/* * Copyright (c) 2016 Hisilicon Limited. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "hns_roce_common.h" #include "hns_roce_device.h" #include "hns_roce_eq.h" static void eq_set_cons_index(struct hns_roce_eq *eq, int req_not) { roce_raw_write((eq->cons_index & CONS_INDEX_MASK) | (req_not << eq->log_entries), eq->doorbell); /* Memory barrier */ mb(); } static struct hns_roce_aeqe *get_aeqe(struct hns_roce_eq *eq, u32 entry) { unsigned long off = (entry & (eq->entries - 1)) * HNS_ROCE_AEQ_ENTRY_SIZE; return (struct hns_roce_aeqe *)((u8 *) (eq->buf_list[off / HNS_ROCE_BA_SIZE].buf) + off % HNS_ROCE_BA_SIZE); } static struct hns_roce_aeqe *next_aeqe_sw(struct hns_roce_eq *eq) { struct hns_roce_aeqe *aeqe = get_aeqe(eq, eq->cons_index); return (roce_get_bit(aeqe->asyn, HNS_ROCE_AEQE_U32_4_OWNER_S) ^ !!(eq->cons_index & eq->entries)) ? aeqe : NULL; } static void hns_roce_wq_catas_err_handle(struct hns_roce_dev *hr_dev, struct hns_roce_aeqe *aeqe, int qpn) { struct device *dev = &hr_dev->pdev->dev; dev_warn(dev, "Local Work Queue Catastrophic Error.\n"); switch (roce_get_field(aeqe->asyn, HNS_ROCE_AEQE_U32_4_EVENT_SUB_TYPE_M, HNS_ROCE_AEQE_U32_4_EVENT_SUB_TYPE_S)) { case HNS_ROCE_LWQCE_QPC_ERROR: dev_warn(dev, "QP %d, QPC error.\n", qpn); break; case HNS_ROCE_LWQCE_MTU_ERROR: dev_warn(dev, "QP %d, MTU error.\n", qpn); break; case HNS_ROCE_LWQCE_WQE_BA_ADDR_ERROR: dev_warn(dev, "QP %d, WQE BA addr error.\n", qpn); break; case HNS_ROCE_LWQCE_WQE_ADDR_ERROR: dev_warn(dev, "QP %d, WQE addr error.\n", qpn); break; case HNS_ROCE_LWQCE_SQ_WQE_SHIFT_ERROR: dev_warn(dev, "QP %d, WQE shift error\n", qpn); break; case HNS_ROCE_LWQCE_SL_ERROR: dev_warn(dev, "QP %d, SL error.\n", qpn); break; case HNS_ROCE_LWQCE_PORT_ERROR: dev_warn(dev, "QP %d, port error.\n", qpn); break; default: break; } } static void hns_roce_local_wq_access_err_handle(struct hns_roce_dev *hr_dev, struct hns_roce_aeqe *aeqe, int qpn) { struct device *dev = &hr_dev->pdev->dev; dev_warn(dev, "Local Access Violation Work Queue Error.\n"); switch (roce_get_field(aeqe->asyn, HNS_ROCE_AEQE_U32_4_EVENT_SUB_TYPE_M, HNS_ROCE_AEQE_U32_4_EVENT_SUB_TYPE_S)) { case HNS_ROCE_LAVWQE_R_KEY_VIOLATION: dev_warn(dev, "QP %d, R_key violation.\n", qpn); break; case HNS_ROCE_LAVWQE_LENGTH_ERROR: dev_warn(dev, "QP %d, length error.\n", qpn); break; case HNS_ROCE_LAVWQE_VA_ERROR: dev_warn(dev, "QP %d, VA error.\n", qpn); break; case HNS_ROCE_LAVWQE_PD_ERROR: dev_err(dev, "QP %d, PD error.\n", qpn); break; case HNS_ROCE_LAVWQE_RW_ACC_ERROR: dev_warn(dev, "QP %d, rw acc error.\n", qpn); break; case HNS_ROCE_LAVWQE_KEY_STATE_ERROR: dev_warn(dev, "QP %d, key state error.\n", qpn); break; case HNS_ROCE_LAVWQE_MR_OPERATION_ERROR: dev_warn(dev, "QP %d, MR operation error.