// SPDX-License-Identifier: GPL-2.0 /* * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor * * Copyright (c) 2017 Melexis * * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor */ #include #include #include #include #include #include #include #include #include #include #include #include /* Memory sections addresses */ #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */ #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */ /* EEPROM addresses - used at startup */ #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */ #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */ #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */ #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */ #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */ #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */ #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */ #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */ #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */ #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */ #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */ #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */ #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */ #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */ #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */ #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */ #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */ #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */ #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */ #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */ #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */ #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */ #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */ #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */ /* Register addresses - volatile */ #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */ /* Control register address - volatile */ #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */ #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */ /* PowerModes statuses */ #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1) #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */ #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step*/ #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */ #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous*/ /* Device status register - volatile */ #define MLX90632_REG_STATUS 0x3fff /* Device status register */ #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */ #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */ #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */ #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */ #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */ /* RAM_MEAS address-es for each channel */ #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num) #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1) #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2) /* Magic constants */ #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */ #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */ #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */ #define MLX90632_REF_12 12LL /**< ResCtrlRef value of Ch 1 or Ch 2 */ #define MLX90632_REF_3 12LL /**< ResCtrlRef value of Channel 3 */ #define MLX90632_MAX_MEAS_NUM 31 /**< Maximum measurements in list */ #define MLX90632_SLEEP_DELAY_MS 3000 /**< Autosleep delay */ struct mlx90632_data { struct i2c_client *client; struct mutex lock; /* Multiple reads for single measurement */ struct regmap *regmap; u16 emissivity; }; static const struct regmap_range mlx90632_volatile_reg_range[] = { regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL), regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS), regmap_reg_range(MLX90632_RAM_1(0), MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), }; static const struct regmap_access_table mlx90632_volatile_regs_tbl = { .yes_ranges = mlx90632_volatile_reg_range, .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range), }; static const struct regmap_range mlx90632_read_reg_range[] = { regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka), regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR), regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb), regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL), regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS), regmap_reg_range(MLX90632_RAM_1(0), MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), }; static const struct regmap_access_table mlx90632_readable_regs_tbl = { .yes_ranges = mlx90632_read_reg_range, .