &irem); rems[i] = (s64)irem; } } /* Increase precision and calculate the remainder sum */ for (i = 0; i < 7; ++i) rem += div64_s64((s64)rems[i] * 1000000000LL, denoms[i]); pressure += div_s64(rem, 1000000000LL); if (pressure < 0LL) return -ERANGE; return (int)min_t(s64, pressure, INT_MAX); } static int dps310_read_pressure(struct dps310_data *data, int *val, int *val2, long mask) { int rc; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: rc = dps310_get_pres_samp_freq(data); if (rc < 0) return rc; *val = rc; return IIO_VAL_INT; case IIO_CHAN_INFO_PROCESSED: rc = dps310_read_pres_raw(data); if (rc) return rc; rc = dps310_calculate_pressure(data); if (rc < 0) return rc; *val = rc; *val2 = 1000; /* Convert Pa to KPa per IIO ABI */ return IIO_VAL_FRACTIONAL; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: rc = dps310_get_pres_precision(data); if (rc < 0) return rc; *val = rc; return IIO_VAL_INT; default: return -EINVAL; } } static int dps310_calculate_temp(struct dps310_data *data) { s64 c0; s64 t; int kt = dps310_get_temp_k(data); if (kt < 0) return kt; /* Obtain inverse-scaled offset */ c0 = div_s64((s64)kt * (s64)data->c0, 2); /* Add the offset to the unscaled temperature */ t = c0 + ((s64)data->temp_raw * (s64)data->c1); /* Convert to milliCelsius and scale the temperature */ return (int)div_s64(t * 1000LL, kt); } static int dps310_read_temp(struct dps310_data *data, int *val, int *val2, long mask) { int rc; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: rc = dps310_get_temp_samp_freq(data); if (rc < 0) return rc; *val = rc; return IIO_VAL_INT; case IIO_CHAN_INFO_PROCESSED: rc = dps310_read_temp_raw(data); if (rc) return rc; rc = dps310_calculate_temp(data); if (rc < 0) return rc; *val = rc; return IIO_VAL_INT; case IIO_CHAN_INFO_OVERSAMPLING_RATIO: rc = dps310_get_temp_precision(data); if (rc < 0) return rc; *val = rc; return IIO_VAL_INT; default: return -EINVAL; } } static int dps310_read_raw(struct iio_dev *iio, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct dps310_data *data = iio_priv(iio); switch (chan->type) { case IIO_PRESSURE: return dps310_read_pressure(data, val, val2, mask); case IIO_TEMP: return dps310_read_temp(data, val, val2, mask); default: return -EINVAL; } } static void dps310_reset(void *action_data) { struct dps310_data *data = action_data; regmap_write(data->regmap, DPS310_RESET, DPS310_RESET_MAGIC); } static const struct regmap_config dps310_regmap_config = { .reg_bits = 8, .val_bits = 8, .writeable_reg = dps310_is_writeable_reg, .volatile_reg = dps310_is_volatile_reg, .cache_type = REGCACHE_RBTREE, .max_register = 0x62, /* No documentation available on this register */ }; static const struct iio_info dps310_info = { .read_raw = dps310_read_raw, .write_raw = dps310_write_raw, }; /* * Some verions of chip will read temperatures in the ~60C range when * its actually ~20C. This is the manufacturer recommended workaround * to correct the issue. The registers used below are undocumented. */ static int dps310_temp_workaround(struct dps310_data *data) { int rc; int reg; rc = regmap_read(data->regmap, 0x32, ®); if (rc < 0) return rc; /* * If bit 1 is set then the device is okay, and the workaround does not * need to be applied */ if (reg & BIT(1)) return 0; rc = regmap_write(data->regmap, 0x0e, 0xA5); if (rc < 0) return rc; rc = regmap_write(data->regmap, 0x0f, 0x96); if (rc < 0) return rc; rc = regmap_write(data->regmap, 0x62, 0x02); if (rc < 0) return rc; rc = regmap_write(data->regmap, 0x0e, 0x00); if (rc < 0) return rc; return regmap_write(data->regmap, 0x0f, 0x00); } static int dps310_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct dps310_data *data; struct iio_dev *iio; int rc, ready; iio = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!iio) return -ENOMEM; data = iio_priv(iio); data->client = client; mutex_init(&data->lock); iio->dev.parent = &client->dev; iio->name = id->name; iio->channels = dps310_channels; iio->num_channels = ARRAY_SIZE(dps310_channels); iio->info = &dps310_info; iio->modes = INDIO_DIRECT_MODE; data->regmap = devm_regmap_init_i2c(client, &dps310_regmap_config); if (IS_ERR(data->regmap)) return PTR_ERR(data->regmap); /* Register to run the device reset when the device is removed */ rc = devm_add_action_or_reset(&client->dev, dps310_reset, data); if (rc) return rc; /* * Set up pressure sensor in single sample, one measurement per second * mode */ rc = regmap_write(data->regmap, DPS310_PRS_CFG, 0); /* * Set up external (MEMS) temperature sensor in single sample, one * measurement per second mode */ rc = regmap_write(data->regmap, DPS310_TMP_CFG, DPS310_TMP_EXT); if (rc < 0) return rc; /* Temp and pressure shifts are disabled when PRC <= 8 */ rc = regmap_write_bits(data->regmap, DPS310_CFG_REG, DPS310_PRS_SHIFT_EN | DPS310_TMP_SHIFT_EN, 0); if (rc < 0) return rc; /* MEAS_CFG doesn't update correctly unless first written with 0 */ rc = regmap_write_bits(data->regmap, DPS310_MEAS_CFG, DPS310_MEAS_CTRL_BITS, 0); if (rc < 0) return rc; /* Turn on temperature and pressure measurement in the background */ rc = regmap_write_bits(data->regmap, DPS310_MEAS_CFG, DPS310_MEAS_CTRL_BITS, DPS310_PRS_EN | DPS310_TEMP_EN | DPS310_BACKGROUND); if (rc < 0) return rc; /* * Calibration coefficients required for reporting temperature. * They are available 40ms after the device has started */ rc = regmap_read_poll_timeout(data->regmap, DPS310_MEAS_CFG, ready, ready & DPS310_COEF_RDY, 10000, 40000); if (rc < 0) return rc; rc = dps310_get_coefs(data); if (rc < 0) return rc; rc = dps310_temp_workaround(data); if (rc < 0) return rc; rc = devm_iio_device_register(&client->dev, iio); if (rc) return rc; i2c_set_clientdata(client, iio); return 0; } static const struct i2c_device_id dps310_id[] = { { DPS310_DEV_NAME, 0 }, {} }; MODULE_DEVICE_TABLE(i2c, dps310_id); static struct i2c_driver dps310_driver = { .driver = { .name = DPS310_DEV_NAME, }, .probe = dps310_probe, .id_table = dps310_id, }; module_i2c_driver(dps310_driver); MODULE_AUTHOR("Joel Stanley "); MODULE_DESCRIPTION("Infineon DPS310 pressure and temperature sensor"); MODULE_LICENSE("GPL v2");