\n", qpn); break; default: break; } } static void hns_roce_qp_err_handle(struct hns_roce_dev *hr_dev, struct hns_roce_aeqe *aeqe, int event_type) { struct device *dev = &hr_dev->pdev->dev; int phy_port; int qpn; qpn = roce_get_field(aeqe->event.qp_event.qp, HNS_ROCE_AEQE_EVENT_QP_EVENT_QP_QPN_M, HNS_ROCE_AEQE_EVENT_QP_EVENT_QP_QPN_S); phy_port = roce_get_field(aeqe->event.qp_event.qp, HNS_ROCE_AEQE_EVENT_QP_EVENT_PORT_NUM_M, HNS_ROCE_AEQE_EVENT_QP_EVENT_PORT_NUM_S); if (qpn <= 1) qpn = HNS_ROCE_MAX_PORTS * qpn + phy_port; switch (event_type) { case HNS_ROCE_EVENT_TYPE_INV_REQ_LOCAL_WQ_ERROR: dev_warn(dev, "Invalid Req Local Work Queue Error.\n" "QP %d, phy_port %d.\n", qpn, phy_port); break; case HNS_ROCE_EVENT_TYPE_WQ_CATAS_ERROR: hns_roce_wq_catas_err_handle(hr_dev, aeqe, qpn); break; case HNS_ROCE_EVENT_TYPE_LOCAL_WQ_ACCESS_ERROR: hns_roce_local_wq_access_err_handle(hr_dev, aeqe, qpn); break; default: break; } hns_roce_qp_event(hr_dev, qpn, event_type); } static void hns_roce_cq_err_handle(struct hns_roce_dev *hr_dev, struct hns_roce_aeqe *aeqe, int event_type) { struct device *dev = &hr_dev->pdev->dev; u32 cqn; cqn = le32_to_cpu(roce_get_field(aeqe->event.cq_event.cq, HNS_ROCE_AEQE_EVENT_CQ_EVENT_CQ_CQN_M, HNS_ROCE_AEQE_EVENT_CQ_EVENT_CQ_CQN_S)); switch (event_type) { case HNS_ROCE_EVENT_TYPE_CQ_ACCESS_ERROR: dev_warn(dev, "CQ 0x%x access err.\n", cqn); break; case HNS_ROCE_EVENT_TYPE_CQ_OVERFLOW: dev_warn(dev, "CQ 0x%x overflow\n", cqn); break; case HNS_ROCE_EVENT_TYPE_CQ_ID_INVALID: dev_warn(dev, "CQ 0x%x ID invalid.\n", cqn); break; default: break; } hns_roce_cq_event(hr_dev, cqn, event_type); } static void hns_roce_db_overflow_handle(struct hns_roce_dev *hr_dev, struct hns_roce_aeqe *aeqe) { struct device *dev = &hr_dev->pdev->dev; switch (roce_get_field(aeqe->asyn, HNS_ROCE_AEQE_U32_4_EVENT_SUB_TYPE_M, HNS_ROCE_AEQE_U32_4_EVENT_SUB_TYPE_S)) { case HNS_ROCE_DB_SUBTYPE_SDB_OVF: dev_warn(dev, "SDB overflow.\n"); break; case HNS_ROCE_DB_SUBTYPE_SDB_ALM_OVF: dev_warn(dev, "SDB almost overflow.\n"); break; case HNS_ROCE_DB_SUBTYPE_SDB_ALM_EMP: dev_warn(dev, "SDB almost empty.\n"); break; case HNS_ROCE_DB_SUBTYPE_ODB_OVF: dev_warn(dev, "ODB overflow.\n"); break; case HNS_ROCE_DB_SUBTYPE_ODB_ALM_OVF: dev_warn(dev, "ODB almost overflow.\n"); break; case HNS_ROCE_DB_SUBTYPE_ODB_ALM_EMP: dev_warn(dev, "SDB almost empty.