/* * Copyright (c) 2006, 2007, 2008 QLogic Corporation. All rights reserved. * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include "ipath_kernel.h" #include "ipath_verbs.h" static void ipath_update_pio_bufs(struct ipath_devdata *); const char *ipath_get_unit_name(int unit) { static char iname[16]; snprintf(iname, sizeof iname, "infinipath%u", unit); return iname; } #define DRIVER_LOAD_MSG "QLogic " IPATH_DRV_NAME " loaded: " #define PFX IPATH_DRV_NAME ": " /* * The size has to be longer than this string, so we can append * board/chip information to it in the init code. */ const char ib_ipath_version[] = IPATH_IDSTR "\n"; static struct idr unit_table; DEFINE_SPINLOCK(ipath_devs_lock); LIST_HEAD(ipath_dev_list); wait_queue_head_t ipath_state_wait; unsigned ipath_debug = __IPATH_INFO; module_param_named(debug, ipath_debug, uint, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(debug, "mask for debug prints"); EXPORT_SYMBOL_GPL(ipath_debug); unsigned ipath_mtu4096 = 1; /* max 4KB IB mtu by default, if supported */ module_param_named(mtu4096, ipath_mtu4096, uint, S_IRUGO); MODULE_PARM_DESC(mtu4096, "enable MTU of 4096 bytes, if supported"); static unsigned ipath_hol_timeout_ms = 13000; module_param_named(hol_timeout_ms, ipath_hol_timeout_ms, uint, S_IRUGO); MODULE_PARM_DESC(hol_timeout_ms, "duration of user app suspension after link failure"); unsigned ipath_linkrecovery = 1; module_param_named(linkrecovery, ipath_linkrecovery, uint, S_IWUSR | S_IRUGO); MODULE_PARM_DESC(linkrecovery, "enable workaround for link recovery issue"); MODULE_LICENSE("GPL"); MODULE_AUTHOR("QLogic "); MODULE_DESCRIPTION("QLogic InfiniPath driver"); /* * Table to translate the LINKTRAININGSTATE portion of * IBCStatus to a human-readable form. */ const char *ipath_ibcstatus_str[] = { "Disabled", "LinkUp", "PollActive", "PollQuiet", "SleepDelay", "SleepQuiet", "LState6", /* unused */ "LState7", /* unused */ "CfgDebounce", "CfgRcvfCfg", "CfgWaitRmt", "CfgIdle", "RecovRetrain", "CfgTxRevLane", /* unused before IBA7220 */ "RecovWaitRmt", "RecovIdle", /* below were added for IBA7220 */ "CfgEnhanced", "CfgTest", "CfgWaitRmtTest", "CfgWaitCfgEnhanced", "SendTS_T", "SendTstIdles", "RcvTS_T", "SendTst_TS1s", "LTState18", "LTState19", "LTState1A", "LTState1B", "LTState1C", "LTState1D", "LTState1E", "LTState1F" }; static void __devexit ipath_remove_one(struct pci_dev *); static int __devinit ipath_init_one(struct pci_dev *, const struct pci_device_id *); /* Only needed for registration, nothing else needs this info */ #define PCI_VENDOR_ID_PATHSCALE 0x1fc1 #define PCI_DEVICE_ID_INFINIPATH_HT 0xd /* Number of seconds before our card status check... */ #define STATUS_TIMEOUT 60 static const struct pci_device_id ipath_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_PATHSCALE, PCI_DEVICE_ID_INFINIPATH_HT) }, { 0, } }; MODULE_DEVICE_TABLE(pci, ipath_pci_tbl); static struct pci_driver ipath_driver = { .name = IPATH_DRV_NAME, .probe = ipath_init_one, .remove = __devexit_p(ipath_remove_one), .id_table = ipath_pci_tbl, .driver = { .groups = ipath_driver_attr_groups, }, }; static inline void read_bars(struct ipath_devdata *dd, struct pci_dev *dev, u32 *bar0, u32 *bar1) { int ret; ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, bar0); if (ret) ipath_dev_err(dd, "failed to read bar0 before enable: " "error %d\n", -ret); ret = pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, bar1); if (ret) ipath_dev_err(dd, "failed to read bar1 before enable: " "error %d\n", -ret); ipath_dbg("Read bar0 %x bar1 %x\n", *bar0, *bar1); } static void ipath_free_devdata(struct pci_dev *pdev, struct ipath_devdata *dd) { unsigned long flags; pci_set_drvdata(pdev, NULL); if (dd->ipath_unit != -1) { spin_lock_irqsave(&ipath_devs_lock, flags); idr_remove(&unit_table, dd->ipath_unit); list_del(&dd->ipath_list); spin_unlock_irqrestore(&ipath_devs_lock, flags); } vfree(dd); } static struct ipath_devdata *ipath_alloc_devdata(struct pci_dev *pdev) { unsigned long flags; struct ipath_devdata *dd; int ret; if (!idr_pre_get(&unit_table, GFP_KERNEL)) { dd = ERR_PTR(-ENOMEM); goto bail; } dd = vmalloc(sizeof(*dd)); if (!dd) { dd = ERR_PTR(-ENOMEM); goto bail; } memset(dd, 0, sizeof(*dd)); dd->ipath_unit = -1; spin_lock_irqsave(&ipath_devs_lock, flags); ret = idr_get_new(&unit_table, dd, &dd->ipath_unit); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Could not allocate unit ID: error %d\n", -ret); ipath_free_devdata(pdev, dd); dd = ERR_PTR(ret); goto bail_unlock; } dd->pcidev = pdev; pci_set_drvdata(pdev, dd); list_add(&dd->ipath_list, &ipath_dev_list); bail_unlock: spin_unlock_irqrestore(&ipath_devs_lock, flags); bail: return dd; } static inline struct ipath_devdata *__ipath_lookup(int unit) { return idr_find(&unit_table, unit); } struct ipath_devdata *ipath_lookup(int unit) { struct ipath_devdata *dd; unsigned long flags; spin_lock_irqsave(&ipath_devs_lock, flags); dd = __ipath_lookup(unit); spin_unlock_irqrestore(&ipath_devs_lock, flags); return dd; } int ipath_count_units(int *npresentp, int *nupp, int *maxportsp) { int nunits, npresent, nup; struct ipath_devdata *dd; unsigned long flags; int maxports; nunits = npresent = nup = maxports = 0; spin_lock_irqsave(&ipath_devs_lock, flags); list_for_each_entry(dd, &ipath_dev_list, ipath_list) { nunits++; if ((dd->ipath_flags & IPATH_PRESENT) && dd->ipath_kregbase) npresent++; if (dd->ipath_lid && !(dd->ipath_flags & (IPATH_DISABLED | IPATH_LINKDOWN | IPATH_LINKUNK))) nup++; if (dd->ipath_cfgports > maxports) maxports = dd->ipath_cfgports; } spin_unlock_irqrestore(&ipath_devs_lock, flags); if (npresentp) *npresentp = npresent; if (nupp) *nupp = nup; if (maxportsp) *maxportsp = maxports; return nunits; } /* * These next two routines are placeholders in case we don't have per-arch * code for controlling write combining. If explicit control of write * combining is not available, performance will probably be awful. */ int __attribute__((weak)) ipath_enable_wc(struct ipath_devdata *dd) { return -EOPNOTSUPP; } void __attribute__((weak)) ipath_disable_wc(struct ipath_devdata *dd) { } /* * Perform a PIO buffer bandwidth write test, to verify proper system * configuration. Even when all the setup calls work, occasionally * BIOS or other issues can prevent write combining from working, or * can cause other bandwidth problems to the chip. * * This test simply writes the same buffer over and over again, and * measures close to the peak bandwidth to the chip (not testing * data bandwidth to the wire). On chips that use an address-based * trigger to send packets to the wire, this is easy. On chips that * use a count to trigger, we want to make sure that the packet doesn't * go out on the wire, or trigger flow control checks. */ static void ipath_verify_pioperf(struct ipath_devdata *dd) { u32 pbnum, cnt, lcnt; u32 __iomem *piobuf; u32 *addr; u64 msecs, emsecs; piobuf = ipath_getpiobuf(dd, 0, &pbnum); if (!piobuf) { dev_info(&dd->pcidev->dev, "No PIObufs for checking perf, skipping\n"); return; } /* * Enough to give us a reasonable test, less than piobuf size, and * likely multiple of store buffer length. */ cnt = 1024; addr = vmalloc(cnt); if (!addr) { dev_info(&dd->pcidev->dev, "Couldn't get memory for checking PIO perf," " skipping\n"); goto done; } preempt_disable(); /* we want reasonably accurate elapsed time */ msecs = 1 + jiffies_to_msecs(jiffies); for (lcnt = 0; lcnt < 10000U; lcnt++) { /* wait until we cross msec boundary */ if (jiffies_to_msecs(jiffies) >= msecs) break; udelay(1); } ipath_disable_armlaunch(dd); /* * length 0, no dwords actually sent, and mark as VL15 * on chips where that may matter (due to IB flowcontrol) */ if ((dd->ipath_flags & IPATH_HAS_PBC_CNT)) writeq(1UL << 63, piobuf); else writeq(0, piobuf); ipath_flush_wc(); /* * this is only roughly accurate, since even with preempt we * still take interrupts that could take a while. Running for * >= 5 msec seems to get us "close enough" to accurate values */ msecs = jiffies_to_msecs(jiffies); for (emsecs = lcnt = 0; emsecs <= 5UL; lcnt++) { __iowrite32_copy(piobuf + 64, addr, cnt >> 2); emsecs = jiffies_to_msecs(jiffies) - msecs; } /* 1 GiB/sec, slightly over IB SDR line rate */ if (lcnt < (emsecs * 1024U)) ipath_dev_err(dd, "Performance problem: bandwidth to PIO buffers is " "only %u MiB/sec\n", lcnt / (u32) emsecs); else ipath_dbg("PIO buffer bandwidth %u MiB/sec is OK\n", lcnt / (u32) emsecs); preempt_enable(); vfree(addr); done: /* disarm piobuf, so it's available again */ ipath_disarm_piobufs(dd, pbnum, 1); ipath_enable_armlaunch(dd); } static void cleanup_device(struct ipath_devdata *dd); static int __devinit ipath_init_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int ret, len, j; struct ipath_devdata *dd; unsigned long long addr; u32 bar0 = 0, bar1 = 0; u8 rev; dd = ipath_alloc_devdata(pdev); if (IS_ERR(dd)) { ret = PTR_ERR(dd); printk(KERN_ERR IPATH_DRV_NAME ": Could not allocate devdata: error %d\n", -ret); goto bail; } ipath_cdbg(VERBOSE, "initializing unit #%u\n", dd->ipath_unit); ret = pci_enable_device(pdev); if (ret) { /* This can happen iff: * * We did a chip reset, and then failed to reprogram the * BAR, or the chip reset due to an internal error. We then * unloaded the driver and reloaded it. * * Both reset cases set the BAR back to initial state. For * the latter case, the AER sticky error bit at offset 0x718 * should be set, but the Linux kernel doesn't yet know * about that, it appears. If the original BAR was retained * in the kernel data structures, this may be OK. */ ipath_dev_err(dd, "enable unit %d failed: error %d\n", dd->ipath_unit, -ret); goto bail_devdata; } addr = pci_resource_start(pdev, 0); len = pci_resource_len(pdev, 0); ipath_cdbg(VERBOSE, "regbase (0) %llx len %d irq %d, vend %x/%x " "driver_data %lx\n", addr, len, pdev->irq, ent->vendor, ent->device, ent->driver_data); read_bars(dd, pdev, &bar0, &bar1); if (!bar1 && !(bar0 & ~0xf)) { if (addr) { dev_info(&pdev->dev, "BAR is 0 (probable RESET), " "rewriting as %llx\n", addr); ret = pci_write_config_dword( pdev, PCI_BASE_ADDRESS_0, addr); if (ret) { ipath_dev_err(dd, "rewrite of BAR0 " "failed: err %d\n", -ret); goto bail_disable; } ret = pci_write_config_dword( pdev, PCI_BASE_ADDRESS_1, addr >> 32); if (ret) { ipath_dev_err(dd, "rewrite of BAR1 " "failed: err %d\n", -ret); goto bail_disable; } } else { ipath_dev_err(dd, "BAR is 0 (probable RESET), " "not usable until reboot\n"); ret = -ENODEV; goto bail_disable; } } ret = pci_request_regions(pdev, IPATH_DRV_NAME); if (ret) { dev_info(&pdev->dev, "pci_request_regions unit %u fails: " "err %d\n", dd->ipath_unit, -ret); goto bail_disable; } ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(64)); if (ret) { /* * if the 64 bit setup fails, try 32 bit. Some systems * do not setup 64 bit maps on systems with 2GB or less * memory installed. */ ret = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret) { dev_info(&pdev->dev, "Unable to set DMA mask for unit %u: %d\n", dd->ipath_unit, ret); goto bail_regions; } else { ipath_dbg("No 64bit DMA mask, used 32 bit mask\n"); ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)); if (ret) dev_info(&pdev->dev, "Unable to set DMA consistent mask " "for unit %u: %d\n", dd->ipath_unit, ret); } } else { ret = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)); if (ret) dev_info(&pdev->dev, "Unable to set DMA consistent mask " "for unit %u: %d\n", dd->ipath_unit, ret); } pci_set_master(pdev); /* * Save BARs to rewrite after device reset. Save all 64 bits of * BAR, just in case. */ dd->ipath_pcibar0 = addr; dd->ipath_pcibar1 = addr >> 32; dd->ipath_deviceid = ent->device; /* save for later use */ dd->ipath_vendorid = ent->vendor; /* setup the chip-specific functions, as early as possible. */ switch (ent->device) { case PCI_DEVICE_ID_INFINIPATH_HT: ipath_init_iba6110_funcs(dd); break; default: ipath_dev_err(dd, "Found unknown QLogic deviceid 0x%x, " "failing\n", ent->device); return -ENODEV; } for (j = 0; j < 6; j++) { if (!pdev->resource[j].start) continue; ipath_cdbg(VERBOSE, "BAR %d start %llx, end %llx, len %llx\n", j, (unsigned long long)pdev->resource[j].start, (unsigned long long)pdev->resource[j].end, (unsigned long long)pci_resource_len(pdev, j)); } if (!addr) { ipath_dev_err(dd, "No valid address in BAR 0!