/* * Copyright (c) 2004 Topspin Communications. All rights reserved. * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include "core_priv.h" MODULE_AUTHOR("Roland Dreier"); MODULE_DESCRIPTION("core kernel InfiniBand API"); MODULE_LICENSE("Dual BSD/GPL"); struct ib_client_data { struct list_head list; struct ib_client *client; void * data; }; struct workqueue_struct *ib_wq; EXPORT_SYMBOL_GPL(ib_wq); static LIST_HEAD(device_list); static LIST_HEAD(client_list); /* * device_mutex protects access to both device_list and client_list. * There's no real point to using multiple locks or something fancier * like an rwsem: we always access both lists, and we're always * modifying one list or the other list. In any case this is not a * hot path so there's no point in trying to optimize. */ static DEFINE_MUTEX(device_mutex); static int ib_device_check_mandatory(struct ib_device *device) { #define IB_MANDATORY_FUNC(x) { offsetof(struct ib_device, x), #x } static const struct { size_t offset; char *name; } mandatory_table[] = { IB_MANDATORY_FUNC(query_device), IB_MANDATORY_FUNC(query_port), IB_MANDATORY_FUNC(query_pkey), IB_MANDATORY_FUNC(query_gid), IB_MANDATORY_FUNC(alloc_pd), IB_MANDATORY_FUNC(dealloc_pd), IB_MANDATORY_FUNC(create_ah), IB_MANDATORY_FUNC(destroy_ah), IB_MANDATORY_FUNC(create_qp), IB_MANDATORY_FUNC(modify_qp), IB_MANDATORY_FUNC(destroy_qp), IB_MANDATORY_FUNC(post_send), IB_MANDATORY_FUNC(post_recv), IB_MANDATORY_FUNC(create_cq), IB_MANDATORY_FUNC(destroy_cq), IB_MANDATORY_FUNC(poll_cq), IB_MANDATORY_FUNC(req_notify_cq), IB_MANDATORY_FUNC(get_dma_mr), IB_MANDATORY_FUNC(dereg_mr) }; int i; for (i = 0; i < ARRAY_SIZE(mandatory_table); ++i) { if (!*(void **) ((void *) device + mandatory_table[i].offset)) { printk(KERN_WARNING "Device %s is missing mandatory function %s\n", device->name, mandatory_table[i].name); return -EINVAL; } } return 0; } static struct ib_device *__ib_device_get_by_name(const char *name) { struct ib_device *device; list_for_each_entry(device, &device_list, core_list) if (!strncmp(name, device->name, IB_DEVICE_NAME_MAX)) return device; return NULL; } static int alloc_name(char *name) { unsigned long *inuse; char buf[IB_DEVICE_NAME_MAX]; struct ib_device *device; int i; inuse = (unsigned long *) get_zeroed_page(GFP_KERNEL); if (!inuse) return -ENOMEM; list_for_each_entry(device, &device_list, core_list) { if (!sscanf(device->name, name, &i)) continue; if (i < 0 || i >= PAGE_SIZE * 8) continue; snprintf(buf, sizeof buf, name, i); if (!strncmp(buf, device->name, IB_DEVICE_NAME_MAX)) set_bit(i, inuse); } i = find_first_zero_bit(inuse, PAGE_SIZE * 8); free_page((unsigned long) inuse); snprintf(buf, sizeof buf, name, i); if (__ib_device_get_by_name(buf)) return -ENFILE; strlcpy(name, buf, IB_DEVICE_NAME_MAX); return 0; } static int start_port(struct ib_device *device) { return (device->node_type == RDMA_NODE_IB_SWITCH) ? 0 : 1; } static int end_port(struct ib_device *device) { return (device->node_type == RDMA_NODE_IB_SWITCH) ? 0 : device->phys_port_cnt; } /** * ib_alloc_device - allocate an IB device struct * @size:size of structure to allocate * * Low-level drivers should use ib_alloc_device() to allocate &struct * ib_device. @size is the size of the structure to be allocated, * including any private data used by the low-level driver. * ib_dealloc_device() must be used to free structures allocated with * ib_alloc_device(). */ struct ib_device *ib_alloc_device(size_t size) { BUG_ON(size < sizeof (struct ib_device)); return kzalloc(size, GFP_KERNEL); } EXPORT_SYMBOL(ib_alloc_device); /** * ib_dealloc_device - free an IB device struct * @device:structure to free * * Free a