\n"); break; default: break; } } static int hns_roce_aeq_int(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { struct device *dev = &hr_dev->pdev->dev; struct hns_roce_aeqe *aeqe; int aeqes_found = 0; int event_type; while ((aeqe = next_aeqe_sw(eq))) { dev_dbg(dev, "aeqe = %p, aeqe->asyn.event_type = 0x%lx\n", aeqe, roce_get_field(aeqe->asyn, HNS_ROCE_AEQE_U32_4_EVENT_TYPE_M, HNS_ROCE_AEQE_U32_4_EVENT_TYPE_S)); /* Memory barrier */ rmb(); event_type = roce_get_field(aeqe->asyn, HNS_ROCE_AEQE_U32_4_EVENT_TYPE_M, HNS_ROCE_AEQE_U32_4_EVENT_TYPE_S); switch (event_type) { case HNS_ROCE_EVENT_TYPE_PATH_MIG: dev_warn(dev, "PATH MIG not supported\n"); break; case HNS_ROCE_EVENT_TYPE_COMM_EST: dev_warn(dev, "COMMUNICATION established\n"); break; case HNS_ROCE_EVENT_TYPE_SQ_DRAINED: dev_warn(dev, "SQ DRAINED not supported\n"); break; case HNS_ROCE_EVENT_TYPE_PATH_MIG_FAILED: dev_warn(dev, "PATH MIG failed\n"); break; case HNS_ROCE_EVENT_TYPE_INV_REQ_LOCAL_WQ_ERROR: case HNS_ROCE_EVENT_TYPE_WQ_CATAS_ERROR: case HNS_ROCE_EVENT_TYPE_LOCAL_WQ_ACCESS_ERROR: hns_roce_qp_err_handle(hr_dev, aeqe, event_type); break; case HNS_ROCE_EVENT_TYPE_SRQ_LIMIT_REACH: case HNS_ROCE_EVENT_TYPE_SRQ_CATAS_ERROR: case HNS_ROCE_EVENT_TYPE_SRQ_LAST_WQE_REACH: dev_warn(dev, "SRQ not support!\n"); break; case HNS_ROCE_EVENT_TYPE_CQ_ACCESS_ERROR: case HNS_ROCE_EVENT_TYPE_CQ_OVERFLOW: case HNS_ROCE_EVENT_TYPE_CQ_ID_INVALID: hns_roce_cq_err_handle(hr_dev, aeqe, event_type); break; case HNS_ROCE_EVENT_TYPE_PORT_CHANGE: dev_warn(dev, "port change.\n"); break; case HNS_ROCE_EVENT_TYPE_MB: hns_roce_cmd_event(hr_dev, le16_to_cpu(aeqe->event.cmd.token), aeqe->event.cmd.status, le64_to_cpu(aeqe->event.cmd.out_param )); break; case HNS_ROCE_EVENT_TYPE_DB_OVERFLOW: hns_roce_db_overflow_handle(hr_dev, aeqe); break; case HNS_ROCE_EVENT_TYPE_CEQ_OVERFLOW: dev_warn(dev, "CEQ 0x%lx overflow.\n", roce_get_field(aeqe->event.ce_event.ceqe, HNS_ROCE_AEQE_EVENT_CE_EVENT_CEQE_CEQN_M, HNS_ROCE_AEQE_EVENT_CE_EVENT_CEQE_CEQN_S)); break; default: dev_warn(dev, "Unhandled event %d on EQ %d at index %u\n", event_type, eq->eqn, eq->cons_index); break; } eq->cons_index++; aeqes_found = 1; if (eq->cons_index > 2 * hr_dev->caps.aeqe_depth - 1) { dev_warn(dev, "cons_index overflow, set back to zero\n" ); eq->cons_index = 0; } } eq_set_cons_index(eq, 0); return aeqes_found; } static struct hns_roce_ceqe *get_ceqe(struct hns_roce_eq *eq, u32 entry) { unsigned long off = (entry & (eq->entries - 1)) * HNS_ROCE_CEQ_ENTRY_SIZE; return (struct hns_roce_ceqe *)((u8 *) (eq->buf_list[off / HNS_ROCE_BA_SIZE].buf) + off % HNS_ROCE_BA_SIZE); } static struct hns_roce_ceqe *next_ceqe_sw(struct hns_roce_eq *eq) { struct hns_roce_ceqe *ceqe = get_ceqe(eq, eq->cons_index); return (!!(roce_get_bit(ceqe->ceqe.comp, HNS_ROCE_CEQE_CEQE_COMP_OWNER_S))) ^ (!!