\n"); ret = -ENODEV; goto bail_regions; } ret = pci_read_config_byte(pdev, PCI_REVISION_ID, &rev); if (ret) { ipath_dev_err(dd, "Failed to read PCI revision ID unit " "%u: err %d\n", dd->ipath_unit, -ret); goto bail_regions; /* shouldn't ever happen */ } dd->ipath_pcirev = rev; #if defined(__powerpc__) /* There isn't a generic way to specify writethrough mappings */ dd->ipath_kregbase = __ioremap(addr, len, (_PAGE_NO_CACHE|_PAGE_WRITETHRU)); #else dd->ipath_kregbase = ioremap_nocache(addr, len); #endif if (!dd->ipath_kregbase) { ipath_dbg("Unable to map io addr %llx to kvirt, failing\n", addr); ret = -ENOMEM; goto bail_iounmap; } dd->ipath_kregend = (u64 __iomem *) ((void __iomem *)dd->ipath_kregbase + len); dd->ipath_physaddr = addr; /* used for io_remap, etc. */ /* for user mmap */ ipath_cdbg(VERBOSE, "mapped io addr %llx to kregbase %p\n", addr, dd->ipath_kregbase); if (dd->ipath_f_bus(dd, pdev)) ipath_dev_err(dd, "Failed to setup config space; " "continuing anyway\n"); /* * set up our interrupt handler; IRQF_SHARED probably not needed, * since MSI interrupts shouldn't be shared but won't hurt for now. * check 0 irq after we return from chip-specific bus setup, since * that can affect this due to setup */ if (!dd->ipath_irq) ipath_dev_err(dd, "irq is 0, BIOS error? Interrupts won't " "work\n"); else { ret = request_irq(dd->ipath_irq, ipath_intr, IRQF_SHARED, IPATH_DRV_NAME, dd); if (ret) { ipath_dev_err(dd, "Couldn't setup irq handler, " "irq=%d: %d\n", dd->ipath_irq, ret); goto bail_iounmap; } } ret = ipath_init_chip(dd, 0); /* do the chip-specific init */ if (ret) goto bail_irqsetup; ret = ipath_enable_wc(dd); if (ret) { ipath_dev_err(dd, "Write combining not enabled " "(err %d): performance may be poor\n", -ret); ret = 0; } ipath_verify_pioperf(dd); ipath_device_create_group(&pdev->dev, dd); ipathfs_add_device(dd); ipath_user_add(dd); ipath_diag_add(dd); ipath_register_ib_device(dd); goto bail; bail_irqsetup: cleanup_device(dd); if (dd->ipath_irq) dd->ipath_f_free_irq(dd); if (dd->ipath_f_cleanup) dd->ipath_f_cleanup(dd); bail_iounmap: iounmap((volatile void __iomem *) dd->ipath_kregbase); bail_regions: pci_release_regions(pdev); bail_disable: pci_disable_device(pdev); bail_devdata: ipath_free_devdata(pdev, dd); bail: return ret; } static void cleanup_device(struct ipath_devdata *dd) { int port; struct ipath_portdata **tmp; unsigned long flags; if (*dd->ipath_statusp & IPATH_STATUS_CHIP_PRESENT) { /* can't do anything more with chip; needs re-init */ *dd->ipath_statusp &= ~IPATH_STATUS_CHIP_PRESENT; if (dd->ipath_kregbase) { /* * if we haven't already cleaned up before these are * to ensure any register reads/writes "fail" until * re-init */ dd->ipath_kregbase = NULL; dd->ipath_uregbase = 0; dd->ipath_sregbase = 0; dd->ipath_cregbase = 0; dd->ipath_kregsize = 0; } ipath_disable_wc(dd); } if (dd->ipath_spectriggerhit) dev_info(&dd->pcidev->dev, "%lu special trigger hits\n", dd->ipath_spectriggerhit); if (dd->ipath_pioavailregs_dma) { dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, (void *) dd->ipath_pioavailregs_dma, dd->ipath_pioavailregs_phys); dd->ipath_pioavailregs_dma = NULL; } if (dd->ipath_dummy_hdrq) { dma_free_coherent(&dd->pcidev->dev, dd->ipath_pd[0]->port_rcvhdrq_size, dd->ipath_dummy_hdrq, dd->ipath_dummy_hdrq_phys); dd->ipath_dummy_hdrq = NULL; } if (dd->ipath_pageshadow) { struct page **tmpp = dd->ipath_pageshadow; dma_addr_t *tmpd = dd->ipath_physshadow; int i, cnt = 0; ipath_cdbg(VERBOSE, "Unlocking any expTID pages still " "locked\n"); for (port = 0; port < dd->ipath_cfgports; port++) { int port_tidbase = port * dd->ipath_rcvtidcnt; int maxtid = port_tidbase + dd->ipath_rcvtidcnt; for (i = port_tidbase; i < maxtid; i++) { if (!tmpp[i]) continue; pci_unmap_page(dd->pcidev, tmpd[i], PAGE_SIZE, PCI_DMA_FROMDEVICE); ipath_release_user_pages(&tmpp[i], 1); tmpp[i] = NULL; cnt++; } } if (cnt) { ipath_stats.sps_pageunlocks += cnt; ipath_cdbg(VERBOSE, "There were still %u expTID " "entries locked\n", cnt); } if (ipath_stats.sps_pagelocks || ipath_stats.sps_pageunlocks) ipath_cdbg(VERBOSE, "%llu pages locked, %llu " "unlocked via ipath_m{un}lock\n", (unsigned long long) ipath_stats.sps_pagelocks, (unsigned long long) ipath_stats.sps_pageunlocks); ipath_cdbg(VERBOSE, "Free shadow page tid array at %p\n", dd->ipath_pageshadow); tmpp = dd->ipath_pageshadow; dd->ipath_pageshadow = NULL; vfree(tmpp); dd->ipath_egrtidbase = NULL; } /* * free any resources still in use (usually just kernel ports) * at unload; we do for portcnt, because that's what we allocate. * We acquire lock to be really paranoid that ipath_pd isn't being * accessed from some interrupt-related code (that should not happen, * but best to be sure). */ spin_lock_irqsave(&dd->ipath_uctxt_lock, flags); tmp = dd->ipath_pd; dd->ipath_pd = NULL; spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags); for (port = 0; port < dd->ipath_portcnt; port++) { struct ipath_portdata *pd = tmp[port]; tmp[port] = NULL; /* debugging paranoia */ ipath_free_pddata(dd, pd); } kfree(tmp); } static void __devexit ipath_remove_one(struct pci_dev *pdev) { struct ipath_devdata *dd = pci_get_drvdata(pdev); ipath_cdbg(VERBOSE, "removing, pdev=%p, dd=%p\n", pdev, dd); /* * disable the IB link early, to be sure no new packets arrive, which * complicates the shutdown process */ ipath_shutdown_device(dd); flush_scheduled_work(); if (dd->verbs_dev) ipath_unregister_ib_device(dd->verbs_dev); ipath_diag_remove(dd); ipath_user_remove(dd); ipathfs_remove_device(dd); ipath_device_remove_group(&pdev->dev, dd); ipath_cdbg(VERBOSE, "Releasing pci memory regions, dd %p, " "unit %u\n", dd, (u32) dd->ipath_unit); cleanup_device(dd); /* * turn off rcv, send, and interrupts for all ports, all drivers * should also hard reset the chip here? * free up port 0 (kernel) rcvhdr, egr bufs, and eventually tid bufs * for all versions of the driver, if they were allocated */ if (dd->ipath_irq) { ipath_cdbg(VERBOSE, "unit %u free irq %d\n", dd->ipath_unit, dd->ipath_irq); dd->ipath_f_free_irq(dd); } else ipath_dbg("irq is 0, not doing free_irq " "for unit %u\n", dd->ipath_unit); /* * we check for NULL here, because it's outside * the kregbase check, and we need to call it * after the free_irq. Thus it's possible that * the function pointers were never initialized. */ if (dd->ipath_f_cleanup) /* clean up chip-specific stuff */ dd->ipath_f_cleanup(dd); ipath_cdbg(VERBOSE, "Unmapping kregbase %p\n", dd->ipath_kregbase); iounmap((volatile void __iomem *) dd->ipath_kregbase); pci_release_regions(pdev); ipath_cdbg(VERBOSE, "calling pci_disable_device\n"); pci_disable_device(pdev); ipath_free_devdata(pdev, dd); } /* general driver use */ DEFINE_MUTEX(ipath_mutex); static DEFINE_SPINLOCK(ipath_pioavail_lock); /** * ipath_disarm_piobufs - cancel a range of PIO buffers * @dd: the infinipath device * @first: the first PIO buffer to cancel * @cnt: the number of PIO buffers to cancel * * cancel a range of PIO buffers, used when they might be armed, but * not triggered. Used at init to ensure buffer state, and also user * process close, in case it died while writing to a PIO buffer * Also