/* * Copyright(c) 2015-2018 Intel Corporation. * * This file is provided under a dual BSD/GPLv2 license. When using or * redistributing this file, you may do so under either license. * * GPL LICENSE SUMMARY * * This program is free software; you can redistribute it and/or modify * it under the terms of version 2 of the GNU General Public License as * published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * BSD LICENSE * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of Intel Corporation nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * */ #include #include #include #include #include #include #include #include #include #include "hfi.h" #include "trace.h" #include "qp.h" #include "sdma.h" #include "debugfs.h" #include "vnic.h" #include "fault.h" #undef pr_fmt #define pr_fmt(fmt) DRIVER_NAME ": " fmt /* * The size has to be longer than this string, so we can append * board/chip information to it in the initialization code. */ const char ib_hfi1_version[] = HFI1_DRIVER_VERSION "\n"; DEFINE_MUTEX(hfi1_mutex); /* general driver use */ unsigned int hfi1_max_mtu = HFI1_DEFAULT_MAX_MTU; module_param_named(max_mtu, hfi1_max_mtu, uint, S_IRUGO); MODULE_PARM_DESC(max_mtu, "Set max MTU bytes, default is " __stringify( HFI1_DEFAULT_MAX_MTU)); unsigned int hfi1_cu = 1; module_param_named(cu, hfi1_cu, uint, S_IRUGO); MODULE_PARM_DESC(cu, "Credit return units"); unsigned long hfi1_cap_mask = HFI1_CAP_MASK_DEFAULT; static int hfi1_caps_set(const char *val, const struct kernel_param *kp); static int hfi1_caps_get(char *buffer, const struct kernel_param *kp); static const struct kernel_param_ops cap_ops = { .set = hfi1_caps_set, .get = hfi1_caps_get }; module_param_cb(cap_mask, &cap_ops, &hfi1_cap_mask, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(cap_mask, "Bit mask of enabled/disabled HW features"); MODULE_LICENSE("Dual BSD/GPL"); MODULE_DESCRIPTION("Intel Omni-Path Architecture driver"); /* * MAX_PKT_RCV is the max # if packets processed per receive interrupt. */ #define MAX_PKT_RECV 64 /* * MAX_PKT_THREAD_RCV is the max # of packets processed before * the qp_wait_list queue is flushed. */ #define MAX_PKT_RECV_THREAD (MAX_PKT_RECV * 4) #define EGR_HEAD_UPDATE_THRESHOLD 16 struct hfi1_ib_stats hfi1_stats; static int hfi1_caps_set(const char *val, const struct kernel_param *kp) { int ret = 0; unsigned long *cap_mask_ptr = (unsigned long *)kp->arg, cap_mask = *cap_mask_ptr, value, diff, write_mask = ((HFI1_CAP_WRITABLE_MASK << HFI1_CAP_USER_SHIFT) | HFI1_CAP_WRITABLE_MASK); ret = kstrtoul(val, 0, &value); if (ret) { pr_warn("Invalid module parameter value for 'cap_mask'\n"); goto done; } /* Get the changed bits (except the locked bit) */ diff = value ^ (cap_mask & ~HFI1_CAP_LOCKED_SMASK); /* Remove any bits that are not allowed to change after driver load */ if (HFI1_CAP_LOCKED() && (diff & ~write_mask)) { pr_warn("Ignoring non-writable capability bits %#lx\n", diff & ~write_mask); diff &= write_mask; } /* Mask off any reserved bits */ diff &= ~HFI1_CAP_RESERVED_MASK; /* Clear any previously set and changing bits */ cap_mask &= ~diff; /* Update the bits with the new capability */ cap_mask |= (value & diff); /* Check for any kernel/user restrictions */ diff = (cap_mask & (HFI1_CAP_MUST_HAVE_KERN << HFI1_CAP_USER_SHIFT)) ^ ((cap_mask & HFI1_CAP_MUST_HAVE_KERN) << HFI1_CAP_USER_SHIFT); cap_mask &= ~diff; /* Set the bitmask to the final set */ *cap_mask_ptr = cap_mask; done: return ret; } static int hfi1_caps_get(char *buffer, const struct kernel_param *kp) { unsigned long cap_mask = *(unsigned long *)kp->arg; cap_mask &= ~HFI1_CAP_LOCKED_SMASK; cap_mask |= ((cap_mask & HFI1_CAP_K2U) << HFI1_CAP_USER_SHIFT); return scnprintf(buffer, PAGE_SIZE, "0x%lx", cap_mask); } struct pci_dev *get_pci_dev(struct rvt_dev_info *rdi) { struct hfi1_ibdev *ibdev = container_of(rdi, struct hfi1_ibdev, rdi); struct hfi1_devdata *dd = container_of(ibdev, struct hfi1_devdata, verbs_dev); return dd->pcidev; } /* * Return count of units with at least one port ACTIVE. */ int hfi1_count_active_units(void) { struct hfi1_devdata *dd; struct hfi1_pportdata *ppd; unsigned long index, flags; int pidx, nunits_active = 0; xa_lock_irqsave(&hfi1_dev_table, flags); xa_for_each(&hfi1_dev_table, index, dd) { if (!(dd->flags & HFI1_PRESENT) || !dd->kregbase1) continue; for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; if (ppd->lid && ppd->linkup) { nunits_active++; break; } } } xa_unlock_irqrestore(&hfi1_dev_table, flags); return nunits_active; } /* * Get address of eager buffer from it's index (allocated in chunks, not * contiguous). */ static inline void *get_egrbuf(const struct hfi1_ctxtdata *rcd, u64 rhf, u8 *update) { u32 idx = rhf_egr_index(rhf), offset = rhf_egr_buf_offset(rhf); *update |= !