(eq->cons_index & eq->entries)) ? ceqe : NULL; } static int hns_roce_ceq_int(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { struct hns_roce_ceqe *ceqe; int ceqes_found = 0; u32 cqn; while ((ceqe = next_ceqe_sw(eq))) { /* Memory barrier */ rmb(); cqn = roce_get_field(ceqe->ceqe.comp, HNS_ROCE_CEQE_CEQE_COMP_CQN_M, HNS_ROCE_CEQE_CEQE_COMP_CQN_S); hns_roce_cq_completion(hr_dev, cqn); ++eq->cons_index; ceqes_found = 1; if (eq->cons_index > 2 * hr_dev->caps.ceqe_depth[eq->eqn] - 1) { dev_warn(&eq->hr_dev->pdev->dev, "cons_index overflow, set back to zero\n"); eq->cons_index = 0; } } eq_set_cons_index(eq, 0); return ceqes_found; } static int hns_roce_aeq_ovf_int(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { struct device *dev = &eq->hr_dev->pdev->dev; int eqovf_found = 0; u32 caepaemask_val; u32 cealmovf_val; u32 caepaest_val; u32 aeshift_val; u32 ceshift_val; u32 cemask_val; int i = 0; /** * AEQ overflow ECC mult bit err CEQ overflow alarm * must clear interrupt, mask irq, clear irq, cancel mask operation */ aeshift_val = roce_read(hr_dev, ROCEE_CAEP_AEQC_AEQE_SHIFT_REG); if (roce_get_bit(aeshift_val, ROCEE_CAEP_AEQC_AEQE_SHIFT_CAEP_AEQ_ALM_OVF_INT_ST_S) == 1) { dev_warn(dev, "AEQ overflow!\n"); /* Set mask */ caepaemask_val = roce_read(hr_dev, ROCEE_CAEP_AE_MASK_REG); roce_set_bit(caepaemask_val, ROCEE_CAEP_AE_MASK_CAEP_AEQ_ALM_OVF_MASK_S, HNS_ROCE_INT_MASK_ENABLE); roce_write(hr_dev, ROCEE_CAEP_AE_MASK_REG, caepaemask_val); /* Clear int state(INT_WC : write 1 clear) */ caepaest_val = roce_read(hr_dev, ROCEE_CAEP_AE_ST_REG); roce_set_bit(caepaest_val, ROCEE_CAEP_AE_ST_CAEP_AEQ_ALM_OVF_S, 1); roce_write(hr_dev, ROCEE_CAEP_AE_ST_REG, caepaest_val); /* Clear mask */ caepaemask_val = roce_read(hr_dev, ROCEE_CAEP_AE_MASK_REG); roce_set_bit(caepaemask_val, ROCEE_CAEP_AE_MASK_CAEP_AEQ_ALM_OVF_MASK_S, HNS_ROCE_INT_MASK_DISABLE); roce_write(hr_dev, ROCEE_CAEP_AE_MASK_REG, caepaemask_val); } /* CEQ almost overflow */ for (i = 0; i < hr_dev->caps.num_comp_vectors; i++) { ceshift_val = roce_read(hr_dev, ROCEE_CAEP_CEQC_SHIFT_0_REG + i * CEQ_REG_OFFSET); if (roce_get_bit(ceshift_val, ROCEE_CAEP_CEQC_SHIFT_CAEP_CEQ_ALM_OVF_INT_ST_S) == 1) { dev_warn(dev, "CEQ[%d] almost overflow!\n", i); eqovf_found++; /* Set mask */ cemask_val = roce_read(hr_dev, ROCEE_CAEP_CE_IRQ_MASK_0_REG + i * CEQ_REG_OFFSET); roce_set_bit(cemask_val, ROCEE_CAEP_CE_IRQ_MASK_CAEP_CEQ_ALM_OVF_MASK_S, HNS_ROCE_INT_MASK_ENABLE); roce_write(hr_dev, ROCEE_CAEP_CE_IRQ_MASK_0_REG + i * CEQ_REG_OFFSET, cemask_val); /* Clear int state(INT_WC : write 1 clear) */ cealmovf_val = roce_read(hr_dev, ROCEE_CAEP_CEQ_ALM_OVF_0_REG + i * CEQ_REG_OFFSET); roce_set_bit(cealmovf_val, ROCEE_CAEP_CEQ_ALM_OVF_CAEP_CEQ_ALM_OVF_S, 1); roce_write(hr_dev, ROCEE_CAEP_CEQ_ALM_OVF_0_REG + i * CEQ_REG_OFFSET, cealmovf_val); /* Clear mask */ cemask_val = roce_read(hr_dev, ROCEE_CAEP_CE_IRQ_MASK_0_REG + i * CEQ_REG_OFFSET); roce_set_bit(cemask_val, ROCEE_CAEP_CE_IRQ_MASK_CAEP_CEQ_ALM_OVF_MASK_S, HNS_ROCE_INT_MASK_DISABLE); roce_write(hr_dev, ROCEE_CAEP_CE_IRQ_MASK_0_REG + i * CEQ_REG_OFFSET, cemask_val); } } /* ECC multi-bit error alarm */ dev_warn(dev, "ECC UCERR ALARM: 0x%x, 0x%x, 0x%x\n", roce_read(hr_dev, ROCEE_ECC_UCERR_ALM0_REG), roce_read(hr_dev, ROCEE_ECC_UCERR_ALM1_REG), roce_read(hr_dev, ROCEE_ECC_UCERR_ALM2_REG)); dev_warn(dev, "ECC CERR ALARM: 0x%x, 0x%x, 0x%x\n", roce_read(hr_dev, ROCEE_ECC_CERR_ALM0_REG), roce_read(hr_dev, ROCEE_ECC_CERR_ALM1_REG), roce_read(hr_dev, ROCEE_ECC_CERR_ALM2_REG)); return eqovf_found; } static int hns_roce_eq_int(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { int eqes_found = 0; if (likely(eq->type_flag == HNS_ROCE_CEQ)) /* CEQ irq routine, CEQ is pulse irq, not clear */ eqes_found = hns_roce_ceq_int(hr_dev, eq); else if (likely(eq->type_flag == HNS_ROCE_AEQ)) /* AEQ irq routine, AEQ is pulse irq, not clear */ eqes_found = hns_roce_aeq_int(hr_dev, eq); else /* AEQ queue overflow irq */ eqes_found = hns_roce_aeq_ovf_int(hr_dev, eq); return eqes_found; } static irqreturn_t hns_roce_msi_x_interrupt(int irq, void *eq_ptr) { int int_work = 0; struct hns_roce_eq *eq = eq_ptr; struct hns_roce_dev *hr_dev = eq->hr_dev; int_work = hns_roce_eq_int(hr_dev, eq); return IRQ_RETVAL(int_work); } static void hns_roce_enable_eq(struct hns_roce_dev *hr_dev, int eq_num, int enable_flag) { void __iomem *eqc = hr_dev->eq_table.eqc_base[eq_num]; u32 val; val = readl(eqc); if (enable_flag) roce_set_field(val, ROCEE_CAEP_AEQC_AEQE_SHIFT_CAEP_AEQC_STATE_M, ROCEE_CAEP_AEQC_AEQE_SHIFT_CAEP_AEQC_STATE_S, HNS_ROCE_EQ_STAT_VALID); else roce_set_field(val, ROCEE_CAEP_AEQC_AEQE_SHIFT_CAEP_AEQC_STATE_M, ROCEE_CAEP_AEQC_AEQE_SHIFT_CAEP_AEQC_STATE_S, HNS_ROCE_EQ_STAT_INVALID); writel(val, eqc); } static int hns_roce_create_eq(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { void __iomem *eqc = hr_dev->eq_table.eqc_base[eq->eqn]; struct device *dev = &hr_dev->pdev->dev; dma_addr_t tmp_dma_addr; u32 eqconsindx_val = 0; u32 eqcuridx_val = 0; u32 eqshift_val = 0; int num_bas = 0; int ret; int i; num_bas = (PAGE_ALIGN(eq->entries * eq->eqe_size) + HNS_ROCE_BA_SIZE - 1) / HNS_ROCE_BA_SIZE; if ((eq->entries * eq->eqe_size) > HNS_ROCE_BA_SIZE) { dev_err(dev, "[error]eq buf %d gt ba size(%d) need bas=%d\n", (eq->entries * eq->eqe_size), HNS_ROCE_BA_SIZE, num_bas); return -EINVAL; } eq->buf_list = kcalloc(num_bas, sizeof(*eq->buf_list), GFP_KERNEL); if (!eq->buf_list) return -ENOMEM; for (i = 0; i < num_bas; ++i) { eq->buf_list[i].buf = dma_alloc_coherent(dev, HNS_ROCE_BA_SIZE, &tmp_dma_addr, GFP_KERNEL); if (!eq->buf_list[i].buf) { ret = -ENOMEM; goto