/* * Copyright(c) 2015 - 2018 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include "hfi.h" #include "affinity.h" #include "sdma.h" #include "trace.h" struct hfi1_affinity_node_list node_affinity = { .list = LIST_HEAD_INIT(node_affinity.list), .lock = __MUTEX_INITIALIZER(node_affinity.lock) }; /* Name of IRQ types, indexed by enum irq_type */ static const char * const irq_type_names[] = { "SDMA", "RCVCTXT", "GENERAL", "OTHER", }; /* Per NUMA node count of HFI devices */ static unsigned int *hfi1_per_node_cntr; static inline void init_cpu_mask_set(struct cpu_mask_set *set) { cpumask_clear(&set->mask); cpumask_clear(&set->used); set->gen = 0; } /* Increment generation of CPU set if needed */ static void _cpu_mask_set_gen_inc(struct cpu_mask_set *set) { if (cpumask_equal(&set->mask, &set->used)) { /* * We've used up all the CPUs, bump up the generation * and reset the 'used' map */ set->gen++; cpumask_clear(&set->used); } } static void _cpu_mask_set_gen_dec(struct cpu_mask_set *set) { if (cpumask_empty(&set->used) && set->gen) { set->gen--; cpumask_copy(&set->used, &set->mask); } } /* Get the first CPU from the list of unused CPUs in a CPU set data structure */ static int cpu_mask_set_get_first(struct cpu_mask_set *set, cpumask_var_t diff) { int cpu; if (!diff || !set) return -EINVAL; _cpu_mask_set_gen_inc(set); /* Find out CPUs left in CPU mask */ cpumask_andnot(diff, &set->mask, &set->used); cpu = cpumask_first(diff); if (cpu >= nr_cpu_ids) /* empty */ cpu = -EINVAL; else cpumask_set_cpu(cpu, &set->used); return cpu; } static void cpu_mask_set_put(struct cpu_mask_set *set, int cpu) { if (!set) return; cpumask_clear_cpu(cpu, &set->used); _cpu_mask_set_gen_dec(set); } /* Initialize non-HT cpu cores mask */ void init_real_cpu_mask(void) { int possible, curr_cpu, i, ht; cpumask_clear(&node_affinity.real_cpu_mask); /* Start with cpu online mask as the real cpu mask */ cpumask_copy(&node_affinity.real_cpu_mask, cpu_online_mask); /* * Remove HT cores from the real cpu mask. Do this in two steps below. */ possible = cpumask_weight(&node_affinity.real_cpu_mask); ht = cpumask_weight(topology_sibling_cpumask( cpumask_first(&node_affinity.real_cpu_mask))); /* * Step 1. Skip over the first N HT siblings and use them as the * "real" cores. Assumes that HT cores are not enumerated in * succession (except in the single core case). */ curr_cpu = cpumask_first(&node_affinity.real_cpu_mask); for (i = 0; i < possible / ht; i++) curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); /* * Step 2. Remove the remaining HT siblings. Use cpumask_next() to * skip any gaps. */ for (; i < possible; i++) { cpumask_clear_cpu(curr_cpu, &node_affinity.real_cpu_mask); curr_cpu = cpumask_next(curr_cpu, &node_affinity.real_cpu_mask); } } int node_affinity_init(void) { int node; struct pci_dev *dev = NULL; const struct pci_device_id *ids = hfi1_pci_tbl; cpumask_clear(&node_affinity.proc.used); cpumask_copy(&node_affinity.proc.mask, cpu_online_mask); node_affinity.proc.gen = 0; node_affinity.num_core_siblings = cpumask_weight(topology_sibling_cpumask( cpumask_first(&node_affinity.proc.mask) )); node_affinity.num_possible_nodes = num_possible_nodes(); node_affinity.num_online_nodes = num_online_nodes(); node_affinity.num_online_cpus = num_online_cpus(); /* * The real cpu mask is part of the affinity struct but it has to be * initialized early. It is needed to calculate the number of user * contexts in set_up_context_variables(). */ init_real_cpu_mask(); hfi1_per_node_cntr = kcalloc(node_affinity.num_possible_nodes, sizeof(*hfi1_per_node_cntr), GFP_KERNEL); if (!hfi1_per_node_cntr) return -ENOMEM; while (ids->vendor) { dev = NULL; while ((dev = pci_get_device(ids->vendor, ids->device, dev))) { node = pcibus_to_node(dev->bus); if (node < 0) node = numa_node_id(); hfi1_per_node_cntr[node]++; } ids++; } return 0; } static void node_affinity_destroy(struct hfi1_affinity_node *entry) { free_percpu(entry->comp_vect_affinity); kfree(entry); } void node_affinity_destroy_all(void) { struct list_head *pos, *q; struct hfi1_affinity_node *entry; mutex_lock(&node_affinity.lock); list_for_each_safe(pos, q, &node_affinity.list) { entry = list_entry(pos, struct hfi1_affinity_node, list); list_del(pos); node_affinity_destroy(entry); } mutex_unlock(&node_affinity.lock); kfree(hfi1_per_node_cntr); } static struct hfi1_affinity_node *node_affinity_allocate(int node) { struct hfi1_affinity_node *entry; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return NULL; entry->node = node; entry->comp_vect_affinity = alloc_percpu(u16); INIT_LIST_HEAD(&entry->list); return entry; } /* * It appends an entry to the list. * It *must* be called with node_affinity.lock held. */ static void node_affinity_add_tail(struct hfi1_affinity_node *entry) { list_add_tail(&entry->list, &node_affinity.list); } /* It must be called with node_affinity.lock held */ static struct hfi1_affinity_node *node_affinity_lookup(int node) { struct list_head *pos; struct hfi1_affinity_node *entry; list_for_each(pos, &node_affinity.list) { entry = list_entry(pos, struct hfi1_affinity_node, list); if (entry->node == node) return entry; } return NULL; } static int per_cpu_affinity_get(cpumask_var_t possible_cpumask, u16 __percpu *comp_vect_affinity) { int curr_cpu; u16 cntr; u16 prev_cntr; int ret_cpu; if (!possible_cpumask) { ret_cpu = -EINVAL; goto fail; } if (!comp_vect_affinity) { ret_cpu = -EINVAL; goto fail; } ret_cpu = cpumask_first(possible_cpumask); if (ret_cpu >= nr_cpu_ids) { ret_cpu = -EINVAL; goto fail; } prev_cntr = *per_cpu_ptr(comp_vect_affinity, ret_cpu); for_each_cpu(curr_cpu, possible_cpumask) { cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); if (cntr < prev_cntr) { ret_cpu = curr_cpu; prev_cntr = cntr; } } *per_cpu_ptr(comp_vect_affinity, ret_cpu) += 1; fail: return ret_cpu; } static int per_cpu_affinity_put_max(cpumask_var_t possible_cpumask, u16 __percpu *comp_vect_affinity) { int curr_cpu; int max_cpu; u16 cntr; u16 prev_cntr; if (!possible_cpumask) return -EINVAL; if (!comp_vect_affinity) return -EINVAL; max_cpu = cpumask_first(possible_cpumask); if (max_cpu >= nr_cpu_ids) return -EINVAL; prev_cntr = *per_cpu_ptr(comp_vect_affinity, max_cpu); for_each_cpu(curr_cpu, possible_cpumask) { cntr = *per_cpu_ptr(comp_vect_affinity, curr_cpu); if (cntr > prev_cntr) { max_cpu = curr_cpu; prev_cntr = cntr; } } *per_cpu_ptr(comp_vect_affinity, max_cpu) -= 1; return max_cpu; } /* * Non-interrupt CPUs are used first, then interrupt CPUs. * Two already allocated cpu masks must be passed. */ static int _dev_comp_vect_cpu_get(struct hfi1_devdata *dd, struct hfi1_affinity_node *entry, cpumask_var_t non_intr_cpus, cpumask_var_t available_cpus) __must_hold(&node_affinity.lock) { int cpu; struct cpu_mask_set *set = dd->comp_vect; lockdep_assert_held(&node_affinity.lock); if (!non_intr_cpus) { cpu = -1; goto fail; } if (!available_cpus) { cpu = -1; goto fail; } /* Available CPUs for pinning completion vectors */ _cpu_mask_set_gen_inc(set); cpumask_andnot(available_cpus, &set->mask, &set->used); /* Available CPUs without SDMA engine interrupts */ cpumask_andnot(non_intr_cpus, available_cpus, &entry->def_intr.used); /* If there are non-interrupt CPUs available, use them first */ if (!cpumask_empty(non_intr_cpus)) cpu = cpumask_first(non_intr_cpus); else /* Otherwise, use interrupt CPUs */ cpu = cpumask_first(available_cpus); if (cpu >= nr_cpu_ids) { /* empty */ cpu = -1; goto fail; } cpumask_set_cpu(cpu, &set->used); fail: return cpu; } static void _dev_comp_vect_cpu_put(struct hfi1_devdata *dd, int cpu) { struct cpu_mask_set *set = dd->comp_vect; if (cpu < 0) return; cpu_mask_set_put(set, cpu); } /* _dev_comp_vect_mappings_destroy() is reentrant */ static void _dev_comp_vect_mappings_destroy(struct hfi1_devdata *dd) { int i, cpu; if (!dd->comp_vect_mappings) return; for (i = 0; i < dd->comp_vect_possible_cpus; i++) { cpu = dd->comp_vect_mappings[i]; _dev_comp_vect_cpu_put(dd, cpu); dd->comp_vect_mappings[i] = -1; hfi1_cdbg(AFFINITY, "[%s] Release CPU %d from completion vector %d", rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpu, i); } kfree(dd->comp_vect_mappings); dd->comp_vect_mappings = NULL; } /* * This function creates the table for looking up CPUs for completion vectors. * num_comp_vectors needs to have been initilized before calling this function. */ static int _dev_comp_vect_mappings_create(struct hfi1_devdata *dd, struct hfi1_affinity_node *entry) __must_hold(&node_affinity.lock) { int i, cpu, ret; cpumask_var_t non_intr_cpus; cpumask_var_t available_cpus; lockdep_assert_held(&node_affinity.lock); if (!zalloc_cpumask_var(&non_intr_cpus, GFP_KERNEL)) return -ENOMEM; if (!zalloc_cpumask_var(&available_cpus, GFP_KERNEL)) { free_cpumask_var(non_intr_cpus); return -ENOMEM; } dd->comp_vect_mappings = kcalloc(dd->comp_vect_possible_cpus, sizeof(*dd->comp_vect_mappings), GFP_KERNEL); if (!dd->comp_vect_mappings) { ret = -ENOMEM; goto fail; } for (i = 0; i < dd->comp_vect_possible_cpus; i++) dd->comp_vect_mappings[i] = -1; for (i = 0; i < dd->comp_vect_possible_cpus; i++) { cpu = _dev_comp_vect_cpu_get(dd, entry, non_intr_cpus, available_cpus); if (cpu < 0) { ret = -EINVAL; goto fail; } dd->comp_vect_mappings[i] = cpu; hfi1_cdbg(AFFINITY, "[%s] Completion Vector %d -> CPU %d", rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), i, cpu); } return 0; fail: free_cpumask_var(available_cpus); free_cpumask_var(non_intr_cpus); _dev_comp_vect_mappings_destroy(dd); return ret; } int hfi1_comp_vectors_set_up(struct hfi1_devdata *dd) { int ret; struct hfi1_affinity_node *entry; mutex_lock(&node_affinity.lock); entry = node_affinity_lookup(dd->node); if (!entry) { ret = -EINVAL; goto unlock; } ret = _dev_comp_vect_mappings_create(dd, entry); unlock: mutex_unlock(&node_affinity.lock); return ret; } void hfi1_comp_vectors_clean_up(struct hfi1_devdata *dd) { _dev_comp_vect_mappings_destroy(dd); } int hfi1_comp_vect_mappings_lookup(struct rvt_dev_info *rdi, int comp_vect) { struct hfi1_ibdev *verbs_dev = dev_from_rdi(rdi); struct hfi1_devdata *dd = dd_from_dev(verbs_dev); if (!dd->comp_vect_mappings) return -EINVAL; if (comp_vect >= dd->comp_vect_possible_cpus) return -EINVAL; return dd->comp_vect_mappings[comp_vect]; } /* * It assumes dd->comp_vect_possible_cpus is available. */ static int _dev_comp_vect_cpu_mask_init(struct hfi1_devdata *dd, struct hfi1_affinity_node *entry, bool first_dev_init) __must_hold(&node_affinity.lock) { int i, j, curr_cpu; int possible_cpus_comp_vect = 0; struct cpumask *dev_comp_vect_mask = &dd->comp_vect->mask; lockdep_assert_held(&node_affinity.lock); /* * If there's only one CPU available for completion vectors, then * there will only be one completion