(idx & (rcd->egrbufs.threshold - 1)) && !offset; return (void *)(((u64)(rcd->egrbufs.rcvtids[idx].addr)) + (offset * RCV_BUF_BLOCK_SIZE)); } static inline void *hfi1_get_header(struct hfi1_ctxtdata *rcd, __le32 *rhf_addr) { u32 offset = rhf_hdrq_offset(rhf_to_cpu(rhf_addr)); return (void *)(rhf_addr - rcd->rhf_offset + offset); } static inline struct ib_header *hfi1_get_msgheader(struct hfi1_ctxtdata *rcd, __le32 *rhf_addr) { return (struct ib_header *)hfi1_get_header(rcd, rhf_addr); } static inline struct hfi1_16b_header *hfi1_get_16B_header(struct hfi1_ctxtdata *rcd, __le32 *rhf_addr) { return (struct hfi1_16b_header *)hfi1_get_header(rcd, rhf_addr); } /* * Validate and encode the a given RcvArray Buffer size. * The function will check whether the given size falls within * allowed size ranges for the respective type and, optionally, * return the proper encoding. */ int hfi1_rcvbuf_validate(u32 size, u8 type, u16 *encoded) { if (unlikely(!PAGE_ALIGNED(size))) return 0; if (unlikely(size < MIN_EAGER_BUFFER)) return 0; if (size > (type == PT_EAGER ? MAX_EAGER_BUFFER : MAX_EXPECTED_BUFFER)) return 0; if (encoded) *encoded = ilog2(size / PAGE_SIZE) + 1; return 1; } static void rcv_hdrerr(struct hfi1_ctxtdata *rcd, struct hfi1_pportdata *ppd, struct hfi1_packet *packet) { struct ib_header *rhdr = packet->hdr; u32 rte = rhf_rcv_type_err(packet->rhf); u32 mlid_base; struct hfi1_ibport *ibp = rcd_to_iport(rcd); struct hfi1_devdata *dd = ppd->dd; struct hfi1_ibdev *verbs_dev = &dd->verbs_dev; struct rvt_dev_info *rdi = &verbs_dev->rdi; if ((packet->rhf & RHF_DC_ERR) && hfi1_dbg_fault_suppress_err(verbs_dev)) return; if (packet->rhf & RHF_ICRC_ERR) return; if (packet->etype == RHF_RCV_TYPE_BYPASS) { goto drop; } else { u8 lnh = ib_get_lnh(rhdr); mlid_base = be16_to_cpu(IB_MULTICAST_LID_BASE); if (lnh == HFI1_LRH_BTH) { packet->ohdr = &rhdr->u.oth; } else if (lnh == HFI1_LRH_GRH) { packet->ohdr = &rhdr->u.l.oth; packet->grh = &rhdr->u.l.grh; } else { goto drop; } } if (packet->rhf & RHF_TID_ERR) { /* For TIDERR and RC QPs preemptively schedule a NAK */ u32 tlen = rhf_pkt_len(packet->rhf); /* in bytes */ u32 dlid = ib_get_dlid(rhdr); u32 qp_num; /* Sanity check packet */ if (tlen < 24) goto drop; /* Check for GRH */ if (packet->grh) { u32 vtf; struct ib_grh *grh = packet->grh; if (grh->next_hdr != IB_GRH_NEXT_HDR) goto drop; vtf = be32_to_cpu(grh->version_tclass_flow); if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) goto drop; } /* Get the destination QP number. */ qp_num = ib_bth_get_qpn(packet->ohdr); if (dlid < mlid_base) { struct rvt_qp *qp; unsigned long flags; rcu_read_lock(); qp = rvt_lookup_qpn(rdi, &ibp->rvp, qp_num); if (!qp) { rcu_read_unlock(); goto drop; } /* * Handle only RC QPs - for other QP types drop error * packet. */ spin_lock_irqsave(&qp->r_lock, flags); /* Check for valid receive state. */ if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { ibp->rvp.n_pkt_drops++; } switch (qp->ibqp.qp_type) { case IB_QPT_RC: hfi1_rc_hdrerr(rcd, packet, qp); break; default: /* For now don't handle any other QP types */ break; } spin_unlock_irqrestore(&qp->r_lock, flags); rcu_read_unlock(); } /* Unicast QP */ } /* Valid packet with TIDErr */ /* handle "RcvTypeErr" flags */ switch (rte) { case RHF_RTE_ERROR_OP_CODE_ERR: { void *ebuf = NULL; u8 opcode; if (rhf_use_egr_bfr(packet->rhf)) ebuf = packet->ebuf; if (!ebuf) goto drop; /* this should never happen */ opcode = ib_bth_get_opcode(packet->ohdr); if (opcode == IB_OPCODE_CNP) { /* * Only in pre-B0 h/w is the CNP_OPCODE handled * via this code path. */ struct rvt_qp *qp = NULL; u32 lqpn, rqpn; u16 rlid; u8 svc_type, sl, sc5; sc5 = hfi1_9B_get_sc5(rhdr, packet->rhf); sl = ibp->sc_to_sl[sc5]; lqpn = ib_bth_get_qpn(packet->ohdr); rcu_read_lock(); qp = rvt_lookup_qpn(rdi, &ibp->rvp, lqpn); if (!qp) { rcu_read_unlock(); goto drop; } switch (qp->ibqp.qp_type) { case IB_QPT_UD: rlid = 0; rqpn = 0; svc_type = IB_CC_SVCTYPE_UD; break; case IB_QPT_UC: rlid = ib_get_slid(rhdr); rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_UC; break; default: rcu_read_unlock(); goto drop; } process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); rcu_read_unlock(); } packet->rhf &= ~RHF_RCV_TYPE_ERR_SMASK; break; } default: break; } drop: return; } static inline void init_packet(struct hfi1_ctxtdata *rcd, struct hfi1_packet *packet) { packet->rsize = rcd->rcvhdrqentsize; /* words */ packet->maxcnt = rcd->rcvhdrq_cnt * packet->rsize; /* words */ packet->rcd = rcd; packet->updegr = 0; packet->etail = -1; packet->rhf_addr = get_rhf_addr(rcd); packet->rhf = rhf_to_cpu(packet->rhf_addr); packet->rhqoff = rcd->head; packet->numpkt = 0; } /* We support only two types - 9B and 16B for now */ static const hfi1_handle_cnp hfi1_handle_cnp_tbl[2] = { [HFI1_PKT_TYPE_9B] = &return_cnp, [HFI1_PKT_TYPE_16B] = &return_cnp_16B }; /** * hfi1_process_ecn_slowpath - Process FECN or BECN bits * @qp: The packet's destination QP * @pkt: The packet itself. * @prescan: Is the caller the RXQ prescan * * Process the packet's FECN or BECN bits. By now, the packet * has already been evaluated whether processing of those bit should * be done. * The significance of the @prescan argument is that if the caller * is the RXQ prescan, a CNP will be send out instead of waiting for the * normal packet processing to send an ACK with BECN set (or a CNP). */ bool hfi1_process_ecn_slowpath(struct rvt_qp *qp, struct hfi1_packet *pkt, bool prescan) { struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct ib_other_headers *ohdr = pkt->ohdr; struct ib_grh *grh = pkt->grh; u32 rqpn = 0; u16 pkey; u32 rlid, slid, dlid = 0; u8 hdr_type, sc, svc_type, opcode; bool is_mcast = false, ignore_fecn = false, do_cnp = false, fecn, becn; /* can be called from prescan */ if (pkt->etype == RHF_RCV_TYPE_BYPASS) { pkey = hfi1_16B_get_pkey(pkt->hdr); sc = hfi1_16B_get_sc(pkt->hdr); dlid = hfi1_16B_get_dlid(pkt->hdr); slid = hfi1_16B_get_slid(pkt->hdr); is_mcast = hfi1_is_16B_mcast(dlid); opcode = ib_bth_get_opcode(ohdr); hdr_type = HFI1_PKT_TYPE_16B; fecn = hfi1_16B_get_fecn(pkt->hdr); becn = hfi1_16B_get_becn(pkt->hdr); } else { pkey = ib_bth_get_pkey(ohdr); sc = hfi1_9B_get_sc5(pkt->hdr, pkt->rhf); dlid = qp->ibqp.qp_type != IB_QPT_UD ? ib_get_dlid(pkt->hdr) : ppd->lid; slid = ib_get_slid(pkt->hdr); is_mcast = (dlid > be16_to_cpu(IB_MULTICAST_LID_BASE)) && (dlid != be16_to_cpu(IB_LID_PERMISSIVE)); opcode = ib_bth_get_opcode(ohdr); hdr_type = HFI1_PKT_TYPE_9B; fecn = ib_bth_get_fecn(ohdr); becn = ib_bth_get_becn(ohdr); } switch (qp->ibqp.qp_type) { case IB_QPT_UD: rlid = slid; rqpn = ib_get_sqpn(pkt->ohdr); svc_type = IB_CC_SVCTYPE_UD; break; case IB_QPT_SMI: case IB_QPT_GSI: rlid = slid; rqpn = ib_get_sqpn(pkt->ohdr); svc_type = IB_CC_SVCTYPE_UD; break; case IB_QPT_UC: rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_UC; break; case IB_QPT_RC: rlid = rdma_ah_get_dlid(&qp->remote_ah_attr); rqpn = qp->remote_qpn; svc_type = IB_CC_SVCTYPE_RC; break; default: return false; } ignore_fecn = is_mcast || (opcode == IB_OPCODE_CNP) || (opcode == IB_OPCODE_RC_ACKNOWLEDGE); /* * ACKNOWLEDGE packets do not get a CNP but this will be * guarded by ignore_fecn above. */ do_cnp = prescan || (opcode >= IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST && opcode <= IB_OPCODE_RC_ATOMIC_ACKNOWLEDGE) || opcode == TID_OP(READ_RESP) || opcode == TID_OP(ACK); /* Call appropriate CNP handler */ if (!ignore_fecn && do_cnp && fecn) hfi1_handle_cnp_tbl[hdr_type](ibp, qp, rqpn, pkey, dlid, rlid, sc, grh); if (becn) { u32 lqpn = be32_to_cpu(ohdr->bth[1]) & RVT_QPN_MASK; u8 sl = ibp->sc_to_sl[sc]; process_becn(ppd, sl, rlid, lqpn, rqpn, svc_type); } return !ignore_fecn && fecn; } struct ps_mdata { struct hfi1_ctxtdata *rcd; u32 rsize; u32 maxcnt; u32 ps_head; u32 ps_tail; u32 ps_seq; }; static inline void init_ps_mdata(struct ps_mdata *mdata, struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; mdata->rcd = rcd; mdata->rsize = packet->rsize; mdata->maxcnt = packet->maxcnt; mdata->ps_head = packet->rhqoff; if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { mdata->ps_tail = get_rcvhdrtail(rcd); if (rcd->ctxt == HFI1_CTRL_CTXT) mdata->ps_seq = rcd->seq_cnt; else mdata->ps_seq = 0; /* not used with DMA_RTAIL */ } else { mdata->ps_tail = 0; /* used only with DMA_RTAIL*/ mdata->ps_seq = rcd->seq_cnt; } } static inline int ps_done(struct ps_mdata *mdata, u64 rhf, struct hfi1_ctxtdata *rcd) { if (HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) return mdata->ps_head == mdata->ps_tail; return mdata->ps_seq != rhf_rcv_seq(rhf); } static inline int ps_skip(struct ps_mdata *mdata, u64 rhf, struct hfi1_ctxtdata *rcd) { /* * Control context can potentially receive an invalid rhf. * Drop such packets. */ if ((rcd->ctxt == HFI1_CTRL_CTXT) && (mdata->ps_head != mdata->ps_tail)) return mdata->ps_seq != rhf_rcv_seq(rhf); return 0; } static inline void update_ps_mdata(struct ps_mdata *mdata, struct hfi1_ctxtdata *rcd) { mdata->ps_head += mdata->rsize; if (mdata->ps_head >= mdata->maxcnt) mdata->ps_head = 0; /* Control context must do seq counting */ if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) || (rcd->ctxt == HFI1_CTRL_CTXT)) { if (++mdata->ps_seq > 13) mdata->ps_seq = 1; } } /* * prescan_rxq - search through the receive queue looking for packets * containing Excplicit Congestion Notifications (FECNs, or BECNs). * When an ECN is found, process the Congestion Notification, and toggle * it off. * This is declared as a macro to allow quick checking of the port to avoid * the overhead of a function call if not enabled. */ #define prescan_rxq(rcd, packet) \ do { \ if (rcd->ppd->cc_prescan) \ __prescan_rxq(packet); \ } while (0) static void __prescan_rxq(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; struct ps_mdata mdata; init_ps_mdata(&mdata, packet); while (1) { struct hfi1_ibport *ibp = rcd_to_iport(rcd); __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + packet->rcd->rhf_offset; struct rvt_qp *qp; struct ib_header *hdr; struct rvt_dev_info *rdi = &rcd->dd->verbs_dev.rdi; u64 rhf = rhf_to_cpu(rhf_addr); u32 etype = rhf_rcv_type(rhf), qpn, bth1; u8 lnh; if (ps_done(&mdata, rhf, rcd)) break; if (ps_skip(&mdata, rhf, rcd)) goto next; if (etype != RHF_RCV_TYPE_IB) goto next; packet->hdr = hfi1_get_msgheader(packet->rcd, rhf_addr); hdr = packet->hdr; lnh = ib_get_lnh(hdr); if (lnh == HFI1_LRH_BTH) { packet->ohdr = &hdr->u.oth; packet->grh = NULL; } else if (lnh == HFI1_LRH_GRH) { packet->ohdr = &hdr->u.l.oth; packet->grh = &hdr->u.l.grh; } else { goto next; /* just in case */ } if (!hfi1_may_ecn(packet)) goto next; bth1 = be32_to_cpu(packet->ohdr->bth[1]); qpn = bth1 & RVT_QPN_MASK; rcu_read_lock(); qp = rvt_lookup_qpn(rdi, &ibp->rvp, qpn); if (!qp) { rcu_read_unlock(); goto next; } hfi1_process_ecn_slowpath(qp, packet, true); rcu_read_unlock(); /* turn off BECN, FECN */ bth1 &= ~(IB_FECN_SMASK | IB_BECN_SMASK); packet->ohdr->bth[1] = cpu_to_be32(bth1); next: update_ps_mdata(&mdata, rcd); } } static void process_rcv_qp_work(struct hfi1_packet *packet) { struct rvt_qp *qp, *nqp; struct hfi1_ctxtdata *rcd = packet->rcd; /* * Iterate over all QPs waiting to respond. * The list won't change since the IRQ is only run on one CPU. */ list_for_each_entry_safe(qp, nqp, &rcd->qp_wait_list, rspwait) { list_del_init(&qp->rspwait); if (qp->r_flags & RVT_R_RSP_NAK) { qp->r_flags &= ~RVT_R_RSP_NAK; packet->qp = qp; hfi1_send_rc_ack(packet, 0); } if (qp->r_flags & RVT_R_RSP_SEND) { unsigned long flags; qp->r_flags &= ~RVT_R_RSP_SEND; spin_lock_irqsave(&qp->s_lock, flags); if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_OR_FLUSH_SEND) hfi1_schedule_send(qp); spin_unlock_irqrestore(&qp->s_lock, flags); } rvt_put_qp(qp); } } static