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range), }; static const struct regmap_range mlx90632_no_write_reg_range[] = { regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka), regmap_reg_range(MLX90632_RAM_1(0), MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), }; static const struct regmap_access_table mlx90632_writeable_regs_tbl = { .no_ranges = mlx90632_no_write_reg_range, .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range), }; static const struct regmap_config mlx90632_regmap = { .reg_bits = 16, .val_bits = 16, .volatile_table = &mlx90632_volatile_regs_tbl, .rd_table = &mlx90632_readable_regs_tbl, .wr_table = &mlx90632_writeable_regs_tbl, .use_single_read = true, .use_single_write = true, .reg_format_endian = REGMAP_ENDIAN_BIG, .val_format_endian = REGMAP_ENDIAN_BIG, .cache_type = REGCACHE_RBTREE, }; static s32 mlx90632_pwr_set_sleep_step(struct regmap *regmap) { return regmap_update_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK, MLX90632_PWR_STATUS_SLEEP_STEP); } static s32 mlx90632_pwr_continuous(struct regmap *regmap) { return regmap_update_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK, MLX90632_PWR_STATUS_CONTINUOUS); } /** * mlx90632_perform_measurement - Trigger and retrieve current measurement cycle * @*data: pointer to mlx90632_data object containing regmap information * * Perform a measurement and return latest measurement cycle position reported * by sensor. This is a blocking function for 500ms, as that is default sensor * refresh rate. */ static int mlx90632_perform_measurement(struct mlx90632_data *data) { int ret, tries = 100; unsigned int reg_status; ret = regmap_update_bits(data->regmap, MLX90632_REG_STATUS, MLX90632_STAT_DATA_RDY, 0); if (ret < 0) return ret; while (tries-- > 0) { ret = regmap_read(data->regmap, MLX90632_REG_STATUS, ®_status); if (ret < 0) return ret; if (reg_status & MLX90632_STAT_DATA_RDY) break; usleep_range(10000, 11000); } if (tries < 0) { dev_err(&data->client->dev, "data not ready"); return -ETIMEDOUT; } return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2; } static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new, uint8_t *channel_old) { switch (perform_ret) { case 1: *channel_new = 1; *channel_old = 2; break; case 2: *channel_new = 2; *channel_old = 1; break; default: return -EINVAL; } return 0; } static int mlx90632_read_ambient_raw(struct regmap *regmap, s16 *ambient_new_raw, s16 *ambient_old_raw) { int ret; unsigned int read_tmp; ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp); if (ret < 0) return ret; *ambient_new_raw = (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp); if (ret < 0) return ret; *ambient_old_raw = (s16)read_tmp; return ret; } static int mlx90632_read_object_raw(struct regmap *regmap, int perform_measurement_ret, s16 *object_new_raw, s16 *object_old_raw) { int ret; unsigned int read_tmp; s16 read; u8 channel = 0; u8 channel_old = 0; ret = mlx90632_channel_new_select(perform_measurement_ret, &channel, &channel_old); if (ret != 0) return ret; ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp); if (ret < 0) return ret; read = (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp); if (ret < 0) return ret; *object_new_raw = (read + (s16)read_tmp) / 2; ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp); if (ret < 0) return ret; read = (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp); if (ret < 0) return ret; *object_old_raw = (read + (s16)read_tmp) / 2; return ret; } static int mlx90632_read_all_channel(struct mlx90632_data *data, s16 *ambient_new_raw, s16 *ambient_old_raw, s16 *object_new_raw, s16 *object_old_raw) { s32 ret, measurement; mutex_lock(&data->lock); measurement = mlx90632_perform_measurement(data); if (measurement < 0) { ret = measurement; goto read_unlock; } ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw, ambient_old_raw); if (ret < 0) goto read_unlock; ret = mlx90632_read_object_raw(data->regmap, measurement, object_new_raw, object_old_raw); read_unlock: mutex_unlock(&data->lock); return ret; } static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb, s32 *reg_value) { s32 ret; unsigned int read; u32 value; ret = regmap_read(regmap, reg_lsb, &read); if (ret < 0) return ret; value = read; ret = regmap_read(regmap, reg_lsb + 1, &read); if (ret < 0) return ret; *reg_value = (read << 16) | (value & 0xffff); return 0; } static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw, s16 ambient_old_raw, s16 Gb) { s64 VR_Ta, kGb, tmp; kGb = ((s64)Gb * 1000LL) >> 10ULL; VR_Ta = (s64)ambient_old_raw * 1000000LL + kGb * div64_s64(((s64)ambient_new_raw * 1000LL), (MLX90632_REF_3)); tmp = div64_s64( div64_s64(((s64)ambient_new_raw * 1000000000000LL), (MLX90632_REF_3)), VR_Ta); return div64_s64(tmp << 19ULL, 1000LL); } static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw, s16 ambient_new_raw, s16 ambient_old_raw, s16 Ka) { s64 VR_IR, kKa, tmp; kKa = ((s64)Ka * 1000LL) >> 10ULL; VR_IR = (s64)ambient_old_raw * 1000000LL + kKa * div64_s64(((s64)ambient_new_raw * 1000LL), (MLX90632_REF_3)); tmp = div64_s64( div64_s64(((s64)((object_new_raw + object_old_raw) / 2) * 1000000000000LL), (MLX90632_REF_12)), VR_IR); return div64_s64((tmp << 19ULL), 1000LL); } static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw, s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb) { s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum; AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw, Gb); Asub = ((s64)P_T * 10000000000LL) >> 44ULL; Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL); Ablock = Asub * (Bsub * Bsub); Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL; Cblock = ((s64)P_O * 10000000000LL) >> 8ULL; sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock; return div64_s64(sum, 10000000LL); } static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object, s64 TAdut, s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb, u16 emissivity) { s64 calcedKsTO, calcedKsTA, ir_Alpha, TAdut4, Alpha_corr; s64 Ha_customer, Hb_customer; Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL; Hb_customer = ((s64)Hb * 100) >> 10ULL; calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL) * 1000LL)) >> 36LL; calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL; Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL) * Ha_customer), 1000LL); Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA)); Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL); Alpha_corr = div64_s64(Alpha_corr, 1000LL); ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr); TAdut4 = (div64_s64(TAdut, 10000LL) + 27315) * (div64_s64(TAdut, 10000LL) + 27315) * (div64_s64(TAdut, 10000LL) + 27315) * (div64_s64(TAdut, 10000LL) + 27315); return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4)) - 27315 - Hb_customer) * 10; } static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb, u16 tmp_emi) { s64 kTA, kTA0, TAdut; s64 temp = 25000; s8 i; kTA = (Ea * 1000LL) >> 16LL; kTA0 = (Eb * 1000LL) >> 8LL; TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL; /* Iterations of calculation as described in datasheet */ for (i = 0; i < 5; ++i) { temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, Fa, Fb, Ga, Ha, Hb, tmp_emi); } return temp; } static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val) { s32 ret; s32 Ea, Eb, Fa, Fb, Ga; unsigned int read_tmp; s16 Ha, Hb, Gb, Ka; s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw; s64 object, ambient; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga); if (ret < 0) return ret; ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp); if (ret < 0) return ret; Ha = (s16)read_tmp; ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp); if (ret < 0) return ret; Hb = (s16)read_tmp; ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp); if (ret < 0) return ret; Gb = (s16)read_tmp; ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp); if (ret < 0) return ret; Ka = (s16)read_tmp; ret = mlx90632_read_all_channel(data, &ambient_new_raw, &ambient_old_raw, &object_new_raw, &object_old_raw); if (ret < 0) return ret; ambient = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw, Gb); object = mlx90632_preprocess_temp_obj(object_new_raw, object_old_raw, ambient_new_raw, ambient_old_raw, Ka); *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga, Ha, Hb, data->emissivity); return 0; } static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val) { s32 ret; unsigned int read_tmp; s32 PT, PR, PG, PO; s16 Gb; s16 ambient_new_raw, ambient_old_raw; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO); if (ret < 0) return ret; ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp); if (ret < 0) return ret; Gb = (s16)read_tmp; ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw, &ambient_old_raw); if (ret < 0) return ret; *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw, PT, PR, PG, PO, Gb); return ret; } static int mlx90632_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *channel, int *val, int *val2, long mask) { struct mlx90632_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (channel->channel2) { case IIO_MOD_TEMP_AMBIENT: ret = mlx90632_calc_ambient_dsp105(data, val); if (ret < 0) return ret; return IIO_VAL_INT; case IIO_MOD_TEMP_OBJECT: ret = mlx90632_calc_object_dsp105(data, val); if (ret < 0) return