vector available. Othewise, * the number of completion vector available will be the number of * available CPUs divide it by the number of devices in the * local NUMA node. */ if (cpumask_weight(&entry->comp_vect_mask) == 1) { possible_cpus_comp_vect = 1; dd_dev_warn(dd, "Number of kernel receive queues is too large for completion vector affinity to be effective\n"); } else { possible_cpus_comp_vect += cpumask_weight(&entry->comp_vect_mask) / hfi1_per_node_cntr[dd->node]; /* * If the completion vector CPUs available doesn't divide * evenly among devices, then the first device device to be * initialized gets an extra CPU. */ if (first_dev_init && cpumask_weight(&entry->comp_vect_mask) % hfi1_per_node_cntr[dd->node] != 0) possible_cpus_comp_vect++; } dd->comp_vect_possible_cpus = possible_cpus_comp_vect; /* Reserving CPUs for device completion vector */ for (i = 0; i < dd->comp_vect_possible_cpus; i++) { curr_cpu = per_cpu_affinity_get(&entry->comp_vect_mask, entry->comp_vect_affinity); if (curr_cpu < 0) goto fail; cpumask_set_cpu(curr_cpu, dev_comp_vect_mask); } hfi1_cdbg(AFFINITY, "[%s] Completion vector affinity CPU set(s) %*pbl", rvt_get_ibdev_name(&(dd)->verbs_dev.rdi), cpumask_pr_args(dev_comp_vect_mask)); return 0; fail: for (j = 0; j < i; j++) per_cpu_affinity_put_max(&entry->comp_vect_mask, entry->comp_vect_affinity); return curr_cpu; } /* * It assumes dd->comp_vect_possible_cpus is available. */ static void _dev_comp_vect_cpu_mask_clean_up(struct hfi1_devdata *dd, struct hfi1_affinity_node *entry) __must_hold(&node_affinity.lock) { int i, cpu; lockdep_assert_held(&node_affinity.lock); if (!dd->comp_vect_possible_cpus) return; for (i = 0; i < dd->comp_vect_possible_cpus; i++) { cpu = per_cpu_affinity_put_max(&dd->comp_vect->mask, entry->comp_vect_affinity); /* Clearing CPU in device completion vector cpu mask */ if (cpu >= 0) cpumask_clear_cpu(cpu, &dd->comp_vect->mask); } dd->comp_vect_possible_cpus = 0; } /* * Interrupt affinity. * * non-rcv avail gets a default mask that * starts as possible cpus with threads reset * and each rcv avail reset. * * rcv avail gets node relative 1 wrapping back * to the node relative 1 as necessary. * */ int hfi1_dev_affinity_init(struct hfi1_devdata *dd) { int node = pcibus_to_node(dd->pcidev->bus); struct hfi1_affinity_node *entry; const struct cpumask *local_mask; int curr_cpu, possible, i, ret; bool new_entry = false; if (node < 0) node = numa_node_id(); dd->node = node; local_mask = cpumask_of_node(dd->node); if (cpumask_first(local_mask) >= nr_cpu_ids) local_mask = topology_core_cpumask(0); mutex_lock(&node_affinity.lock); entry = node_affinity_lookup(dd->node); /* * If this is the first time this NUMA node's affinity is used, * create an entry in the global affinity structure and initialize it. */ if (!entry) { entry = node_affinity_allocate(node); if (!entry) { dd_dev_err(dd, "Unable to allocate global affinity node\n"); ret = -ENOMEM; goto fail; } new_entry = true; init_cpu_mask_set(&entry->def_intr); init_cpu_mask_set(&entry->rcv_intr); cpumask_clear(&entry->comp_vect_mask); cpumask_clear(&entry->general_intr_mask); /* Use the "real" cpu mask of this node as the default */ cpumask_and(&entry->def_intr.mask, &node_affinity.real_cpu_mask, local_mask); /* fill in the receive list */ possible = cpumask_weight(&entry->def_intr.mask); curr_cpu = cpumask_first(&entry->def_intr.mask); if (possible == 1) { /* only one CPU, everyone will use it */ cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask); cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); } else { /* * The general/control context will be the first CPU in * the default list, so it is removed from the default * list and added to the general interrupt list. */ cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask); cpumask_set_cpu(curr_cpu, &entry->general_intr_mask); curr_cpu = cpumask_next(curr_cpu, &entry->def_intr.mask); /* * Remove the remaining kernel receive queues from * the default list and add them to the receive list. */ for (i = 0; i < (dd->n_krcv_queues - 1) * hfi1_per_node_cntr[dd->node]; i++) { cpumask_clear_cpu(curr_cpu, &entry->def_intr.mask); cpumask_set_cpu(curr_cpu, &entry->rcv_intr.mask); curr_cpu = cpumask_next(curr_cpu, &entry->def_intr.mask); if (curr_cpu >= nr_cpu_ids) break; } /* * If there ends up being 0 CPU cores leftover for SDMA * engines, use the same CPU cores as general/control * context. */ if (cpumask_weight(&entry->def_intr.mask) == 0) cpumask_copy(&entry->def_intr.mask, &entry->general_intr_mask); } /* Determine completion vector CPUs for the entire node */ cpumask_and(&entry->comp_vect_mask, &node_affinity.real_cpu_mask, local_mask); cpumask_andnot(&entry->comp_vect_mask, &entry->comp_vect_mask, &entry->rcv_intr.mask); cpumask_andnot(&entry->comp_vect_mask, &entry->comp_vect_mask, &entry->general_intr_mask); /* * If there ends up being 0 CPU cores leftover for completion * vectors, use the same CPU core as the general/control * context. */ if (cpumask_weight(&entry->comp_vect_mask) == 0) cpumask_copy(&entry->comp_vect_mask, &entry->general_intr_mask); } ret = _dev_comp_vect_cpu_mask_init(dd, entry, new_entry); if (ret < 0) goto fail; if (new_entry) node_affinity_add_tail(entry); mutex_unlock(&node_affinity.lock); return 0; fail: if (new_entry) node_affinity_destroy(entry); mutex_unlock(&node_affinity.lock); return ret; } void hfi1_dev_affinity_clean_up(struct hfi1_devdata *dd) { struct hfi1_affinity_node *entry; if (dd->node < 0) return; mutex_lock(&node_affinity.lock); entry = node_affinity_lookup(dd->node); if (!entry) goto unlock; /* * Free device completion vector CPUs to be used by future * completion vectors */ _dev_comp_vect_cpu_mask_clean_up(dd, entry); unlock: mutex_unlock(&node_affinity.lock); dd->node = -1; } /* * Function updates the irq affinity hint for msix after it has been changed * by the user using the /proc/irq interface. This function only accepts * one cpu in the mask. */ static void hfi1_update_sdma_affinity(struct hfi1_msix_entry *msix, int cpu) { struct sdma_engine *sde = msix->arg; struct hfi1_devdata *dd = sde->dd; struct hfi1_affinity_node *entry; struct cpu_mask_set *set; int i, old_cpu; if (cpu > num_online_cpus() || cpu == sde->cpu) return; mutex_lock(&node_affinity.lock); entry = node_affinity_lookup(dd->node); if (!entry) goto unlock; old_cpu = sde->cpu; sde->cpu = cpu; cpumask_clear(&msix->mask); cpumask_set_cpu(cpu, &msix->mask); dd_dev_dbg(dd, "IRQ: %u, type %s engine %u -> cpu: %d\n", msix->irq, irq_type_names[msix->type], sde->this_idx, cpu); irq_set_affinity_hint(msix->irq, &msix->mask); /* * Set the new cpu in the hfi1_affinity_node and clean * the old cpu if it is not used by any other IRQ */ set = &entry->def_intr; cpumask_set_cpu(cpu, &set->mask); cpumask_set_cpu(cpu, &set->used); for (i = 0; i < dd->num_msix_entries; i++) { struct hfi1_msix_entry *other_msix; other_msix = &dd->msix_entries[i]; if (other_msix->type != IRQ_SDMA || other_msix == msix) continue; if (cpumask_test_cpu(old_cpu, &other_msix->mask)) goto unlock; } cpumask_clear_cpu(old_cpu, &set->mask); cpumask_clear_cpu(old_cpu, &set->used); unlock: mutex_unlock(&node_affinity.lock); } static void hfi1_irq_notifier_notify(struct irq_affinity_notify *notify, const cpumask_t *mask) { int cpu = cpumask_first(mask); struct hfi1_msix_entry *msix = container_of(notify, struct hfi1_msix_entry, notify); /* Only one CPU configuration supported currently */ hfi1_update_sdma_affinity(msix, cpu); } static void hfi1_irq_notifier_release(struct kref *ref) { /* * This is required by affinity notifier. We don't have anything to * free here. */ } static void hfi1_setup_sdma_notifier(struct hfi1_msix_entry *msix) { struct irq_affinity_notify *notify = &msix->notify; notify->irq = msix->irq; notify->notify = hfi1_irq_notifier_notify; notify->release = hfi1_irq_notifier_release; if (irq_set_affinity_notifier(notify->irq, notify)) pr_err("Failed to register sdma irq affinity notifier for irq %d\n", notify->irq); } static void hfi1_cleanup_sdma_notifier(struct hfi1_msix_entry *msix) { struct irq_affinity_notify *notify = &msix->notify; if (irq_set_affinity_notifier(notify->irq, NULL)) pr_err("Failed to cleanup sdma irq affinity notifier for irq %d\n", notify->irq); } /* * Function sets the irq affinity for msix. * It *must* be called with node_affinity.lock held. */ static int get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix) { cpumask_var_t diff; struct hfi1_affinity_node *entry; struct cpu_mask_set *set = NULL; struct sdma_engine *sde = NULL; struct hfi1_ctxtdata *rcd = NULL; char extra[64]; int cpu = -1; extra[0] = '\0'; cpumask_clear(&msix->mask); entry = node_affinity_lookup(dd->node); switch (msix->type) { case IRQ_SDMA: sde = (struct sdma_engine *)msix->arg; scnprintf(extra, 64, "engine %u", sde->this_idx); set = &entry->def_intr; break; case IRQ_GENERAL: cpu = cpumask_first(&entry->general_intr_mask); break; case IRQ_RCVCTXT: rcd = (struct hfi1_ctxtdata *)msix->arg; if (rcd->ctxt == HFI1_CTRL_CTXT) cpu = cpumask_first(&entry->general_intr_mask); else set = &entry->rcv_intr; scnprintf(extra, 64, "ctxt %u", rcd->ctxt); break; default: dd_dev_err(dd, "Invalid IRQ type %d\n", msix->type); return -EINVAL; } /* * The general and control contexts are placed on a particular * CPU, which is set above. Skip accounting for it. Everything else * finds its CPU here. */ if (cpu == -1 && set) { if (!zalloc_cpumask_var(&diff, GFP_KERNEL)) return -ENOMEM; cpu = cpu_mask_set_get_first(set, diff); if (cpu < 0) { free_cpumask_var(diff); dd_dev_err(dd, "Failure to obtain CPU for IRQ\n"); return cpu; } free_cpumask_var(diff); } cpumask_set_cpu(cpu, &msix->mask); dd_dev_info(dd, "IRQ: %u, type %s %s -> cpu: %d\n", msix->irq, irq_type_names[msix->type], extra, cpu); irq_set_affinity_hint(msix->irq, &msix->mask); if (msix->type == IRQ_SDMA) { sde->cpu = cpu; hfi1_setup_sdma_notifier(msix); } return 0; } int hfi1_get_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix) { int ret; mutex_lock(&node_affinity.lock); ret = get_irq_affinity(dd, msix); mutex_unlock(&node_affinity.lock); return ret; } void hfi1_put_irq_affinity(struct hfi1_devdata *dd, struct hfi1_msix_entry *msix) { struct cpu_mask_set *set = NULL; struct hfi1_ctxtdata *rcd; struct hfi1_affinity_node *entry; mutex_lock(&node_affinity.lock); entry = node_affinity_lookup(dd->node); switch (msix->type) { case IRQ_SDMA: set = &entry->def_intr; hfi1_cleanup_sdma_notifier(msix); break; case IRQ_GENERAL: /* Don't do accounting for general contexts */ break; case IRQ_RCVCTXT: rcd = (struct hfi1_ctxtdata *)msix->arg; /* Don't do accounting for control contexts */ if (rcd->ctxt != HFI1_CTRL_CTXT) set = &entry->rcv_intr; break; default: mutex_unlock(&node_affinity.lock); return; } if (set) { cpumask_andnot(&set->used, &set->used, &msix->mask); _cpu_mask_set_gen_dec(set); } irq_set_affinity_hint(msix->irq, NULL); cpumask_clear(&msix->mask); mutex_unlock(&node_affinity.lock); } /* This should be called with node_affinity.lock held */ static void find_hw_thread_mask(uint hw_thread_no, cpumask_var_t hw_thread_mask, struct hfi1_affinity_node_list *affinity) { int possible, curr_cpu, i; uint num_cores_per_socket = node_affinity.num_online_cpus / affinity->num_core_siblings / node_affinity.num_online_nodes; cpumask_copy(hw_thread_mask, &affinity->proc.mask); if (affinity->num_core_siblings > 0) { /* Removing other siblings not needed for now */ possible = cpumask_weight(hw_thread_mask); curr_cpu = cpumask_first(hw_thread_mask); for (i = 0; i < num_cores_per_socket * node_affinity.num_online_nodes; i++) curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); for (; i < possible; i++) { cpumask_clear_cpu(curr_cpu, hw_thread_mask); curr_cpu = cpumask_next(curr_cpu, hw_thread_mask); } /* Identifying correct HW threads within physical cores */ cpumask_shift_left(hw_thread_mask, hw_thread_mask, num_cores_per_socket * node_affinity.num_online_nodes * hw_thread_no); } } int hfi1_get_proc_affinity(int node) { int cpu = -1, ret, i; struct hfi1_affinity_node *entry; cpumask_var_t diff, hw_thread_mask, available_mask, intrs_mask; const struct cpumask *node_mask, *proc_mask = ¤t->cpus_allowed; struct hfi1_affinity_node_list *affinity = &node_affinity; struct cpu_mask_set *set = &affinity->proc; /* * check whether process/context affinity has already * been set */ if (cpumask_weight(proc_mask) == 1) { hfi1_cdbg(PROC, "PID %u %s affinity set to CPU %*pbl", current->pid, current->comm, cpumask_pr_args(proc_mask)); /* * Mark the pre-set CPU as used. This is atomic so we don't * need the lock */ cpu = cpumask_first(proc_mask); cpumask_set_cpu(cpu, &set->used); goto done; } else if (cpumask_weight(proc_mask) < cpumask_weight(&set->mask)) { hfi1_cdbg(PROC, "PID %u %s affinity set to CPU set(s) %*pbl", current->pid, current->comm, cpumask_pr_args(proc_mask)); goto done; } /* * The process does not have a preset CPU affinity so find one to * recommend using the following algorithm: * * For each user process that is opening a context on HFI Y: * a) If all cores are filled, reinitialize the bitmask * b) Fill real cores first, then HT cores (First set of HT * cores on all physical cores, then second set of HT core, * and, so on) in the following order: * * 1. Same NUMA node as HFI Y and not running an IRQ * handler * 2. Same NUMA node as HFI Y and running an IRQ handler * 3. Different NUMA node to HFI Y and not running an IRQ * handler * 4. Different NUMA node to HFI Y and running an IRQ * handler * c) Mark core as filled in the bitmask. As user processes are * done, clear cores from the bitmask. */ ret = zalloc_cpumask_var(&diff, GFP_KERNEL); if (!ret) goto done; ret = zalloc_cpumask_var(&hw_thread_mask, GFP_KERNEL); if (!ret) goto free_diff; ret = zalloc_cpumask_var(&available_mask, GFP_KERNEL); if (!ret) goto free_hw_thread_mask; ret = zalloc_cpumask_var(&intrs_mask, GFP_KERNEL); if (!ret) goto free_available_mask; mutex_lock(&affinity->lock); /* * If we've used all available HW threads, clear the mask and start * overloading. */ _cpu_mask_set_gen_inc(set); /* * If NUMA node has CPUs used by interrupt handlers, include them in the * interrupt handler mask. */ entry = node_affinity_lookup(node); if (entry) { cpumask_copy(intrs_mask, (entry->def_intr.gen ? &entry->def_intr.mask : &entry->def_intr.used)); cpumask_or(intrs_mask, intrs_mask, (entry->rcv_intr.gen ? &entry->rcv_intr.mask : &entry->rcv_intr.used)); cpumask_or(intrs_mask, intrs_mask, &entry->general_intr_mask); } hfi1_cdbg(PROC, "CPUs used by interrupts: %*pbl", cpumask_pr_args(intrs_mask)); cpumask_copy(hw_thread_mask, &set->mask); /* * If HT cores are enabled, identify which HW threads within the * physical cores should be used. */ if (affinity->num_core_siblings > 0) { for (i = 0; i < affinity->num_core_siblings; i++) { find_hw_thread_mask(i, hw_thread_mask, affinity); /* * If there's at least one available core for this HW * thread number, stop looking for a core. * * diff will always be not empty at least once in this * loop as the used mask gets reset when * (set->mask == set->used) before this loop. */ cpumask_andnot(diff, hw_thread_mask, &set->used); if (!cpumask_empty(diff)) break; } } hfi1_cdbg(PROC, "Same available HW thread on all physical CPUs: %*pbl", cpumask_pr_args(hw_thread_mask)); node_mask = cpumask_of_node(node); hfi1_cdbg(PROC, "Device on NUMA %u, CPUs %*pbl", node, cpumask_pr_args(node_mask)); /* Get cpumask of available CPUs on preferred NUMA */ cpumask_and(available_mask, hw_thread_mask, node_mask); cpumask_andnot(available_mask, available_mask, &set->used); hfi1_cdbg(PROC, "Available CPUs on NUMA %u: %*pbl", node, cpumask_pr_args(available_mask)); /* * At first, we don't want to place processes on the same * CPUs as interrupt handlers. Then, CPUs running interrupt * handlers are used. * * 1) If diff is not empty, then there are CPUs not running * non-interrupt handlers available, so diff gets copied * over to available_mask. * 2) If diff is empty, then all CPUs not running interrupt * handlers are taken, so available_mask contains all * available CPUs running interrupt handlers. * 3) If available_mask is empty, then all CPUs on the * preferred NUMA node are taken, so other NUMA nodes are * used for process assignments using the same method as * the preferred NUMA node. */ cpumask_andnot(diff, available_mask, intrs_mask); if (!cpumask_empty(diff)) cpumask_copy(available_mask, diff); /* If we don't have CPUs on the preferred node, use other NUMA nodes */ if (cpumask_empty(available_mask)) { cpumask_andnot(available_mask, hw_thread_mask, &set->used); /* Excluding preferred NUMA cores */ cpumask_andnot(available_mask, available_mask, node_mask); hfi1_cdbg(PROC, "Preferred NUMA node cores are taken, cores available in other NUMA nodes: %*pbl", cpumask_pr_args(available_mask)); /* * At first, we don't want to place processes on the same * CPUs as interrupt handlers. */ cpumask_andnot(diff, available_mask, intrs_mask); if (!cpumask_empty(diff)) cpumask_copy(available_mask, diff); } hfi1_cdbg(PROC, "Possible CPUs for process: %*pbl", cpumask_pr_args(available_mask)); cpu = cpumask_first(available_mask); if (cpu >= nr_cpu_ids) /* empty */ cpu = -1; else cpumask_set_cpu(cpu, &set->used); mutex_unlock(&affinity->lock); hfi1_cdbg(PROC, "Process assigned to CPU %d", cpu); free_cpumask_var(intrs_mask); free_available_mask: free_cpumask_var(available_mask); free_hw_thread_mask: free_cpumask_var(hw_thread_mask); free_diff: free_cpumask_var(diff); done: return cpu; } void hfi1_put_proc_affinity(int cpu) { struct hfi1_affinity_node_list *affinity = &node_affinity; struct cpu_mask_set *set = &affinity->proc; if (cpu < 0) return; mutex_lock(&affinity->lock); cpu_mask_set_put(set, cpu); hfi1_cdbg(PROC, "Returning CPU %d for future process assignment", cpu); mutex_unlock(&affinity->lock); }