noinline int max_packet_exceeded(struct hfi1_packet *packet, int thread) { if (thread) { if ((packet->numpkt & (MAX_PKT_RECV_THREAD - 1)) == 0) /* allow defered processing */ process_rcv_qp_work(packet); cond_resched(); return RCV_PKT_OK; } else { this_cpu_inc(*packet->rcd->dd->rcv_limit); return RCV_PKT_LIMIT; } } static inline int check_max_packet(struct hfi1_packet *packet, int thread) { int ret = RCV_PKT_OK; if (unlikely((packet->numpkt & (MAX_PKT_RECV - 1)) == 0)) ret = max_packet_exceeded(packet, thread); return ret; } static noinline int skip_rcv_packet(struct hfi1_packet *packet, int thread) { int ret; /* Set up for the next packet */ packet->rhqoff += packet->rsize; if (packet->rhqoff >= packet->maxcnt) packet->rhqoff = 0; packet->numpkt++; ret = check_max_packet(packet, thread); packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + packet->rcd->rhf_offset; packet->rhf = rhf_to_cpu(packet->rhf_addr); return ret; } static inline int process_rcv_packet(struct hfi1_packet *packet, int thread) { int ret; packet->etype = rhf_rcv_type(packet->rhf); /* total length */ packet->tlen = rhf_pkt_len(packet->rhf); /* in bytes */ /* retrieve eager buffer details */ packet->ebuf = NULL; if (rhf_use_egr_bfr(packet->rhf)) { packet->etail = rhf_egr_index(packet->rhf); packet->ebuf = get_egrbuf(packet->rcd, packet->rhf, &packet->updegr); /* * Prefetch the contents of the eager buffer. It is * OK to send a negative length to prefetch_range(). * The +2 is the size of the RHF. */ prefetch_range(packet->ebuf, packet->tlen - ((packet->rcd->rcvhdrqentsize - (rhf_hdrq_offset(packet->rhf) + 2)) * 4)); } /* * Call a type specific handler for the packet. We * should be able to trust that etype won't be beyond * the range of valid indexes. If so something is really * wrong and we can probably just let things come * crashing down. There is no need to eat another * comparison in this performance critical code. */ packet->rcd->rhf_rcv_function_map[packet->etype](packet); packet->numpkt++; /* Set up for the next packet */ packet->rhqoff += packet->rsize; if (packet->rhqoff >= packet->maxcnt) packet->rhqoff = 0; ret = check_max_packet(packet, thread); packet->rhf_addr = (__le32 *)packet->rcd->rcvhdrq + packet->rhqoff + packet->rcd->rhf_offset; packet->rhf = rhf_to_cpu(packet->rhf_addr); return ret; } static inline void process_rcv_update(int last, struct hfi1_packet *packet) { /* * Update head regs etc., every 16 packets, if not last pkt, * to help prevent rcvhdrq overflows, when many packets * are processed and queue is nearly full. * Don't request an interrupt for intermediate updates. */ if (!last && !(packet->numpkt & 0xf)) { update_usrhead(packet->rcd, packet->rhqoff, packet->updegr, packet->etail, 0, 0); packet->updegr = 0; } packet->grh = NULL; } static inline void finish_packet(struct hfi1_packet *packet) { /* * Nothing we need to free for the packet. * * The only thing we need to do is a final update and call for an * interrupt */ update_usrhead(packet->rcd, packet->rcd->head, packet->updegr, packet->etail, rcv_intr_dynamic, packet->numpkt); } /* * Handle receive interrupts when using the no dma rtail option. */ int handle_receive_interrupt_nodma_rtail(struct hfi1_ctxtdata *rcd, int thread) { u32 seq; int last = RCV_PKT_OK; struct hfi1_packet packet; init_packet(rcd, &packet); seq = rhf_rcv_seq(packet.rhf); if (seq != rcd->seq_cnt) { last = RCV_PKT_DONE; goto bail; } prescan_rxq(rcd, &packet); while (last == RCV_PKT_OK) { last = process_rcv_packet(&packet, thread); seq = rhf_rcv_seq(packet.rhf); if (++rcd->seq_cnt > 13) rcd->seq_cnt = 1; if (seq != rcd->seq_cnt) last = RCV_PKT_DONE; process_rcv_update(last, &packet); } process_rcv_qp_work(&packet); rcd->head = packet.rhqoff; bail: finish_packet(&packet); return last; } int handle_receive_interrupt_dma_rtail(struct hfi1_ctxtdata *rcd, int thread) { u32 hdrqtail; int last = RCV_PKT_OK; struct hfi1_packet packet; init_packet(rcd, &packet); hdrqtail = get_rcvhdrtail(rcd); if (packet.rhqoff == hdrqtail) { last = RCV_PKT_DONE; goto bail; } smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ prescan_rxq(rcd, &packet); while (last == RCV_PKT_OK) { last = process_rcv_packet(&packet, thread); if (packet.rhqoff == hdrqtail) last = RCV_PKT_DONE; process_rcv_update(last, &packet); } process_rcv_qp_work(&packet); rcd->head = packet.rhqoff; bail: finish_packet(&packet); return last; } static inline void set_nodma_rtail(struct hfi1_devdata *dd, u16 ctxt) { struct hfi1_ctxtdata *rcd; u16 i; /* * For dynamically allocated kernel contexts (like vnic) switch * interrupt handler only for that context. Otherwise, switch * interrupt handler for all statically allocated kernel contexts. */ if (ctxt >= dd->first_dyn_alloc_ctxt) { rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); if (rcd) { rcd->do_interrupt = &handle_receive_interrupt_nodma_rtail; hfi1_rcd_put(rcd); } return; } for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { rcd = hfi1_rcd_get_by_index(dd, i); if (rcd) rcd->do_interrupt = &handle_receive_interrupt_nodma_rtail; hfi1_rcd_put(rcd); } } static inline void set_dma_rtail(struct hfi1_devdata *dd, u16 ctxt) { struct hfi1_ctxtdata *rcd; u16 i; /* * For dynamically allocated kernel contexts (like vnic) switch * interrupt handler only for that context. Otherwise, switch * interrupt handler for all statically allocated kernel contexts. */ if (ctxt >= dd->first_dyn_alloc_ctxt) { rcd = hfi1_rcd_get_by_index_safe(dd, ctxt); if (rcd) { rcd->do_interrupt = &handle_receive_interrupt_dma_rtail; hfi1_rcd_put(rcd); } return; } for (i = HFI1_CTRL_CTXT + 1; i < dd->first_dyn_alloc_ctxt; i++) { rcd = hfi1_rcd_get_by_index(dd, i); if (rcd) rcd->do_interrupt = &handle_receive_interrupt_dma_rtail; hfi1_rcd_put(rcd); } } void set_all_slowpath(struct hfi1_devdata *dd) { struct hfi1_ctxtdata *rcd; u16 i; /* HFI1_CTRL_CTXT must always use the slow path interrupt handler */ for (i = HFI1_CTRL_CTXT + 1; i < dd->num_rcv_contexts; i++) { rcd = hfi1_rcd_get_by_index(dd, i); if (!rcd) continue; if (i < dd->first_dyn_alloc_ctxt || rcd->is_vnic) rcd->do_interrupt = &handle_receive_interrupt; hfi1_rcd_put(rcd); } } static inline int set_armed_to_active(struct hfi1_ctxtdata *rcd, struct hfi1_packet *packet, struct hfi1_devdata *dd) { struct work_struct *lsaw = &rcd->ppd->linkstate_active_work; u8 etype = rhf_rcv_type(packet->rhf); u8 sc = SC15_PACKET; if (etype == RHF_RCV_TYPE_IB) { struct ib_header *hdr = hfi1_get_msgheader(packet->rcd, packet->rhf_addr); sc = hfi1_9B_get_sc5(hdr, packet->rhf); } else if (etype == RHF_RCV_TYPE_BYPASS) { struct hfi1_16b_header *hdr = hfi1_get_16B_header( packet->rcd, packet->rhf_addr); sc = hfi1_16B_get_sc(hdr); } if (sc != SC15_PACKET) { int hwstate = driver_lstate(rcd->ppd); if (hwstate != IB_PORT_ACTIVE) { dd_dev_info(dd, "Unexpected link state %s\n", opa_lstate_name(hwstate)); return 0; } queue_work(rcd->ppd->link_wq, lsaw); return 1; } return 0; } /* * handle_receive_interrupt - receive a packet * @rcd: the context * * Called from interrupt handler for errors or receive interrupt. * This is the slow path interrupt handler. */ int handle_receive_interrupt(struct hfi1_ctxtdata *rcd, int thread) { struct hfi1_devdata *dd = rcd->dd; u32 hdrqtail; int needset, last = RCV_PKT_OK; struct hfi1_packet packet; int skip_pkt = 0; /* Control context will always use the slow path interrupt handler */ needset = (rcd->ctxt == HFI1_CTRL_CTXT) ? 0 : 1; init_packet(rcd, &packet); if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { u32 seq = rhf_rcv_seq(packet.rhf); if (seq != rcd->seq_cnt) { last = RCV_PKT_DONE; goto bail; } hdrqtail = 0; } else { hdrqtail = get_rcvhdrtail(rcd); if (packet.rhqoff == hdrqtail) { last = RCV_PKT_DONE; goto bail; } smp_rmb(); /* prevent speculative reads of dma'ed hdrq */ /* * Control context can potentially receive an invalid * rhf. Drop such packets. */ if (rcd->ctxt == HFI1_CTRL_CTXT) { u32 seq = rhf_rcv_seq(packet.rhf); if (seq != rcd->seq_cnt) skip_pkt = 1; } } prescan_rxq(rcd, &packet); while (last == RCV_PKT_OK) { if (unlikely(dd->do_drop && atomic_xchg(&dd->drop_packet, DROP_PACKET_OFF) == DROP_PACKET_ON)) { dd->do_drop = 0; /* On to the next packet */ packet.rhqoff += packet.rsize; packet.rhf_addr = (__le32 *)rcd->rcvhdrq + packet.rhqoff + rcd->rhf_offset; packet.rhf = rhf_to_cpu(packet.rhf_addr); } else if (skip_pkt) { last = skip_rcv_packet(&packet, thread); skip_pkt = 0; } else { /* Auto activate link on non-SC15 packet receive */ if (unlikely(rcd->ppd->host_link_state == HLS_UP_ARMED) && set_armed_to_active(rcd, &packet, dd)) goto bail; last = process_rcv_packet(&packet, thread); } if (!HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL)) { u32 seq = rhf_rcv_seq(packet.rhf); if (++rcd->seq_cnt > 13) rcd->seq_cnt = 1; if (seq != rcd->seq_cnt) last = RCV_PKT_DONE; if (needset) { dd_dev_info(dd, "Switching to NO_DMA_RTAIL\n"); set_nodma_rtail(dd, rcd->ctxt); needset = 0; } } else { if (packet.rhqoff == hdrqtail) last = RCV_PKT_DONE; /* * Control context can potentially receive an invalid * rhf. Drop such packets. */ if (rcd->ctxt == HFI1_CTRL_CTXT) { u32 seq = rhf_rcv_seq(packet.rhf); if (++rcd->seq_cnt > 13) rcd->seq_cnt = 1; if (!last && (seq != rcd->seq_cnt)) skip_pkt = 1; } if (needset) { dd_dev_info(dd, "Switching to DMA_RTAIL\n"); set_dma_rtail(dd, rcd->ctxt); needset = 0; } } process_rcv_update(last, &packet); } process_rcv_qp_work(&packet); rcd->head = packet.rhqoff; bail: /* * Always write head at end, and setup rcv interrupt, even * if no packets were processed. */ finish_packet(&packet); return last; } /* * We may discover in the interrupt that the hardware link state has * changed from ARMED to ACTIVE (due to the arrival of a non-SC15 packet), * and we need to update the driver's notion of the link state. We cannot * run set_link_state from interrupt context, so we queue this function on * a workqueue. * * We delay the regular interrupt processing until after the state changes * so that the link will be in the correct state by the time any application * we wake up attempts to send a reply to any message it received. * (Subsequent receive interrupts may possibly force the wakeup before we * update the link state.) * * The rcd is freed in hfi1_free_ctxtdata after hfi1_postinit_cleanup invokes * dd->f_cleanup(dd) to disable the interrupt handler and flush workqueues, * so we're safe from use-after-free of the rcd. */ void receive_interrupt_work(struct work_struct *work) { struct hfi1_pportdata *ppd = container_of(work, struct hfi1_pportdata, linkstate_active_work); struct hfi1_devdata *dd = ppd->dd; struct hfi1_ctxtdata *rcd; u16 i; /* Received non-SC15 packet implies neighbor_normal */ ppd->neighbor_normal = 1; set_link_state(ppd, HLS_UP_ACTIVE); /* * Interrupt all statically allocated kernel contexts that could * have had an interrupt during auto activation. */ for (i = HFI1_CTRL_CTXT; i < dd->first_dyn_alloc_ctxt; i++) { rcd = hfi1_rcd_get_by_index(dd, i); if (rcd) force_recv_intr(rcd); hfi1_rcd_put(rcd); } } /* * Convert