after errors. */ void ipath_disarm_piobufs(struct ipath_devdata *dd, unsigned first, unsigned cnt) { unsigned i, last = first + cnt; unsigned long flags; ipath_cdbg(PKT, "disarm %u PIObufs first=%u\n", cnt, first); for (i = first; i < last; i++) { spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); /* * The disarm-related bits are write-only, so it * is ok to OR them in with our copy of sendctrl * while we hold the lock. */ ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl | INFINIPATH_S_DISARM | (i << INFINIPATH_S_DISARMPIOBUF_SHIFT)); /* can't disarm bufs back-to-back per iba7220 spec */ ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); } /* on some older chips, update may not happen after cancel */ ipath_force_pio_avail_update(dd); } /** * ipath_wait_linkstate - wait for an IB link state change to occur * @dd: the infinipath device * @state: the state to wait for * @msecs: the number of milliseconds to wait * * wait up to msecs milliseconds for IB link state change to occur for * now, take the easy polling route. Currently used only by * ipath_set_linkstate. Returns 0 if state reached, otherwise * -ETIMEDOUT state can have multiple states set, for any of several * transitions. */ int ipath_wait_linkstate(struct ipath_devdata *dd, u32 state, int msecs) { dd->ipath_state_wanted = state; wait_event_interruptible_timeout(ipath_state_wait, (dd->ipath_flags & state), msecs_to_jiffies(msecs)); dd->ipath_state_wanted = 0; if (!(dd->ipath_flags & state)) { u64 val; ipath_cdbg(VERBOSE, "Didn't reach linkstate %s within %u" " ms\n", /* test INIT ahead of DOWN, both can be set */ (state & IPATH_LINKINIT) ? "INIT" : ((state & IPATH_LINKDOWN) ? "DOWN" : ((state & IPATH_LINKARMED) ? "ARM" : "ACTIVE")), msecs); val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); ipath_cdbg(VERBOSE, "ibcc=%llx ibcstatus=%llx (%s)\n", (unsigned long long) ipath_read_kreg64( dd, dd->ipath_kregs->kr_ibcctrl), (unsigned long long) val, ipath_ibcstatus_str[val & dd->ibcs_lts_mask]); } return (dd->ipath_flags & state) ? 0 : -ETIMEDOUT; } static void decode_sdma_errs(struct ipath_devdata *dd, ipath_err_t err, char *buf, size_t blen) { static const struct { ipath_err_t err; const char *msg; } errs[] = { { INFINIPATH_E_SDMAGENMISMATCH, "SDmaGenMismatch" }, { INFINIPATH_E_SDMAOUTOFBOUND, "SDmaOutOfBound" }, { INFINIPATH_E_SDMATAILOUTOFBOUND, "SDmaTailOutOfBound" }, { INFINIPATH_E_SDMABASE, "SDmaBase" }, { INFINIPATH_E_SDMA1STDESC, "SDma1stDesc" }, { INFINIPATH_E_SDMARPYTAG, "SDmaRpyTag" }, { INFINIPATH_E_SDMADWEN, "SDmaDwEn" }, { INFINIPATH_E_SDMAMISSINGDW, "SDmaMissingDw" }, { INFINIPATH_E_SDMAUNEXPDATA, "SDmaUnexpData" }, { INFINIPATH_E_SDMADESCADDRMISALIGN, "SDmaDescAddrMisalign" }, { INFINIPATH_E_SENDBUFMISUSE, "SendBufMisuse" }, { INFINIPATH_E_SDMADISABLED, "SDmaDisabled" }, }; int i; int expected; size_t bidx = 0; for (i = 0; i < ARRAY_SIZE(errs); i++) { expected = (errs[i].err != INFINIPATH_E_SDMADISABLED) ? 0 : test_bit(IPATH_SDMA_ABORTING, &dd->ipath_sdma_status); if ((err & errs[i].err) && !expected) bidx += snprintf(buf + bidx, blen - bidx, "%s ", errs[i].msg); } } /* * Decode the error status into strings, deciding whether to always * print * it or not depending on "normal packet errors" vs everything * else. Return 1 if "real" errors, otherwise 0 if only packet * errors, so caller can decide what to print with the string. */ int ipath_decode_err(struct ipath_devdata *dd, char *buf, size_t blen, ipath_err_t err) { int iserr = 1; *buf = '\0'; if (err & INFINIPATH_E_PKTERRS) { if (!(err & ~INFINIPATH_E_PKTERRS)) iserr = 0; // if only packet errors. if (ipath_debug & __IPATH_ERRPKTDBG) { if (err & INFINIPATH_E_REBP) strlcat(buf, "EBP ", blen); if (err & INFINIPATH_E_RVCRC) strlcat(buf, "VCRC ", blen); if (err & INFINIPATH_E_RICRC) { strlcat(buf, "CRC ", blen); // clear for check below, so only once err &= INFINIPATH_E_RICRC; } if (err & INFINIPATH_E_RSHORTPKTLEN) strlcat(buf, "rshortpktlen ", blen); if (err & INFINIPATH_E_SDROPPEDDATAPKT) strlcat(buf, "sdroppeddatapkt ", blen); if (err & INFINIPATH_E_SPKTLEN) strlcat(buf, "spktlen ", blen); } if ((err & INFINIPATH_E_RICRC) && !(err&(INFINIPATH_E_RVCRC|INFINIPATH_E_REBP))) strlcat(buf, "CRC ", blen); if (!iserr) goto done; } if (err & INFINIPATH_E_RHDRLEN) strlcat(buf, "rhdrlen ", blen); if (err & INFINIPATH_E_RBADTID) strlcat(buf, "rbadtid ", blen); if (err & INFINIPATH_E_RBADVERSION) strlcat(buf, "rbadversion ", blen); if (err & INFINIPATH_E_RHDR) strlcat(buf, "rhdr ", blen); if (err & INFINIPATH_E_SENDSPECIALTRIGGER) strlcat(buf, "sendspecialtrigger ", blen); if (err & INFINIPATH_E_RLONGPKTLEN) strlcat(buf, "rlongpktlen ", blen); if (err & INFINIPATH_E_RMAXPKTLEN) strlcat(buf, "rmaxpktlen ", blen); if (err & INFINIPATH_E_RMINPKTLEN) strlcat(buf, "rminpktlen ", blen); if (err & INFINIPATH_E_SMINPKTLEN) strlcat(buf, "sminpktlen ", blen); if (err & INFINIPATH_E_RFORMATERR) strlcat(buf, "rformaterr ", blen); if (err & INFINIPATH_E_RUNSUPVL) strlcat(buf, "runsupvl ", blen); if (err & INFINIPATH_E_RUNEXPCHAR) strlcat(buf, "runexpchar ", blen); if (err & INFINIPATH_E_RIBFLOW) strlcat(buf, "ribflow ", blen); if (err & INFINIPATH_E_SUNDERRUN) strlcat(buf, "sunderrun ", blen); if (err & INFINIPATH_E_SPIOARMLAUNCH) strlcat(buf, "spioarmlaunch ", blen); if (err & INFINIPATH_E_SUNEXPERRPKTNUM) strlcat(buf, "sunexperrpktnum ", blen); if (err & INFINIPATH_E_SDROPPEDSMPPKT) strlcat(buf, "sdroppedsmppkt ", blen); if (err & INFINIPATH_E_SMAXPKTLEN) strlcat(buf, "smaxpktlen ", blen); if (err & INFINIPATH_E_SUNSUPVL) strlcat(buf, "sunsupVL ", blen); if (err & INFINIPATH_E_INVALIDADDR) strlcat(buf, "invalidaddr ", blen); if (err & INFINIPATH_E_RRCVEGRFULL) strlcat(buf, "rcvegrfull ", blen); if (err & INFINIPATH_E_RRCVHDRFULL) strlcat(buf, "rcvhdrfull ", blen); if (err & INFINIPATH_E_IBSTATUSCHANGED) strlcat(buf, "ibcstatuschg ", blen); if (err & INFINIPATH_E_RIBLOSTLINK) strlcat(buf, "riblostlink ", blen); if (err & INFINIPATH_E_HARDWARE) strlcat(buf, "hardware ", blen); if (err & INFINIPATH_E_RESET) strlcat(buf, "reset ", blen); if (err & INFINIPATH_E_SDMAERRS) decode_sdma_errs(dd, err, buf, blen); if (err & INFINIPATH_E_INVALIDEEPCMD) strlcat(buf, "invalideepromcmd ", blen); done: return iserr; } /** * get_rhf_errstring - decode RHF errors * @err: the err number * @msg: the output buffer * @len: the length of the output buffer * * only used one place now, may want more later */ static void get_rhf_errstring(u32 err, char *msg, size_t len) { /* if no errors, and so don't need to check what's first */ *msg = '\0'; if (err & INFINIPATH_RHF_H_ICRCERR) strlcat(msg, "icrcerr ", len); if (err & INFINIPATH_RHF_H_VCRCERR) strlcat(msg, "vcrcerr ", len); if (err & INFINIPATH_RHF_H_PARITYERR) strlcat(msg, "parityerr ", len); if (err & INFINIPATH_RHF_H_LENERR) strlcat(msg, "lenerr ", len); if (err & INFINIPATH_RHF_H_MTUERR) strlcat(msg, "mtuerr ", len); if (err & INFINIPATH_RHF_H_IHDRERR) /* infinipath hdr checksum error */ strlcat(msg, "ipathhdrerr ", len); if (err & INFINIPATH_RHF_H_TIDERR) strlcat(msg, "tiderr ", len); if (err & INFINIPATH_RHF_H_MKERR) /* bad port, offset, etc. */ strlcat(msg, "invalid ipathhdr ", len); if (err & INFINIPATH_RHF_H_IBERR) strlcat(msg, "iberr ", len); if (err & INFINIPATH_RHF_L_SWA) strlcat(msg, "swA ", len); if (err & INFINIPATH_RHF_L_SWB) strlcat(msg, "swB ", len); } /** * ipath_get_egrbuf - get an eager buffer * @dd: the infinipath device * @bufnum: the eager buffer to get * * must only be called if ipath_pd[port] is known to be allocated */ static inline void *ipath_get_egrbuf(struct ipath_devdata *dd, u32 bufnum) { return dd->ipath_port0_skbinfo ? (void *) dd->ipath_port0_skbinfo[bufnum].skb->data : NULL; } /** * ipath_alloc_skb - allocate an skb and buffer with possible constraints * @dd: the infinipath device * @gfp_mask: the sk_buff SFP mask */ struct sk_buff *ipath_alloc_skb(struct ipath_devdata *dd, gfp_t gfp_mask) { struct sk_buff *skb; u32 len; /* * Only fully supported way to handle this is to allocate lots * extra, align as needed, and then do skb_reserve(). That wastes * a lot of memory... I'll have to hack this into infinipath_copy * also. */ /* * We need 2 extra bytes for ipath_ether data sent in the * key header. In order to keep everything dword aligned, * we'll reserve 4 bytes. */ len = dd->ipath_ibmaxlen + 4; if (dd->ipath_flags & IPATH_4BYTE_TID) { /* We need a 2KB multiple alignment, and there is no way * to do it except to allocate extra and then skb_reserve * enough to bring it up to the right alignment. */ len += 2047; } skb = __dev_alloc_skb(len, gfp_mask); if (!skb) { ipath_dev_err(dd, "Failed to allocate skbuff, length %u\n", len); goto bail; } skb_reserve(skb, 4); if (dd->ipath_flags & IPATH_4BYTE_TID) { u32 una = (unsigned long)skb->data & 2047; if (una) skb_reserve(skb, 2048 - una); } bail: return skb; } static void ipath_rcv_hdrerr(struct ipath_devdata *dd, u32 eflags, u32 l, u32 etail, __le32 *rhf_addr, struct ipath_message_header *hdr) { char emsg[128]; get_rhf_errstring(eflags, emsg, sizeof emsg); ipath_cdbg(PKT, "RHFerrs %x hdrqtail=%x typ=%u " "tlen=%x opcode=%x egridx=%x: %s\n", eflags, l, ipath_hdrget_rcv_type(rhf_addr), ipath_hdrget_length_in_bytes(rhf_addr), be32_to_cpu(hdr->bth[0]) >> 24, etail, emsg); /* Count local link integrity errors. */ if (eflags & (INFINIPATH_RHF_H_ICRCERR | INFINIPATH_RHF_H_VCRCERR)) { u8 n = (dd->ipath_ibcctrl >> INFINIPATH_IBCC_PHYERRTHRESHOLD_SHIFT) & INFINIPATH_IBCC_PHYERRTHRESHOLD_MASK; if (++dd->ipath_lli_counter > n) { dd->ipath_lli_counter = 0; dd->ipath_lli_errors++; } } } /* * ipath_kreceive - receive a packet * @pd: the infinipath port * * called from interrupt handler for errors or receive interrupt */ void ipath_kreceive(struct ipath_portdata *pd) { struct ipath_devdata *dd = pd->port_dd; __le32 *rhf_addr; void *ebuf; const u32 rsize = dd->ipath_rcvhdrentsize; /* words */ const u32 maxcnt = dd->ipath_rcvhdrcnt * rsize; /* words */ u32 etail = -1, l, hdrqtail; struct ipath_message_header *hdr; u32 eflags, i, etype, tlen, pkttot = 0, updegr = 0, reloop = 0; static u64 totcalls; /* stats, may eventually remove */ int last; l = pd->port_head; rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset; if (dd->ipath_flags & IPATH_NODMA_RTAIL) { u32 seq = ipath_hdrget_seq(rhf_addr); if (seq != pd->port_seq_cnt) goto bail; hdrqtail = 0; } else { hdrqtail = ipath_get_rcvhdrtail(pd); if (l == hdrqtail) goto bail; smp_rmb(); } reloop: for (last = 0, i = 1; !last; i += !last) { hdr = dd->ipath_f_get_msgheader(dd, rhf_addr); eflags = ipath_hdrget_err_flags(rhf_addr); etype = ipath_hdrget_rcv_type(rhf_addr); /* total length */ tlen = ipath_hdrget_length_in_bytes(rhf_addr); ebuf = NULL; if ((dd->ipath_flags & IPATH_NODMA_RTAIL) ? ipath_hdrget_use_egr_buf(rhf_addr) : (etype != RCVHQ_RCV_TYPE_EXPECTED)) { /* * It turns out that the chip uses an eager buffer * for all non-expected packets, whether it "needs" * one or not. So always get the index, but don't * set ebuf (so we try to copy data) unless the * length requires it. */ etail = ipath_hdrget_index(rhf_addr); updegr = 1; if (tlen > sizeof(*hdr) || etype == RCVHQ_RCV_TYPE_NON_KD) ebuf = ipath_get_egrbuf(dd, etail); } /* * both tiderr and ipathhdrerr are set for all plain IB * packets; only ipathhdrerr should be set. */ if (etype != RCVHQ_RCV_TYPE_NON_KD && etype != RCVHQ_RCV_TYPE_ERROR && ipath_hdrget_ipath_ver(hdr->iph.ver_port_tid_offset) != IPS_PROTO_VERSION) ipath_cdbg(PKT, "Bad InfiniPath protocol version " "%x\n", etype); if (unlikely(eflags)) ipath_rcv_hdrerr(dd, eflags, l, etail, rhf_addr, hdr); else if (etype == RCVHQ_RCV_TYPE_NON_KD) { ipath_ib_rcv(dd->verbs_dev, (u32 *)hdr, ebuf, tlen); if (dd->ipath_lli_counter) dd->ipath_lli_counter--; } else if (etype == RCVHQ_RCV_TYPE_EAGER) { u8 opcode = be32_to_cpu(hdr->bth[0]) >> 24; u32 qp = be32_to_cpu(hdr->bth[1]) & 0xffffff; ipath_cdbg(PKT, "typ %x, opcode %x (eager, " "qp=%x), len %x; ignored\n", etype, opcode, qp, tlen); } else if (etype == RCVHQ_RCV_TYPE_EXPECTED) ipath_dbg("Bug: Expected TID, opcode %x; ignored\n", be32_to_cpu(hdr->bth[0]) >> 24); else { /* * error packet, type of error unknown. * Probably type 3, but we don't know, so don't * even try to print the opcode, etc. * Usually caused by a "bad packet", that has no * BTH, when the LRH says it should. */ ipath_cdbg(ERRPKT, "Error Pkt, but no eflags! egrbuf" " %x, len %x hdrq+%x rhf: %Lx\n", etail, tlen, l, (unsigned long long) le64_to_cpu(*(__le64 *) rhf_addr)); if (ipath_debug & __IPATH_ERRPKTDBG) { u32 j, *d, dw = rsize-2; if (rsize > (tlen>>2)) dw = tlen>>2; d = (u32 *)hdr; printk(KERN_DEBUG "EPkt rcvhdr(%x dw):\n", dw); for (j = 0; j < dw; j++) printk(KERN_DEBUG "%8x%s", d[j], (j%8) == 7 ? "\n" : " "); printk(KERN_DEBUG ".