err_out_free_pages; } eq->buf_list[i].map = tmp_dma_addr; memset(eq->buf_list[i].buf, 0, HNS_ROCE_BA_SIZE); } eq->cons_index = 0; roce_set_field(eqshift_val, ROCEE_CAEP_AEQC_AEQE_SHIFT_CAEP_AEQC_STATE_M, ROCEE_CAEP_AEQC_AEQE_SHIFT_CAEP_AEQC_STATE_S, HNS_ROCE_EQ_STAT_INVALID); roce_set_field(eqshift_val, ROCEE_CAEP_AEQC_AEQE_SHIFT_CAEP_AEQC_AEQE_SHIFT_M, ROCEE_CAEP_AEQC_AEQE_SHIFT_CAEP_AEQC_AEQE_SHIFT_S, eq->log_entries); writel(eqshift_val, eqc); /* Configure eq extended address 12~44bit */ writel((u32)(eq->buf_list[0].map >> 12), (u8 *)eqc + 4); /* * Configure eq extended address 45~49 bit. * 44 = 32 + 12, When evaluating addr to hardware, shift 12 because of * using 4K page, and shift more 32 because of * caculating the high 32 bit value evaluated to hardware. */ roce_set_field(eqcuridx_val, ROCEE_CAEP_AEQE_CUR_IDX_CAEP_AEQ_BT_H_M, ROCEE_CAEP_AEQE_CUR_IDX_CAEP_AEQ_BT_H_S, eq->buf_list[0].map >> 44); roce_set_field(eqcuridx_val, ROCEE_CAEP_AEQE_CUR_IDX_CAEP_AEQE_CUR_IDX_M, ROCEE_CAEP_AEQE_CUR_IDX_CAEP_AEQE_CUR_IDX_S, 0); writel(eqcuridx_val, (u8 *)eqc + 8); /* Configure eq consumer index */ roce_set_field(eqconsindx_val, ROCEE_CAEP_AEQE_CONS_IDX_CAEP_AEQE_CONS_IDX_M, ROCEE_CAEP_AEQE_CONS_IDX_CAEP_AEQE_CONS_IDX_S, 0); writel(eqconsindx_val, (u8 *)eqc + 0xc); return 0; err_out_free_pages: for (i = i - 1; i >= 0; i--) dma_free_coherent(dev, HNS_ROCE_BA_SIZE, eq->buf_list[i].buf, eq->buf_list[i].map); kfree(eq->buf_list); return ret; } static void hns_roce_free_eq(struct hns_roce_dev *hr_dev, struct hns_roce_eq *eq) { int i = 0; int npages = (PAGE_ALIGN(eq->eqe_size * eq->entries) + HNS_ROCE_BA_SIZE - 1) / HNS_ROCE_BA_SIZE; if (!eq->buf_list) return; for (i = 0; i < npages; ++i) dma_free_coherent(&hr_dev->pdev->dev, HNS_ROCE_BA_SIZE, eq->buf_list[i].buf, eq->buf_list[i].map); kfree(eq->buf_list); } static void hns_roce_int_mask_en(struct hns_roce_dev *hr_dev) { int i = 0; u32 aemask_val; int masken = 0; /* AEQ INT */ aemask_val = roce_read(hr_dev, ROCEE_CAEP_AE_MASK_REG); roce_set_bit(aemask_val, ROCEE_CAEP_AE_MASK_CAEP_AEQ_ALM_OVF_MASK_S, masken); roce_set_bit(aemask_val, ROCEE_CAEP_AE_MASK_CAEP_AE_IRQ_MASK_S, masken); roce_write(hr_dev, ROCEE_CAEP_AE_MASK_REG, aemask_val); /* CEQ INT */ for (i = 0; i < hr_dev->caps.num_comp_vectors; i++) { /* IRQ mask */ roce_write(hr_dev, ROCEE_CAEP_CE_IRQ_MASK_0_REG + i * CEQ_REG_OFFSET, masken); } } static void hns_roce_ce_int_default_cfg(struct hns_roce_dev *hr_dev) { /* Configure ce int interval */ roce_write(hr_dev, ROCEE_CAEP_CE_INTERVAL_CFG_REG, HNS_ROCE_CEQ_DEFAULT_INTERVAL); /* Configure ce int burst num */ roce_write(hr_dev, ROCEE_CAEP_CE_BURST_NUM_CFG_REG, HNS_ROCE_CEQ_DEFAULT_BURST_NUM); } int hns_roce_init_eq_table(struct