a given MTU size to the on-wire MAD packet enumeration. * Return -1 if the size is invalid. */ int mtu_to_enum(u32 mtu, int default_if_bad) { switch (mtu) { case 0: return OPA_MTU_0; case 256: return OPA_MTU_256; case 512: return OPA_MTU_512; case 1024: return OPA_MTU_1024; case 2048: return OPA_MTU_2048; case 4096: return OPA_MTU_4096; case 8192: return OPA_MTU_8192; case 10240: return OPA_MTU_10240; } return default_if_bad; } u16 enum_to_mtu(int mtu) { switch (mtu) { case OPA_MTU_0: return 0; case OPA_MTU_256: return 256; case OPA_MTU_512: return 512; case OPA_MTU_1024: return 1024; case OPA_MTU_2048: return 2048; case OPA_MTU_4096: return 4096; case OPA_MTU_8192: return 8192; case OPA_MTU_10240: return 10240; default: return 0xffff; } } /* * set_mtu - set the MTU * @ppd: the per port data * * We can handle "any" incoming size, the issue here is whether we * need to restrict our outgoing size. We do not deal with what happens * to programs that are already running when the size changes. */ int set_mtu(struct hfi1_pportdata *ppd) { struct hfi1_devdata *dd = ppd->dd; int i, drain, ret = 0, is_up = 0; ppd->ibmtu = 0; for (i = 0; i < ppd->vls_supported; i++) if (ppd->ibmtu < dd->vld[i].mtu) ppd->ibmtu = dd->vld[i].mtu; ppd->ibmaxlen = ppd->ibmtu + lrh_max_header_bytes(ppd->dd); mutex_lock(&ppd->hls_lock); if (ppd->host_link_state == HLS_UP_INIT || ppd->host_link_state == HLS_UP_ARMED || ppd->host_link_state == HLS_UP_ACTIVE) is_up = 1; drain = !is_ax(dd) && is_up; if (drain) /* * MTU is specified per-VL. To ensure that no packet gets * stuck (due, e.g., to the MTU for the packet's VL being * reduced), empty the per-VL FIFOs before adjusting MTU. */ ret = stop_drain_data_vls(dd); if (ret) { dd_dev_err(dd, "%s: cannot stop/drain VLs - refusing to change per-VL MTUs\n", __func__); goto err; } hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_MTU, 0); if (drain) open_fill_data_vls(dd); /* reopen all VLs */ err: mutex_unlock(&ppd->hls_lock); return ret; } int hfi1_set_lid(struct hfi1_pportdata *ppd, u32 lid, u8 lmc) { struct hfi1_devdata *dd = ppd->dd; ppd->lid = lid; ppd->lmc = lmc; hfi1_set_ib_cfg(ppd, HFI1_IB_CFG_LIDLMC, 0); dd_dev_info(dd, "port %u: got a lid: 0x%x\n", ppd->port, lid); return 0; } void shutdown_led_override(struct hfi1_pportdata *ppd) { struct hfi1_devdata *dd = ppd->dd; /* * This pairs with the memory barrier in hfi1_start_led_override to * ensure that we read the correct state of LED beaconing represented * by led_override_timer_active */ smp_rmb(); if (atomic_read(&ppd->led_override_timer_active)) { del_timer_sync(&ppd->led_override_timer); atomic_set(&ppd->led_override_timer_active, 0); /* Ensure the atomic_set is visible to all CPUs */ smp_wmb(); } /* Hand control of the LED to the DC for normal operation */ write_csr(dd, DCC_CFG_LED_CNTRL, 0); } static void run_led_override(struct timer_list *t) { struct hfi1_pportdata *ppd = from_timer(ppd, t, led_override_timer); struct hfi1_devdata *dd = ppd->dd; unsigned long timeout; int phase_idx; if (!(dd->flags & HFI1_INITTED)) return; phase_idx = ppd->led_override_phase & 1; setextled(dd, phase_idx); timeout = ppd->led_override_vals[phase_idx]; /* Set up for next phase */ ppd->led_override_phase = !ppd->led_override_phase; mod_timer(&ppd->led_override_timer, jiffies + timeout); } /* * To have the LED blink in a particular pattern, provide timeon and timeoff * in milliseconds. * To turn off custom blinking and return to normal operation, use * shutdown_led_override() */ void hfi1_start_led_override(struct hfi1_pportdata *ppd, unsigned int timeon, unsigned int timeoff) { if (!(ppd->dd->flags & HFI1_INITTED)) return; /* Convert to jiffies for direct use in timer */ ppd->led_override_vals[0] = msecs_to_jiffies(timeoff); ppd->led_override_vals[1] = msecs_to_jiffies(timeon); /* Arbitrarily start from LED on phase */ ppd->led_override_phase = 1; /* * If the timer has not already been started, do so. Use a "quick" * timeout so the handler will be called soon to look at our request. */ if (!timer_pending(&ppd->led_override_timer)) { timer_setup(&ppd->led_override_timer, run_led_override, 0); ppd->led_override_timer.expires = jiffies + 1; add_timer(&ppd->led_override_timer); atomic_set(&ppd->led_override_timer_active, 1); /* Ensure the atomic_set is visible to all CPUs */ smp_wmb(); } } /** * hfi1_reset_device - reset the chip if possible * @unit: the device to reset * * Whether or not reset is successful, we attempt to re-initialize the chip * (that is, much like a driver unload/reload). We clear the INITTED flag * so that the various entry points will fail until we reinitialize. For * now, we only allow this if no user contexts are open that use chip resources */ int hfi1_reset_device(int unit) { int ret; struct hfi1_devdata *dd = hfi1_lookup(unit); struct hfi1_pportdata *ppd; int pidx; if (!dd) { ret = -ENODEV; goto bail; } dd_dev_info(dd, "Reset on unit %u requested\n", unit); if (!dd->kregbase1 || !