ret; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBEMISSIVITY: if (data->emissivity == 1000) { *val = 1; *val2 = 0; } else { *val = 0; *val2 = data->emissivity * 1000; } return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int mlx90632_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *channel, int val, int val2, long mask) { struct mlx90632_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_CALIBEMISSIVITY: /* Confirm we are within 0 and 1.0 */ if (val < 0 || val2 < 0 || val > 1 || (val == 1 && val2 != 0)) return -EINVAL; data->emissivity = val * 1000 + val2 / 1000; return 0; default: return -EINVAL; } } static const struct iio_chan_spec mlx90632_channels[] = { { .type = IIO_TEMP, .modified = 1, .channel2 = IIO_MOD_TEMP_AMBIENT, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), }, { .type = IIO_TEMP, .modified = 1, .channel2 = IIO_MOD_TEMP_OBJECT, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_CALIBEMISSIVITY), }, }; static const struct iio_info mlx90632_info = { .read_raw = mlx90632_read_raw, .write_raw = mlx90632_write_raw, }; static int mlx90632_sleep(struct mlx90632_data *data) { regcache_mark_dirty(data->regmap); dev_dbg(&data->client->dev, "Requesting sleep"); return mlx90632_pwr_set_sleep_step(data->regmap); } static int mlx90632_wakeup(struct mlx90632_data *data) { int ret; ret = regcache_sync(data->regmap); if (ret < 0) { dev_err(&data->client->dev, "Failed to sync regmap registers: %d\n", ret); return ret; } dev_dbg(&data->client->dev, "Requesting wake-up\n"); return mlx90632_pwr_continuous(data->regmap); } static int mlx90632_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct iio_dev *indio_dev; struct mlx90632_data *mlx90632; struct regmap *regmap; int ret; unsigned int read; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632)); if (!indio_dev) { dev_err(&client->dev, "Failed to allocate device\n"); return -ENOMEM; } regmap = devm_regmap_init_i2c(client, &mlx90632_regmap); if (IS_ERR(regmap)) { ret = PTR_ERR(regmap); dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); return ret; } mlx90632 = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); mlx90632->client = client; mlx90632->regmap = regmap; mutex_init(&mlx90632->lock); indio_dev->dev.parent = &client->dev; indio_dev->name = id->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &mlx90632_info; indio_dev->channels = mlx90632_channels; indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels); ret = mlx90632_wakeup(mlx90632); if (ret < 0) { dev_err(&client->dev, "Wakeup failed: %d\n", ret); return ret; } ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read); if (ret < 0) { dev_err(&client->dev, "read of version failed: %d\n", ret); return ret; } if (read == MLX90632_ID_MEDICAL) { dev_dbg(&client->dev, "Detected Medical EEPROM calibration %x\n", read); } else if (read == MLX90632_ID_CONSUMER) { dev_dbg(&client->dev, "Detected Consumer EEPROM calibration %x\n", read); } else { dev_err(&client->dev, "EEPROM version mismatch %x (expected %x or %x)\n", read, MLX90632_ID_CONSUMER, MLX90632_ID_MEDICAL); return -EPROTONOSUPPORT; } mlx90632->emissivity = 1000; pm_runtime_disable(&client->dev); ret = pm_runtime_set_active(&client->dev); if (ret < 0) { mlx90632_sleep(mlx90632); return ret; } pm_runtime_enable(&client->dev); pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); return iio_device_register(indio_dev); } static int mlx90632_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct mlx90632_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); pm_runtime_put_noidle(&client->dev); mlx90632_sleep(data); return 0; } static const struct i2c_device_id mlx90632_id[] = { { "mlx90632", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mlx90632_id); static const struct of_device_id mlx90632_of_match[] = { { .compatible = "melexis,mlx90632" }, { } }; MODULE_DEVICE_TABLE(of, mlx90632_of_match); static int __maybe_unused mlx90632_pm_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mlx90632_data *data = iio_priv(indio_dev); return mlx90632_sleep(data); } static int __maybe_unused mlx90632_pm_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mlx90632_data *data = iio_priv(indio_dev); return mlx90632_wakeup(data); } static UNIVERSAL_DEV_PM_OPS(mlx90632_pm_ops, mlx90632_pm_suspend, mlx90632_pm_resume, NULL); static struct i2c_driver mlx90632_driver = { .driver = { .name = "mlx90632", .of_match_table = mlx90632_of_match, .pm = &mlx90632_pm_ops, }, .probe = mlx90632_probe, .remove = mlx90632_remove, .id_table = mlx90632_id, }; module_i2c_driver(mlx90632_driver); MODULE_AUTHOR("Crt Mori "); MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver"); MODULE_LICENSE("GPL v2");