hns_roce_dev *hr_dev) { struct hns_roce_eq_table *eq_table = &hr_dev->eq_table; struct device *dev = &hr_dev->pdev->dev; struct hns_roce_eq *eq = NULL; int eq_num = 0; int ret = 0; int i = 0; int j = 0; eq_num = hr_dev->caps.num_comp_vectors + hr_dev->caps.num_aeq_vectors; eq_table->eq = kcalloc(eq_num, sizeof(*eq_table->eq), GFP_KERNEL); if (!eq_table->eq) return -ENOMEM; eq_table->eqc_base = kcalloc(eq_num, sizeof(*eq_table->eqc_base), GFP_KERNEL); if (!eq_table->eqc_base) { ret = -ENOMEM; goto err_eqc_base_alloc_fail; } for (i = 0; i < eq_num; i++) { eq = &eq_table->eq[i]; eq->hr_dev = hr_dev; eq->eqn = i; eq->irq = hr_dev->irq[i]; eq->log_page_size = PAGE_SHIFT; if (i < hr_dev->caps.num_comp_vectors) { /* CEQ */ eq_table->eqc_base[i] = hr_dev->reg_base + ROCEE_CAEP_CEQC_SHIFT_0_REG + HNS_ROCE_CEQC_REG_OFFSET * i; eq->type_flag = HNS_ROCE_CEQ; eq->doorbell = hr_dev->reg_base + ROCEE_CAEP_CEQC_CONS_IDX_0_REG + HNS_ROCE_CEQC_REG_OFFSET * i; eq->entries = hr_dev->caps.ceqe_depth[i]; eq->log_entries = ilog2(eq->entries); eq->eqe_size = sizeof(struct hns_roce_ceqe); } else { /* AEQ */ eq_table->eqc_base[i] = hr_dev->reg_base + ROCEE_CAEP_AEQC_AEQE_SHIFT_REG; eq->type_flag = HNS_ROCE_AEQ; eq->doorbell = hr_dev->reg_base + ROCEE_CAEP_AEQE_CONS_IDX_REG; eq->entries = hr_dev->caps.aeqe_depth; eq->log_entries = ilog2(eq->entries); eq->eqe_size = sizeof(struct hns_roce_aeqe); } } /* Disable irq */ hns_roce_int_mask_en(hr_dev); /* Configure CE irq interval and burst num */ hns_roce_ce_int_default_cfg(hr_dev); for (i = 0; i < eq_num; i++) { ret = hns_roce_create_eq(hr_dev, &eq_table->eq[i]); if (ret) { dev_err(dev, "eq create failed\n"); goto err_create_eq_fail; } } for (j = 0; j < eq_num; j++) { ret = request_irq(eq_table->eq[j].irq, hns_roce_msi_x_interrupt, 0, hr_dev->irq_names[j], eq_table->eq + j); if (ret) { dev_err(dev, "request irq error!\n"); goto err_request_irq_fail; } } for (i = 0; i < eq_num; i++) hns_roce_enable_eq(hr_dev, i, EQ_ENABLE); return 0; err_request_irq_fail: for (j = j - 1; j >= 0; j--) free_irq(eq_table->eq[j].irq, eq_table->eq + j); err_create_eq_fail: for (i = i - 1; i >= 0; i--) hns_roce_free_eq(hr_dev, &eq_table->eq[i]); kfree(eq_table->eqc_base); err_eqc_base_alloc_fail: kfree(eq_table->eq); return ret; } void hns_roce_cleanup_eq_table(struct hns_roce_dev *hr_dev) { int i; int eq_num; struct hns_roce_eq_table *eq_table = &hr_dev->eq_table; eq_num = hr_dev->caps.num_comp_vectors + hr_dev->caps.num_aeq_vectors; for (i = 0; i < eq_num; i++) { /* Disable EQ */ hns_roce_enable_eq(hr_dev, i, EQ_DISABLE); free_irq(eq_table->eq[i].irq, eq_table->eq + i); hns_roce_free_eq(hr_dev, &eq_table->eq[i]); } kfree(eq_table->eqc_base); kfree(eq_table->eq); }