structure allocated with ib_alloc_device(). */ void ib_dealloc_device(struct ib_device *device) { if (device->reg_state == IB_DEV_UNINITIALIZED) { kfree(device); return; } BUG_ON(device->reg_state != IB_DEV_UNREGISTERED); kobject_put(&device->dev.kobj); } EXPORT_SYMBOL(ib_dealloc_device); static int add_client_context(struct ib_device *device, struct ib_client *client) { struct ib_client_data *context; unsigned long flags; context = kmalloc(sizeof *context, GFP_KERNEL); if (!context) { printk(KERN_WARNING "Couldn't allocate client context for %s/%s\n", device->name, client->name); return -ENOMEM; } context->client = client; context->data = NULL; spin_lock_irqsave(&device->client_data_lock, flags); list_add(&context->list, &device->client_data_list); spin_unlock_irqrestore(&device->client_data_lock, flags); return 0; } static int read_port_table_lengths(struct ib_device *device) { struct ib_port_attr *tprops = NULL; int num_ports, ret = -ENOMEM; u8 port_index; tprops = kmalloc(sizeof *tprops, GFP_KERNEL); if (!tprops) goto out; num_ports = end_port(device) - start_port(device) + 1; device->pkey_tbl_len = kmalloc(sizeof *device->pkey_tbl_len * num_ports, GFP_KERNEL); device->gid_tbl_len = kmalloc(sizeof *device->gid_tbl_len * num_ports, GFP_KERNEL); if (!device->pkey_tbl_len || !device->gid_tbl_len) goto err; for (port_index = 0; port_index < num_ports; ++port_index) { ret = ib_query_port(device, port_index + start_port(device), tprops); if (ret) goto err; device->pkey_tbl_len[port_index] = tprops->pkey_tbl_len; device->gid_tbl_len[port_index] = tprops->gid_tbl_len; } ret = 0; goto out; err: kfree(device->gid_tbl_len); kfree(device->pkey_tbl_len); out: kfree(tprops); return ret; } /** * ib_register_device - Register an IB device with IB core * @device:Device to register * * Low-level drivers use ib_register_device() to register their * devices with the IB core. All registered clients will receive a * callback for each device that is added. @device must be allocated * with ib_alloc_device(). */ int ib_register_device(struct ib_device *device, int (*port_callback)(struct ib_device *, u8, struct kobject *)) { int ret; mutex_lock(&device_mutex); if (strchr(device->name, '%')) { ret = alloc_name(device->name); if (ret) goto out; } if (ib_device_check_mandatory(device)) { ret = -EINVAL; goto out; } INIT_LIST_HEAD(&device->event_handler_list); INIT_LIST_HEAD(&device->client_data_list); spin_lock_init(&device->event_handler_lock); spin_lock_init(&device->client_data_lock); ret = read_port_table_lengths(device); if (ret) { printk(KERN_WARNING "Couldn't create table lengths cache for device %s\n", device->name); goto out; } ret = ib_device_register_sysfs(device, port_callback); if (ret) { printk(KERN_WARNING "Couldn't register device %s with driver model\n", device->name); kfree(device->gid_tbl_len); kfree(device->pkey_tbl_len); goto out; } list_add_tail(&device->core_list, &device_list); device->reg_state = IB_DEV_REGISTERED; { struct ib_client *client; list_for_each_entry(client, &client_list, list) if (client->add && !add_client_context(device, client)) client->add(device); } out: mutex_unlock(&device_mutex); return ret; } EXPORT_SYMBOL(ib_register_device); /** * ib_unregister_device - Unregister an IB device * @device:Device to unregister * * Unregister an IB device. All clients will receive a remove callback. */ void ib_unregister_device(struct ib_device *device) { struct ib_client *client; struct ib_client_data *context, *tmp; unsigned long flags; mutex_lock(&device_mutex); list_for_each_entry_reverse(client, &client_list, list) if (client->remove) client->remove(device); list_del(&device->core_list); kfree(device->gid_tbl_len); kfree(device->pkey_tbl_len); mutex_unlock(&device_mutex); ib_device_unregister_sysfs(device); spin_lock_irqsave(&device->client_data_lock, flags); list_for_each_entry_safe(context, tmp, &device->client_data_list, list) kfree(context); spin_unlock_irqrestore(&device->client_data_lock, flags); device->reg_state = IB_DEV_UNREGISTERED; } EXPORT_SYMBOL(ib_unregister_device); /** * ib_register_client - Register an IB client * @client:Client to register * * Upper level users of the IB drivers can use ib_register_client() to * register callbacks for IB device addition and removal. When an IB * device is added, each registered client's add method will be called * (in the order the clients were registered), and when a device is * removed, each client's remove method will be called (in the reverse * order that clients were registered). In addition, when * ib_register_client() is called, the client will receive an add * callback for all devices already registered. */ int ib_register_client(struct ib_client *client) { struct ib_device *device; mutex_lock(&device_mutex); list_add_tail(&client->list, &client_list); list_for_each_entry(device, &device_list, core_list) if (client->add && !add_client_context(device, client)) client->add(device); mutex_unlock(&device_mutex); return 0; } EXPORT_SYMBOL(ib_register_client); /** * ib_unregister_client - Unregister an IB client * @client:Client to unregister * * Upper level users use ib_unregister_client() to remove their client * registration. When ib_unregister_client() is called, the client * will receive a remove callback for each IB device still registered. */ void ib_unregister_client(struct ib_client *client) { struct ib_client_data *context, *tmp; struct ib_device *device; unsigned long flags; mutex_lock(&device_mutex); list_for_each_entry(device, &device_list, core_list) { if (client->remove) client->remove(device); spin_lock_irqsave(&device->client_data_lock, flags); list_for_each_entry_safe(context, tmp, &device->client_data_list, list) if (context->client == client) { list_del(&context->list); kfree(context); } spin_unlock_irqrestore(&device->client_data_lock, flags); } list_del(&client->list); mutex_unlock(&device_mutex); } EXPORT_SYMBOL(ib_unregister_client); /** * ib_get_client_data - Get IB client context * @device:Device to get context for * @client:Client to get context for * * ib_get_client_data() returns client context set with * ib_set_client_data(). */ void *ib_get_client_data(struct ib_device *device, struct ib_client *client) { struct ib_client_data *context; void *ret = NULL; unsigned long flags; spin_lock_irqsave(&device->client_data_lock, flags); list_for_each_entry(context, &device->client_data_list, list) if (context->client == client) { ret = context->data; break; } spin_unlock_irqrestore(&device->client_data_lock, flags); return ret; } EXPORT_SYMBOL(ib_get_client_data); /** * ib_set_client_data - Set IB client context * @device:Device to set context for * @client:Client to set context for * @data:Context to set * * ib_set_client_data() sets client context that can be retrieved with * ib_get_client_data(). */ void ib_set_client_data(struct ib_device *device, struct ib_client *client, void *data) { struct ib_client_data *context; unsigned long flags; spin_lock_irqsave(&device->client_data_lock, flags); list_for_each_entry(context, &device->client_data_list, list) if (context->client == client) { context->data = data; goto out; } printk(KERN_WARNING "No client context found for %s/%s\n", device->name, client->name); out: spin_unlock_irqrestore(&device->client_data_lock, flags); } EXPORT_SYMBOL(ib_set_client_data); /** * ib_register_event_handler - Register an IB event handler * @event_handler:Handler to register * * ib_register_event_handler() registers an event handler that will be * called back when asynchronous IB events occur (as defined in * chapter 11 of the InfiniBand Architecture Specification). This * callback may occur in interrupt context. */ int ib_register_event_handler (struct ib_event_handler *event_handler) { unsigned long flags; spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); list_add_tail(&event_handler->list, &event_handler->device->event_handler_list); spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); return 0; } EXPORT_SYMBOL(ib_register_event_handler); /** * ib_unregister_event_handler - Unregister an event handler * @event_handler:Handler to unregister * * Unregister an event handler registered with * ib_register_event_handler(). */ int ib_unregister_event_handler(struct ib_event_handler *event_handler) { unsigned long flags; spin_lock_irqsave(&event_handler->device->event_handler_lock, flags); list_del(&event_handler->list); spin_unlock_irqrestore(&event_handler->device->event_handler_lock, flags); return 0; } EXPORT_SYMBOL(ib_unregister_event_handler); /** * ib_dispatch_event - Dispatch an asynchronous event * @event:Event to dispatch * * Low-level drivers must call ib_dispatch_event() to dispatch the * event to all registered event handlers when an asynchronous event * occurs. */ void ib_dispatch_event(struct ib_event *event) { unsigned long flags; struct ib_event_handler *handler; spin_lock_irqsave(&event->device->event_handler_lock, flags); list_for_each_entry(handler, &event->device->event_handler_list, list) handler->handler(handler, event); spin_unlock_irqrestore(&event->device->event_handler_lock, flags); } EXPORT_SYMBOL(ib_dispatch_event); /** * ib_query_device - Query IB device attributes * @device:Device to query * @device_attr:Device attributes * * ib_query_device() returns the attributes of a device through the * @device_attr pointer. */ int ib_query_device(struct ib_device *device, struct ib_device_attr *device_attr) { return device->query_device(device, device_attr); } EXPORT_SYMBOL(ib_query_device); /** * ib_query_port - Query IB port attributes * @device:Device to query * @port_num:Port number to query * @port_attr:Port attributes * * ib_query_port() returns the attributes of a port through the * @port_attr pointer. */ int ib_query_port(struct ib_device *device, u8 port_num, struct ib_port_attr *port_attr) { if (port_num < start_port(device) || port_num > end_port(device)) return -EINVAL; return device->query_port(device, port_num, port_attr); } EXPORT_SYMBOL(ib_query_port); /** * ib_query_gid - Get GID table entry * @device:Device to query * @port_num:Port number to query * @index:GID table index to query * @gid:Returned GID * * ib_query_gid() fetches the specified GID table entry. */ int ib_query_gid(struct ib_device *device, u8 port_num, int index, union ib_gid *gid) { return device->query_gid(device, port_num, index, gid); } EXPORT_SYMBOL(ib_query_gid); /** * ib_query_pkey - Get P_Key table entry * @device:Device to query * @port_num:Port number to query * @index:P_Key table index to query * @pkey:Returned P_Key * * ib_query_pkey() fetches the specified P_Key table entry. */ int ib_query_pkey(struct ib_device *device, u8 port_num, u16 index, u16 *pkey) { return device->query_pkey(device, port_num, index, pkey); } EXPORT_SYMBOL(ib_query_pkey); /** * ib_modify_device - Change IB device attributes * @device:Device to modify * @device_modify_mask:Mask of attributes to change * @device_modify:New attribute values * * ib_modify_device() changes a