\n"); } } l += rsize; if (l >= maxcnt) l = 0; rhf_addr = (__le32 *) pd->port_rcvhdrq + l + dd->ipath_rhf_offset; if (dd->ipath_flags & IPATH_NODMA_RTAIL) { u32 seq = ipath_hdrget_seq(rhf_addr); if (++pd->port_seq_cnt > 13) pd->port_seq_cnt = 1; if (seq != pd->port_seq_cnt) last = 1; } else if (l == hdrqtail) last = 1; /* * update head regs on last packet, and every 16 packets. * Reduce bus traffic, while still trying to prevent * rcvhdrq overflows, for when the queue is nearly full */ if (last || !(i & 0xf)) { u64 lval = l; /* request IBA6120 and 7220 interrupt only on last */ if (last) lval |= dd->ipath_rhdrhead_intr_off; ipath_write_ureg(dd, ur_rcvhdrhead, lval, pd->port_port); if (updegr) { ipath_write_ureg(dd, ur_rcvegrindexhead, etail, pd->port_port); updegr = 0; } } } if (!dd->ipath_rhdrhead_intr_off && !reloop && !(dd->ipath_flags & IPATH_NODMA_RTAIL)) { /* IBA6110 workaround; we can have a race clearing chip * interrupt with another interrupt about to be delivered, * and can clear it before it is delivered on the GPIO * workaround. By doing the extra check here for the * in-memory tail register updating while we were doing * earlier packets, we "almost" guarantee we have covered * that case. */ u32 hqtail = ipath_get_rcvhdrtail(pd); if (hqtail != hdrqtail) { hdrqtail = hqtail; reloop = 1; /* loop 1 extra time at most */ goto reloop; } } pkttot += i; pd->port_head = l; if (pkttot > ipath_stats.sps_maxpkts_call) ipath_stats.sps_maxpkts_call = pkttot; ipath_stats.sps_port0pkts += pkttot; ipath_stats.sps_avgpkts_call = ipath_stats.sps_port0pkts / ++totcalls; bail:; } /** * ipath_update_pio_bufs - update shadow copy of the PIO availability map * @dd: the infinipath device * * called whenever our local copy indicates we have run out of send buffers * NOTE: This can be called from interrupt context by some code * and from non-interrupt context by ipath_getpiobuf(). */ static void ipath_update_pio_bufs(struct ipath_devdata *dd) { unsigned long flags; int i; const unsigned piobregs = (unsigned)dd->ipath_pioavregs; /* If the generation (check) bits have changed, then we update the * busy bit for the corresponding PIO buffer. This algorithm will * modify positions to the value they already have in some cases * (i.e., no change), but it's faster than changing only the bits * that have changed. * * We would like to do this atomicly, to avoid spinlocks in the * critical send path, but that's not really possible, given the * type of changes, and that this routine could be called on * multiple cpu's simultaneously, so we lock in this routine only, * to avoid conflicting updates; all we change is the shadow, and * it's a single 64 bit memory location, so by definition the update * is atomic in terms of what other cpu's can see in testing the * bits. The spin_lock overhead isn't too bad, since it only * happens when all buffers are in use, so only cpu overhead, not * latency or bandwidth is affected. */ if (!dd->ipath_pioavailregs_dma) { ipath_dbg("Update shadow pioavail, but regs_dma NULL!\n"); return; } if (ipath_debug & __IPATH_VERBDBG) { /* only if packet debug and verbose */ volatile __le64 *dma = dd->ipath_pioavailregs_dma; unsigned long *shadow = dd->ipath_pioavailshadow; ipath_cdbg(PKT, "Refill avail, dma0=%llx shad0=%lx, " "d1=%llx s1=%lx, d2=%llx s2=%lx, d3=%llx " "s3=%lx\n", (unsigned long long) le64_to_cpu(dma[0]), shadow[0], (unsigned long long) le64_to_cpu(dma[1]), shadow[1], (unsigned long long) le64_to_cpu(dma[2]), shadow[2], (unsigned long long) le64_to_cpu(dma[3]), shadow[3]); if (piobregs > 4) ipath_cdbg( PKT, "2nd group, dma4=%llx shad4=%lx, " "d5=%llx s5=%lx, d6=%llx s6=%lx, " "d7=%llx s7=%lx\n", (unsigned long long) le64_to_cpu(dma[4]), shadow[4], (unsigned long long) le64_to_cpu(dma[5]), shadow[5], (unsigned long long) le64_to_cpu(dma[6]), shadow[6], (unsigned long long) le64_to_cpu(dma[7]), shadow[7]); } spin_lock_irqsave(&ipath_pioavail_lock, flags); for (i = 0; i < piobregs; i++) { u64 pchbusy, pchg, piov, pnew; /* * Chip Errata: bug 6641; even and odd qwords>3 are swapped */ if (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i ^ 1]); else piov = le64_to_cpu(dd->ipath_pioavailregs_dma[i]); pchg = dd->ipath_pioavailkernel[i] & ~(dd->ipath_pioavailshadow[i] ^ piov); pchbusy = pchg << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT; if (pchg && (pchbusy & dd->ipath_pioavailshadow[i])) { pnew = dd->ipath_pioavailshadow[i] & ~pchbusy; pnew |= piov & pchbusy; dd->ipath_pioavailshadow[i] = pnew; } } spin_unlock_irqrestore(&ipath_pioavail_lock, flags); } /* * used to force update of pioavailshadow if we can't get a pio buffer. * Needed primarily due to exitting freeze mode after recovering * from errors. Done lazily, because it's safer (known to not * be writing pio buffers). */ static void ipath_reset_availshadow(struct ipath_devdata *dd) { int i, im; unsigned long flags; spin_lock_irqsave(&ipath_pioavail_lock, flags); for (i = 0; i < dd->ipath_pioavregs; i++) { u64 val, oldval; /* deal with 6110 chip bug on high register #s */ im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ? i ^ 1 : i; val = le64_to_cpu(dd->ipath_pioavailregs_dma[im]); /* * busy out the buffers not in the kernel avail list, * without changing the generation bits. */ oldval = dd->ipath_pioavailshadow[i]; dd->ipath_pioavailshadow[i] = val | ((~dd->ipath_pioavailkernel[i] << INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT) & 0xaaaaaaaaaaaaaaaaULL); /* All BUSY bits in qword */ if (oldval != dd->ipath_pioavailshadow[i]) ipath_dbg("shadow[%d] was %Lx, now %lx\n", i, (unsigned long long) oldval, dd->ipath_pioavailshadow[i]); } spin_unlock_irqrestore(&ipath_pioavail_lock, flags); } /** * ipath_setrcvhdrsize - set the receive header size * @dd: the infinipath device * @rhdrsize: the receive header size * * called from user init code, and also layered driver init */ int ipath_setrcvhdrsize(struct ipath_devdata *dd, unsigned rhdrsize) { int ret = 0; if (dd->ipath_flags & IPATH_RCVHDRSZ_SET) { if (dd->ipath_rcvhdrsize != rhdrsize) { dev_info(&dd->pcidev->dev, "Error: can't set protocol header " "size %u, already %u\n", rhdrsize, dd->ipath_rcvhdrsize); ret = -EAGAIN; } else ipath_cdbg(VERBOSE, "Reuse same protocol header " "size %u\n", dd->ipath_rcvhdrsize); } else if (rhdrsize > (dd->ipath_rcvhdrentsize - (sizeof(u64) / sizeof(u32)))) { ipath_dbg("Error: can't set protocol header size %u " "(> max %u)\n", rhdrsize, dd->ipath_rcvhdrentsize - (u32) (sizeof(u64) / sizeof(u32))); ret = -EOVERFLOW; } else { dd->ipath_flags |= IPATH_RCVHDRSZ_SET; dd->ipath_rcvhdrsize = rhdrsize; ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvhdrsize, dd->ipath_rcvhdrsize); ipath_cdbg(VERBOSE, "Set protocol header size to %u\n", dd->ipath_rcvhdrsize); } return ret; } /* * debugging code and stats updates if no pio buffers available. */ static noinline void no_pio_bufs(struct ipath_devdata *dd) { unsigned long *shadow = dd->ipath_pioavailshadow; __le64 *dma = (__le64 *)dd->ipath_pioavailregs_dma; dd->ipath_upd_pio_shadow = 1; /* * not atomic, but if we lose a stat count in a while, that's OK */ ipath_stats.sps_nopiobufs++; if (!