/* * Copyright (c) 2016 Hisilicon Limited. * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "hns_roce_device.h" #include int hns_roce_bitmap_alloc(struct hns_roce_bitmap *bitmap, unsigned long *obj) { int ret = 0; spin_lock(&bitmap->lock); *obj = find_next_zero_bit(bitmap->table, bitmap->max, bitmap->last); if (*obj >= bitmap->max) { bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top) & bitmap->mask; *obj = find_first_zero_bit(bitmap->table, bitmap->max); } if (*obj < bitmap->max) { set_bit(*obj, bitmap->table); bitmap->last = (*obj + 1); if (bitmap->last == bitmap->max) bitmap->last = 0; *obj |= bitmap->top; } else { ret = -EINVAL; } spin_unlock(&bitmap->lock); return ret; } void hns_roce_bitmap_free(struct hns_roce_bitmap *bitmap, unsigned long obj, int rr) { hns_roce_bitmap_free_range(bitmap, obj, 1, rr); } int hns_roce_bitmap_alloc_range(struct hns_roce_bitmap *bitmap, int cnt, int align, unsigned long *obj) { int ret = 0; int i; if (likely(cnt == 1 && align == 1)) return hns_roce_bitmap_alloc(bitmap, obj); spin_lock(&bitmap->lock); *obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max, bitmap->last, cnt, align - 1); if (*obj >= bitmap->max) { bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top) & bitmap->mask; *obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max, 0, cnt, align - 1); } if (*obj < bitmap->max) { for (i = 0; i < cnt; i++) set_bit(*obj + i, bitmap->table); if (*obj == bitmap->last) { bitmap->last = (*obj + cnt); if (bitmap->last >= bitmap->max) bitmap->last = 0; } *obj |= bitmap->top; } else { ret = -EINVAL; } spin_unlock(&bitmap->lock); return ret; } void hns_roce_bitmap_free_range(struct hns_roce_bitmap *bitmap, unsigned long obj, int cnt, int rr) { int i; obj &= bitmap->max + bitmap->reserved_top - 1; spin_lock(&bitmap->lock); for (i = 0; i < cnt; i++) clear_bit(obj + i, bitmap->table); if (!rr) bitmap->last = min(bitmap->last, obj); bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top) & bitmap->mask; spin_unlock(&bitmap->lock); } int hns_roce_bitmap_init(struct hns_roce_bitmap *bitmap, u32 num, u32 mask, u32 reserved_bot, u32 reserved_top) { u32 i; if (num != roundup_pow_of_two(num)) return -EINVAL; bitmap->last = 0; bitmap->top = 0; bitmap->max = num - reserved_top; bitmap->mask = mask; bitmap->reserved_top = reserved_top; spin_lock_init(&bitmap->lock); bitmap->table = kcalloc(BITS_TO_LONGS(bitmap->max), sizeof(long), GFP_KERNEL); if (!bitmap->table) return -ENOMEM; for (i = 0; i < reserved_bot; ++i) set_bit(i, bitmap->table); return 0; } void hns_roce_bitmap_cleanup(struct hns_roce_bitmap *bitmap) { kfree(bitmap->table); } void hns_roce_buf_free(struct hns_roce_dev *hr_dev, struct hns_roce_buf *buf) { struct hns_roce_buf_list *trunks; u32 i; if (!buf) return; trunks = buf->trunk_list; if (trunks) { buf->trunk_list = NULL; for (i = 0; i < buf->ntrunks; i++) dma_free_coherent(hr_dev->dev, 1 << buf->trunk_shift, trunks[i].buf, trunks[i].map); kfree(trunks); } kfree(buf); } /* * Allocate the dma buffer for storing ROCEE table entries * * @size: required size * @page_shift: the unit size in a continuous dma address range * @flags: HNS_ROCE_BUF_ flags to control the allocation flow. */ struct hns_roce_buf *hns_roce_buf_alloc(struct hns_roce_dev *hr_dev, u32 size, u32 page_shift, u32 flags) { u32 trunk_size, page_size, alloced_size; struct hns_roce_buf_list *trunks; struct hns_roce_buf *buf; gfp_t gfp_flags; u32 ntrunk, i; /* The minimum shift of the page accessed by hw is HNS_HW_PAGE_SHIFT */ if (WARN_ON(page_shift < HNS_HW_PAGE_SHIFT)) return ERR_PTR(-EINVAL); gfp_flags = (flags & HNS_ROCE_BUF_NOSLEEP) ? GFP_ATOMIC : GFP_KERNEL; buf = kzalloc(sizeof(*buf), gfp_flags); if (!buf) return ERR_PTR(-ENOMEM); buf->page_shift = page_shift; page_size = 1 << buf->page_shift; /* Calc the trunk size and num by required size and page_shift */ if (flags & HNS_ROCE_BUF_DIRECT) { buf->trunk_shift = ilog2(ALIGN(size, PAGE_SIZE)); ntrunk = 1; } else { buf->trunk_shift = ilog2(ALIGN(page_size, PAGE_SIZE)); ntrunk = DIV_ROUND_UP(size, 1 << buf->trunk_shift); } trunks = kcalloc(ntrunk, sizeof(*trunks), gfp_flags); if (!trunks) { kfree(buf); return ERR_PTR(-ENOMEM); } trunk_size = 1 << buf->trunk_shift; alloced_size = 0; for (i = 0; i < ntrunk; i++) { trunks[i].buf = dma_alloc_coherent(hr_dev->dev, trunk_size, &trunks[i].map, gfp_flags); if (!trunks[i].buf) break; alloced_size += trunk_size; } buf->ntrunks = i; /* In nofail mode, it's only failed when the alloced size is 0 */ if ((flags & HNS_ROCE_BUF_NOFAIL) ? i == 0 : i != ntrunk) { for (i = 0; i < buf->ntrunks; i++) dma_free_coherent(hr_dev->dev, trunk_size, trunks[i].buf, trunks[i].map); kfree(trunks); kfree(buf); return ERR_PTR(-ENOMEM); } buf->npages = DIV_ROUND_UP(alloced_size, page_size); buf->trunk_list = trunks; return buf; } int hns_roce_get_kmem_bufs(struct hns_roce_dev *hr_dev, dma_addr_t *bufs, int buf_cnt, int start, struct hns_roce_buf *buf) { int i, end; int total; end = start + buf_cnt; if (end > buf->npages) { dev_err(hr_dev->dev, "failed to check kmem bufs, end %d + %d total %u!\n", start, buf_cnt, buf->npages); return -EINVAL; } total = 0; for (i = start; i < end; i++) bufs[total++] = hns_roce_buf_page(buf, i); return total; } int hns_roce_get_umem_bufs(struct hns_roce_dev *hr_dev, dma_addr_t *bufs, int buf_cnt, int start, struct ib_umem *umem, unsigned int page_shift) { struct ib_block_iter biter; int total = 0; int idx = 0; u64 addr; if (page_shift < HNS_HW_PAGE_SHIFT) { dev_err(hr_dev->dev, "failed to check umem page shift %u!\n", page_shift); return -EINVAL; } /* convert system page cnt to hw page cnt */ rdma_umem_for_each_dma_block(umem, &biter, 1 << page_shift) { addr = rdma_block_iter_dma_address(&biter); if (idx >= start) { bufs[total++] = addr; if (total >= buf_cnt) goto done; } idx++; } done: return total; } void hns_roce_cleanup_bitmap(struct hns_roce_dev *hr_dev) { if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_XRC) hns_roce_cleanup_xrcd_table(hr_dev); if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_SRQ) hns_roce_cleanup_srq_table(hr_dev); hns_roce_cleanup_qp_table(hr_dev); hns_roce_cleanup_cq_table(hr_dev); hns_roce_cleanup_mr_table(hr_dev); hns_roce_cleanup_pd_table(hr_dev); hns_roce_cleanup_uar_table(hr_dev); }