device's attributes as specified by * the @device_modify_mask and @device_modify structure. */ int ib_modify_device(struct ib_device *device, int device_modify_mask, struct ib_device_modify *device_modify) { if (!device->modify_device) return -ENOSYS; return device->modify_device(device, device_modify_mask, device_modify); } EXPORT_SYMBOL(ib_modify_device); /** * ib_modify_port - Modifies the attributes for the specified port. * @device: The device to modify. * @port_num: The number of the port to modify. * @port_modify_mask: Mask used to specify which attributes of the port * to change. * @port_modify: New attribute values for the port. * * ib_modify_port() changes a port's attributes as specified by the * @port_modify_mask and @port_modify structure. */ int ib_modify_port(struct ib_device *device, u8 port_num, int port_modify_mask, struct ib_port_modify *port_modify) { if (!device->modify_port) return -ENOSYS; if (port_num < start_port(device) || port_num > end_port(device)) return -EINVAL; return device->modify_port(device, port_num, port_modify_mask, port_modify); } EXPORT_SYMBOL(ib_modify_port); /** * ib_find_gid - Returns the port number and GID table index where * a specified GID value occurs. * @device: The device to query. * @gid: The GID value to search for. * @port_num: The port number of the device where the GID value was found. * @index: The index into the GID table where the GID was found. This * parameter may be NULL. */ int ib_find_gid(struct ib_device *device, union ib_gid *gid, u8 *port_num, u16 *index) { union ib_gid tmp_gid; int ret, port, i; for (port = start_port(device); port <= end_port(device); ++port) { for (i = 0; i < device->gid_tbl_len[port - start_port(device)]; ++i) { ret = ib_query_gid(device, port, i, &tmp_gid); if (ret) return ret; if (!memcmp(&tmp_gid, gid, sizeof *gid)) { *port_num = port; if (index) *index = i; return 0; } } } return -ENOENT; } EXPORT_SYMBOL(ib_find_gid); /** * ib_find_pkey - Returns the PKey table index where a specified * PKey value occurs. * @device: The device to query. * @port_num: The port number of the device to search for the PKey. * @pkey: The PKey value to search for. * @index: The index into the PKey table where the PKey was found. */ int ib_find_pkey(struct ib_device *device, u8 port_num, u16 pkey, u16 *index) { int ret, i; u16 tmp_pkey; int partial_ix = -1; for (i = 0; i < device->pkey_tbl_len[port_num - start_port(device)]; ++i) { ret = ib_query_pkey(device, port_num, i, &tmp_pkey); if (ret) return ret; if ((pkey & 0x7fff) == (tmp_pkey & 0x7fff)) { /* if there is full-member pkey take it.*/ if (tmp_pkey & 0x8000) { *index = i; return 0; } if (partial_ix < 0) partial_ix = i; } } /*no full-member, if exists take the limited*/ if (partial_ix >= 0) { *index = partial_ix; return 0; } return -ENOENT; } EXPORT_SYMBOL(ib_find_pkey); static int __init ib_core_init(void) { int ret; ib_wq = alloc_workqueue("infiniband", 0, 0); if (!ib_wq) return -ENOMEM; ret = ib_sysfs_setup(); if (ret) { printk(KERN_WARNING "Couldn't create InfiniBand device class\n"); goto err; } ret = ibnl_init(); if (ret) { printk(KERN_WARNING "Couldn't init IB netlink interface\n"); goto err_sysfs; } ret = ib_cache_setup(); if (ret) { printk(KERN_WARNING "Couldn't set up InfiniBand P_Key/GID cache\n"); goto err_nl; } return 0; err_nl: ibnl_cleanup(); err_sysfs: ib_sysfs_cleanup(); err: destroy_workqueue(ib_wq); return ret; } static void __exit ib_core_cleanup(void) { ib_cache_cleanup(); ibnl_cleanup(); ib_sysfs_cleanup(); /* Make sure that any pending umem accounting work is done. */ destroy_workqueue(ib_wq); } module_init(ib_core_init); module_exit(ib_core_cleanup);