(dd->flags & HFI1_PRESENT)) { dd_dev_info(dd, "Invalid unit number %u or not initialized or not present\n", unit); ret = -ENXIO; goto bail; } /* If there are any user/vnic contexts, we cannot reset */ mutex_lock(&hfi1_mutex); if (dd->rcd) if (hfi1_stats.sps_ctxts) { mutex_unlock(&hfi1_mutex); ret = -EBUSY; goto bail; } mutex_unlock(&hfi1_mutex); for (pidx = 0; pidx < dd->num_pports; ++pidx) { ppd = dd->pport + pidx; shutdown_led_override(ppd); } if (dd->flags & HFI1_HAS_SEND_DMA) sdma_exit(dd); hfi1_reset_cpu_counters(dd); ret = hfi1_init(dd, 1); if (ret) dd_dev_err(dd, "Reinitialize unit %u after reset failed with %d\n", unit, ret); else dd_dev_info(dd, "Reinitialized unit %u after resetting\n", unit); bail: return ret; } static inline void hfi1_setup_ib_header(struct hfi1_packet *packet) { packet->hdr = (struct hfi1_ib_message_header *) hfi1_get_msgheader(packet->rcd, packet->rhf_addr); packet->hlen = (u8 *)packet->rhf_addr - (u8 *)packet->hdr; } static int hfi1_bypass_ingress_pkt_check(struct hfi1_packet *packet) { struct hfi1_pportdata *ppd = packet->rcd->ppd; /* slid and dlid cannot be 0 */ if ((!packet->slid) || (!packet->dlid)) return -EINVAL; /* Compare port lid with incoming packet dlid */ if ((!(hfi1_is_16B_mcast(packet->dlid))) && (packet->dlid != opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B))) { if ((packet->dlid & ~((1 << ppd->lmc) - 1)) != ppd->lid) return -EINVAL; } /* No multicast packets with SC15 */ if ((hfi1_is_16B_mcast(packet->dlid)) && (packet->sc == 0xF)) return -EINVAL; /* Packets with permissive DLID always on SC15 */ if ((packet->dlid == opa_get_lid(be32_to_cpu(OPA_LID_PERMISSIVE), 16B)) && (packet->sc != 0xF)) return -EINVAL; return 0; } static int hfi1_setup_9B_packet(struct hfi1_packet *packet) { struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); struct ib_header *hdr; u8 lnh; hfi1_setup_ib_header(packet); hdr = packet->hdr; lnh = ib_get_lnh(hdr); if (lnh == HFI1_LRH_BTH) { packet->ohdr = &hdr->u.oth; packet->grh = NULL; } else if (lnh == HFI1_LRH_GRH) { u32 vtf; packet->ohdr = &hdr->u.l.oth; packet->grh = &hdr->u.l.grh; if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) goto drop; vtf = be32_to_cpu(packet->grh->version_tclass_flow); if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) goto drop; } else { goto drop; } /* Query commonly used fields from packet header */ packet->payload = packet->ebuf; packet->opcode = ib_bth_get_opcode(packet->ohdr); packet->slid = ib_get_slid(hdr); packet->dlid = ib_get_dlid(hdr); if (unlikely((packet->dlid >= be16_to_cpu(IB_MULTICAST_LID_BASE)) && (packet->dlid != be16_to_cpu(IB_LID_PERMISSIVE)))) packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - be16_to_cpu(IB_MULTICAST_LID_BASE); packet->sl = ib_get_sl(hdr); packet->sc = hfi1_9B_get_sc5(hdr, packet->rhf); packet->pad = ib_bth_get_pad(packet->ohdr); packet->extra_byte = 0; packet->pkey = ib_bth_get_pkey(packet->ohdr); packet->migrated = ib_bth_is_migration(packet->ohdr); return 0; drop: ibp->rvp.n_pkt_drops++; return -EINVAL; } static int hfi1_setup_bypass_packet(struct hfi1_packet *packet) { /* * Bypass packets have a different header/payload split * compared to an IB packet. * Current split is set such that 16 bytes of the actual * header is in the header buffer and the remining is in * the eager buffer. We chose 16 since hfi1 driver only * supports 16B bypass packets and we will be able to * receive the entire LRH with such a split. */ struct hfi1_ctxtdata *rcd = packet->rcd; struct hfi1_pportdata *ppd = rcd->ppd; struct hfi1_ibport *ibp = &ppd->ibport_data; u8 l4; packet->hdr = (struct hfi1_16b_header *) hfi1_get_16B_header(packet->rcd, packet->rhf_addr); l4 = hfi1_16B_get_l4(packet->hdr); if (l4 == OPA_16B_L4_IB_LOCAL) { packet->ohdr = packet->ebuf; packet->grh = NULL; packet->opcode = ib_bth_get_opcode(packet->ohdr); packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); /* hdr_len_by_opcode already has an IB LRH factored in */ packet->hlen = hdr_len_by_opcode[packet->opcode] + (LRH_16B_BYTES - LRH_9B_BYTES); packet->migrated = opa_bth_is_migration(packet->ohdr); } else if (l4 == OPA_16B_L4_IB_GLOBAL) { u32 vtf; u8 grh_len = sizeof(struct ib_grh); packet->ohdr = packet->ebuf + grh_len; packet->grh = packet->ebuf; packet->opcode = ib_bth_get_opcode(packet->ohdr); packet->pad = hfi1_16B_bth_get_pad(packet->ohdr); /* hdr_len_by_opcode already has an IB LRH factored in */ packet->hlen = hdr_len_by_opcode[packet->opcode] + (LRH_16B_BYTES - LRH_9B_BYTES) + grh_len; packet->migrated = opa_bth_is_migration(packet->ohdr); if (packet->grh->next_hdr != IB_GRH_NEXT_HDR) goto drop; vtf = be32_to_cpu(packet->grh->version_tclass_flow); if ((vtf >> IB_GRH_VERSION_SHIFT) != IB_GRH_VERSION) goto drop; } else if (l4 == OPA_16B_L4_FM) { packet->mgmt = packet->ebuf; packet->ohdr = NULL; packet->grh = NULL; packet->opcode = IB_OPCODE_UD_SEND_ONLY; packet->pad = OPA_16B_L4_FM_PAD; packet->hlen = OPA_16B_L4_FM_HLEN; packet->migrated = false; } else { goto drop; } /* Query commonly used fields from packet header */ packet->payload = packet->ebuf + packet->hlen - LRH_16B_BYTES; packet->slid = hfi1_16B_get_slid(packet->hdr); packet->dlid = hfi1_16B_get_dlid(packet->hdr); if (unlikely(hfi1_is_16B_mcast(packet->dlid))) packet->dlid += opa_get_mcast_base(OPA_MCAST_NR) - opa_get_lid(opa_get_mcast_base(OPA_MCAST_NR), 16B); packet->sc = hfi1_16B_get_sc(packet->hdr); packet->sl = ibp->sc_to_sl[packet->sc]; packet->extra_byte = SIZE_OF_LT; packet->pkey = hfi1_16B_get_pkey(packet->hdr); if (hfi1_bypass_ingress_pkt_check(packet)) goto drop; return 0; drop: hfi1_cdbg(PKT, "%s: packet dropped\n", __func__); ibp->rvp.n_pkt_drops++; return -EINVAL; } static void show_eflags_errs(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; u32 rte = rhf_rcv_type_err(packet->rhf); dd_dev_err(rcd->dd, "receive context %d: rhf 0x%016llx, errs [ %s%s%s%s%s%s%s] rte 0x%x\n", rcd->ctxt, packet->rhf, packet->rhf & RHF_K_HDR_LEN_ERR ? "k_hdr_len " : "", packet->rhf & RHF_DC_UNC_ERR ? "dc_unc " : "", packet->rhf & RHF_DC_ERR ? "dc " : "", packet->rhf & RHF_TID_ERR ? "tid " : "", packet->rhf & RHF_LEN_ERR ? "len " : "", packet->rhf & RHF_ECC_ERR ? "ecc " : "", packet->rhf & RHF_ICRC_ERR ? "icrc " : "", rte); } void handle_eflags(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; rcv_hdrerr(rcd, rcd->ppd, packet); if (rhf_err_flags(packet->rhf)) show_eflags_errs(packet); } /* * The following functions are called by the interrupt handler. They are type * specific handlers for each packet type. */ static int process_receive_ib(struct hfi1_packet *packet) { if (hfi1_setup_9B_packet(packet)) return RHF_RCV_CONTINUE; if (unlikely(hfi1_dbg_should_fault_rx(packet))) return RHF_RCV_CONTINUE; trace_hfi1_rcvhdr(packet); if (unlikely(rhf_err_flags(packet->rhf))) { handle_eflags(packet); return RHF_RCV_CONTINUE; } hfi1_ib_rcv(packet); return RHF_RCV_CONTINUE; } static inline bool hfi1_is_vnic_packet(struct hfi1_packet *packet) { /* Packet received in VNIC context via RSM */ if (packet->rcd->is_vnic) return true; if ((hfi1_16B_get_l2(packet->ebuf) == OPA_16B_L2_TYPE) && (hfi1_16B_get_l4(packet->ebuf) == OPA_16B_L4_ETHR)) return true; return false; } static int process_receive_bypass(struct hfi1_packet *packet) { struct hfi1_devdata *dd = packet->rcd->dd; if (hfi1_is_vnic_packet(packet)) { hfi1_vnic_bypass_rcv(packet); return RHF_RCV_CONTINUE; } if (hfi1_setup_bypass_packet(packet)) return RHF_RCV_CONTINUE; trace_hfi1_rcvhdr(packet); if (unlikely(rhf_err_flags(packet->rhf))) { handle_eflags(packet); return RHF_RCV_CONTINUE; } if (hfi1_16B_get_l2(packet->hdr) == 0x2) { hfi1_16B_rcv(packet); } else { dd_dev_err(dd, "Bypass packets other than 16B are not supported in normal operation. Dropping\n"); incr_cntr64(&dd->sw_rcv_bypass_packet_errors); if (!(dd->err_info_rcvport.status_and_code & OPA_EI_STATUS_SMASK)) { u64 *flits = packet->ebuf; if (flits && !(packet->rhf & RHF_LEN_ERR)) { dd->err_info_rcvport.packet_flit1 = flits[0]; dd->err_info_rcvport.packet_flit2 = packet->tlen > sizeof(flits[0]) ? flits[1] : 0; } dd->err_info_rcvport.status_and_code |= (OPA_EI_STATUS_SMASK | BAD_L2_ERR); } } return RHF_RCV_CONTINUE; } static int process_receive_error(struct hfi1_packet *packet) { /* KHdrHCRCErr -- KDETH packet with a bad HCRC */ if (unlikely( hfi1_dbg_fault_suppress_err(&packet->rcd->dd->verbs_dev) && (rhf_rcv_type_err(packet->rhf) == RHF_RCV_TYPE_ERROR || packet->rhf & RHF_DC_ERR))) return RHF_RCV_CONTINUE; hfi1_setup_ib_header(packet); handle_eflags(packet); if (unlikely(rhf_err_flags(packet->rhf))) dd_dev_err(packet->rcd->dd, "Unhandled error packet received. Dropping.\n"); return RHF_RCV_CONTINUE; } static int kdeth_process_expected(struct hfi1_packet *packet) { hfi1_setup_9B_packet(packet); if (unlikely(hfi1_dbg_should_fault_rx(packet))) return RHF_RCV_CONTINUE; if (unlikely(rhf_err_flags(packet->rhf))) { struct hfi1_ctxtdata *rcd = packet->rcd; if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet)) return RHF_RCV_CONTINUE; } hfi1_kdeth_expected_rcv(packet); return RHF_RCV_CONTINUE; } static int kdeth_process_eager(struct hfi1_packet *packet) { hfi1_setup_9B_packet(packet); if (unlikely(hfi1_dbg_should_fault_rx(packet))) return RHF_RCV_CONTINUE; trace_hfi1_rcvhdr(packet); if (unlikely(rhf_err_flags(packet->rhf))) { struct hfi1_ctxtdata *rcd = packet->rcd; show_eflags_errs(packet); if (hfi1_handle_kdeth_eflags(rcd, rcd->ppd, packet)) return RHF_RCV_CONTINUE; } hfi1_kdeth_eager_rcv(packet); return RHF_RCV_CONTINUE; } static int process_receive_invalid(struct hfi1_packet *packet) { dd_dev_err(packet->rcd->dd, "Invalid packet type %d. Dropping\n", rhf_rcv_type(packet->rhf)); return RHF_RCV_CONTINUE; } void seqfile_dump_rcd(struct seq_file *s, struct hfi1_ctxtdata *rcd) { struct hfi1_packet packet; struct ps_mdata mdata; seq_printf(s, "Rcd %u: RcvHdr cnt %u entsize %u %s head %llu tail %llu\n", rcd->ctxt, rcd->rcvhdrq_cnt, rcd->rcvhdrqentsize, HFI1_CAP_KGET_MASK(rcd->flags, DMA_RTAIL) ? "dma_rtail" : "nodma_rtail", read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_HEAD) & RCV_HDR_HEAD_HEAD_MASK, read_uctxt_csr(rcd->dd, rcd->ctxt, RCV_HDR_TAIL)); init_packet(rcd, &packet); init_ps_mdata(&mdata, &packet); while (1) { __le32 *rhf_addr = (__le32 *)rcd->rcvhdrq + mdata.ps_head + rcd->rhf_offset; struct ib_header *hdr; u64 rhf = rhf_to_cpu(rhf_addr); u32 etype = rhf_rcv_type(rhf), qpn; u8 opcode; u32 psn; u8 lnh; if (ps_done(&mdata, rhf, rcd)) break; if (ps_skip(&mdata, rhf, rcd)) goto next; if (etype > RHF_RCV_TYPE_IB) goto next; packet.hdr = hfi1_get_msgheader(rcd, rhf_addr); hdr = packet.hdr; lnh = be16_to_cpu(hdr->lrh[0]) & 3; if (lnh == HFI1_LRH_BTH) packet.ohdr = &hdr->u.oth; else if (lnh == HFI1_LRH_GRH) packet.ohdr = &hdr->u.l.oth; else goto next; /* just in case */ opcode = (be32_to_cpu(packet.ohdr->bth[0]) >> 24); qpn = be32_to_cpu(packet.ohdr->bth[1]) & RVT_QPN_MASK; psn = mask_psn(be32_to_cpu(packet.ohdr->bth[2])); seq_printf(s, "\tEnt %u: opcode 0x%x, qpn 0x%x, psn 0x%x\n", mdata.ps_head, opcode, qpn, psn); next: update_ps_mdata(&mdata, rcd); } } const rhf_rcv_function_ptr normal_rhf_rcv_functions[] = { [RHF_RCV_TYPE_EXPECTED] = kdeth_process_expected, [RHF_RCV_TYPE_EAGER] = kdeth_process_eager, [RHF_RCV_TYPE_IB] = process_receive_ib, [RHF_RCV_TYPE_ERROR] = process_receive_error, [RHF_RCV_TYPE_BYPASS] = process_receive_bypass, [RHF_RCV_TYPE_INVALID5] = process_receive_invalid, [RHF_RCV_TYPE_INVALID6] = process_receive_invalid, [RHF_RCV_TYPE_INVALID7] = process_receive_invalid, };