(++dd->ipath_consec_nopiobuf % 100000)) { ipath_force_pio_avail_update(dd); /* at start */ ipath_dbg("%u tries no piobufavail ts%lx; dmacopy: " "%llx %llx %llx %llx\n" "ipath shadow: %lx %lx %lx %lx\n", dd->ipath_consec_nopiobuf, (unsigned long)get_cycles(), (unsigned long long) le64_to_cpu(dma[0]), (unsigned long long) le64_to_cpu(dma[1]), (unsigned long long) le64_to_cpu(dma[2]), (unsigned long long) le64_to_cpu(dma[3]), shadow[0], shadow[1], shadow[2], shadow[3]); /* * 4 buffers per byte, 4 registers above, cover rest * below */ if ((dd->ipath_piobcnt2k + dd->ipath_piobcnt4k) > (sizeof(shadow[0]) * 4 * 4)) ipath_dbg("2nd group: dmacopy: " "%llx %llx %llx %llx\n" "ipath shadow: %lx %lx %lx %lx\n", (unsigned long long)le64_to_cpu(dma[4]), (unsigned long long)le64_to_cpu(dma[5]), (unsigned long long)le64_to_cpu(dma[6]), (unsigned long long)le64_to_cpu(dma[7]), shadow[4], shadow[5], shadow[6], shadow[7]); /* at end, so update likely happened */ ipath_reset_availshadow(dd); } } /* * common code for normal driver pio buffer allocation, and reserved * allocation. * * do appropriate marking as busy, etc. * returns buffer number if one found (>=0), negative number is error. */ static u32 __iomem *ipath_getpiobuf_range(struct ipath_devdata *dd, u32 *pbufnum, u32 first, u32 last, u32 firsti) { int i, j, updated = 0; unsigned piobcnt; unsigned long flags; unsigned long *shadow = dd->ipath_pioavailshadow; u32 __iomem *buf; piobcnt = last - first; if (dd->ipath_upd_pio_shadow) { /* * Minor optimization. If we had no buffers on last call, * start out by doing the update; continue and do scan even * if no buffers were updated, to be paranoid */ ipath_update_pio_bufs(dd); updated++; i = first; } else i = firsti; rescan: /* * while test_and_set_bit() is atomic, we do that and then the * change_bit(), and the pair is not. See if this is the cause * of the remaining armlaunch errors. */ spin_lock_irqsave(&ipath_pioavail_lock, flags); for (j = 0; j < piobcnt; j++, i++) { if (i >= last) i = first; if (__test_and_set_bit((2 * i) + 1, shadow)) continue; /* flip generation bit */ __change_bit(2 * i, shadow); break; } spin_unlock_irqrestore(&ipath_pioavail_lock, flags); if (j == piobcnt) { if (!updated) { /* * first time through; shadow exhausted, but may be * buffers available, try an update and then rescan. */ ipath_update_pio_bufs(dd); updated++; i = first; goto rescan; } else if (updated == 1 && piobcnt <= ((dd->ipath_sendctrl >> INFINIPATH_S_UPDTHRESH_SHIFT) & INFINIPATH_S_UPDTHRESH_MASK)) { /* * for chips supporting and using the update * threshold we need to force an update of the * in-memory copy if the count is less than the * thershold, then check one more time. */ ipath_force_pio_avail_update(dd); ipath_update_pio_bufs(dd); updated++; i = first; goto rescan; } no_pio_bufs(dd); buf = NULL; } else { if (i < dd->ipath_piobcnt2k) buf = (u32 __iomem *) (dd->ipath_pio2kbase + i * dd->ipath_palign); else buf = (u32 __iomem *) (dd->ipath_pio4kbase + (i - dd->ipath_piobcnt2k) * dd->ipath_4kalign); if (pbufnum) *pbufnum = i; } return buf; } /** * ipath_getpiobuf - find an available pio buffer * @dd: the infinipath device * @plen: the size of the PIO buffer needed in 32-bit words * @pbufnum: the buffer number is placed here */ u32 __iomem *ipath_getpiobuf(struct ipath_devdata *dd, u32 plen, u32 *pbufnum) { u32 __iomem *buf; u32 pnum, nbufs; u32 first, lasti; if (plen + 1 >= IPATH_SMALLBUF_DWORDS) { first = dd->ipath_piobcnt2k; lasti = dd->ipath_lastpioindexl; } else { first = 0; lasti = dd->ipath_lastpioindex; } nbufs = dd->ipath_piobcnt2k + dd->ipath_piobcnt4k; buf = ipath_getpiobuf_range(dd, &pnum, first, nbufs, lasti); if (buf) { /* * Set next starting place. It's just an optimization, * it doesn't matter who wins on this, so no locking */ if (plen + 1 >= IPATH_SMALLBUF_DWORDS) dd->ipath_lastpioindexl = pnum + 1; else dd->ipath_lastpioindex = pnum + 1; if (dd->ipath_upd_pio_shadow) dd->ipath_upd_pio_shadow = 0; if (dd->ipath_consec_nopiobuf) dd->ipath_consec_nopiobuf = 0; ipath_cdbg(VERBOSE, "Return piobuf%u %uk @ %p\n", pnum, (pnum < dd->ipath_piobcnt2k) ? 2 : 4, buf); if (pbufnum) *pbufnum = pnum; } return buf; } /** * ipath_chg_pioavailkernel - change which send buffers are available for kernel * @dd: the infinipath device * @start: the starting send buffer number * @len: the number of send buffers * @avail: true if the buffers are available for kernel use, false otherwise */ void ipath_chg_pioavailkernel(struct ipath_devdata *dd, unsigned start, unsigned len, int avail) { unsigned long flags; unsigned end, cnt = 0; /* There are two bits per send buffer (busy and generation) */ start *= 2; end = start + len * 2; spin_lock_irqsave(&ipath_pioavail_lock, flags); /* Set or clear the busy bit in the shadow. */ while (start < end) { if (avail) { unsigned long dma; int i, im; /* * the BUSY bit will never be set, because we disarm * the user buffers before we hand them back to the * kernel. We do have to make sure the generation * bit is set correctly in shadow, since it could * have changed many times while allocated to user. * We can't use the bitmap functions on the full * dma array because it is always little-endian, so * we have to flip to host-order first. * BITS_PER_LONG is slightly wrong, since it's * always 64 bits per register in chip... * We only work on 64 bit kernels, so that's OK. */ /* deal with 6110 chip bug on high register #s */ i = start / BITS_PER_LONG; im = (i > 3 && (dd->ipath_flags & IPATH_SWAP_PIOBUFS)) ? i ^ 1 : i; __clear_bit(INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT + start, dd->ipath_pioavailshadow); dma = (unsigned long) le64_to_cpu( dd->ipath_pioavailregs_dma[im]); if (test_bit((INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT + start) % BITS_PER_LONG, &dma)) __set_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT + start, dd->ipath_pioavailshadow); else __clear_bit(INFINIPATH_SENDPIOAVAIL_CHECK_SHIFT + start, dd->ipath_pioavailshadow); __set_bit(start, dd->ipath_pioavailkernel); } else { __set_bit(start + INFINIPATH_SENDPIOAVAIL_BUSY_SHIFT, dd->ipath_pioavailshadow); __clear_bit(start, dd->ipath_pioavailkernel); } start += 2; } if (dd->ipath_pioupd_thresh) { end = 2 * (dd->ipath_piobcnt2k + dd->ipath_piobcnt4k); cnt = bitmap_weight(dd->ipath_pioavailkernel, end); } spin_unlock_irqrestore(&ipath_pioavail_lock, flags); /* * When moving buffers from kernel to user, if number assigned to * the user is less than the pio update threshold, and threshold * is supported (cnt was computed > 0), drop the update threshold * so we update at least once per allocated number of buffers. * In any case, if the kernel buffers are less than the threshold, * drop the threshold. We don't bother increasing it, having once * decreased it, since it would typically just cycle back and forth. * If we don't decrease below buffers in use, we can wait a long * time for an update, until some other context uses PIO buffers. */ if (!avail && len < cnt) cnt = len; if (cnt < dd->ipath_pioupd_thresh) { dd->ipath_pioupd_thresh = cnt; ipath_dbg("Decreased pio update threshold to %u\n", dd->ipath_pioupd_thresh); spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); dd->ipath_sendctrl &= ~(INFINIPATH_S_UPDTHRESH_MASK << INFINIPATH_S_UPDTHRESH_SHIFT); dd->ipath_sendctrl |= dd->ipath_pioupd_thresh << INFINIPATH_S_UPDTHRESH_SHIFT; ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl); spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); } } /** * ipath_create_rcvhdrq - create a receive header queue * @dd: the infinipath device * @pd: the port data * * this must be contiguous memory (from an i/o perspective), and must be * DMA'able (which means for some systems, it will go through an IOMMU, * or be forced into a low address range). */ int ipath_create_rcvhdrq(struct ipath_devdata *dd, struct ipath_portdata *pd) { int ret = 0; if (!pd->port_rcvhdrq) { dma_addr_t phys_hdrqtail; gfp_t gfp_flags = GFP_USER | __GFP_COMP; int amt = ALIGN(dd->ipath_rcvhdrcnt * dd->ipath_rcvhdrentsize * sizeof(u32), PAGE_SIZE); pd->port_rcvhdrq = dma_alloc_coherent( &dd->pcidev->dev, amt, &pd->port_rcvhdrq_phys, gfp_flags); if (!pd->port_rcvhdrq) { ipath_dev_err(dd, "attempt to allocate %d bytes " "for port %u rcvhdrq failed\n", amt, pd->port_port); ret = -ENOMEM; goto bail; } if (!(dd->ipath_flags & IPATH_NODMA_RTAIL)) { pd->port_rcvhdrtail_kvaddr = dma_alloc_coherent( &dd->pcidev->dev, PAGE_SIZE, &phys_hdrqtail, GFP_KERNEL); if (!pd->port_rcvhdrtail_kvaddr) { ipath_dev_err(dd, "attempt to allocate 1 page " "for port %u rcvhdrqtailaddr " "failed\n", pd->port_port); ret = -ENOMEM; dma_free_coherent(&dd->pcidev->dev, amt, pd->port_rcvhdrq, pd->port_rcvhdrq_phys); pd->port_rcvhdrq = NULL; goto bail; } pd->port_rcvhdrqtailaddr_phys = phys_hdrqtail; ipath_cdbg(VERBOSE, "port %d hdrtailaddr, %llx " "physical\n", pd->port_port, (unsigned long long) phys_hdrqtail); } pd->port_rcvhdrq_size = amt; ipath_cdbg(VERBOSE, "%d pages at %p (phys %lx) size=%lu " "for port %u rcvhdr Q\n", amt >> PAGE_SHIFT, pd->port_rcvhdrq, (unsigned long) pd->port_rcvhdrq_phys, (unsigned long) pd->port_rcvhdrq_size, pd->port_port); } else ipath_cdbg(VERBOSE, "reuse port %d rcvhdrq @%p %llx phys; " "hdrtailaddr@%p %llx physical\n", pd->port_port, pd->port_rcvhdrq, (unsigned long long) pd->port_rcvhdrq_phys, pd->port_rcvhdrtail_kvaddr, (unsigned long long) pd->port_rcvhdrqtailaddr_phys); /* clear for security and sanity on each use */ memset(pd->port_rcvhdrq, 0, pd->port_rcvhdrq_size); if (pd->port_rcvhdrtail_kvaddr) memset(pd->port_rcvhdrtail_kvaddr, 0, PAGE_SIZE); /* * tell chip each time we init it, even if we are re-using previous * memory (we zero the register at process close) */ ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdrtailaddr, pd->port_port, pd->port_rcvhdrqtailaddr_phys); ipath_write_kreg_port(dd, dd->ipath_kregs->kr_rcvhdraddr, pd->port_port, pd->port_rcvhdrq_phys); bail: return ret; } /* * Flush all sends that might be in the ready to send state, as well as any * that are in the process of being sent. Used whenever we need to be * sure the send side is idle. Cleans up all buffer state by canceling * all pio buffers, and issuing an abort, which cleans up anything in the * launch fifo. The cancel is superfluous on some chip versions, but * it's safer to always do it. * PIOAvail bits are updated by the chip as if normal send had happened. */ void ipath_cancel_sends(struct ipath_devdata *dd, int restore_sendctrl) { unsigned long flags; if (dd->ipath_flags & IPATH_IB_AUTONEG_INPROG) { ipath_cdbg(VERBOSE, "Ignore while in autonegotiation\n"); goto bail; } /* * If we have SDMA, and it's not disabled, we have to kick off the * abort state machine, provided we aren't already aborting. * If we are in the process of aborting SDMA (!DISABLED, but ABORTING), * we skip the rest of this routine. It is already "in progress" */ if (dd->ipath_flags & IPATH_HAS_SEND_DMA) { int skip_cancel; unsigned long *statp = &dd->ipath_sdma_status; spin_lock_irqsave(&dd->ipath_sdma_lock, flags); skip_cancel = test_and_set_bit(IPATH_SDMA_ABORTING, statp) && !test_bit(IPATH_SDMA_DISABLED, statp); spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags); if (skip_cancel) goto bail; } ipath_dbg("Cancelling all in-progress send buffers\n"); /* skip armlaunch errs for a while */ dd->ipath_lastcancel = jiffies + HZ / 2; /* * The abort bit is auto-clearing. We also don't want pioavail * update happening during this, and we don't want any other * sends going out, so turn those off for the duration. We read * the scratch register to be sure that cancels and the abort * have taken effect in the chip. Otherwise two parts are same * as ipath_force_pio_avail_update() */ spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); dd->ipath_sendctrl &= ~(INFINIPATH_S_PIOBUFAVAILUPD | INFINIPATH_S_PIOENABLE); ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl | INFINIPATH_S_ABORT); ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); /* disarm all send buffers */ ipath_disarm_piobufs(dd, 0, dd->ipath_piobcnt2k + dd->ipath_piobcnt4k); if (dd->ipath_flags & IPATH_HAS_SEND_DMA) set_bit(IPATH_SDMA_DISARMED, &dd->ipath_sdma_status); if (restore_sendctrl) { /* else done by caller later if needed */ spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); dd->ipath_sendctrl |= INFINIPATH_S_PIOBUFAVAILUPD | INFINIPATH_S_PIOENABLE; ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl); /* and again, be sure all have hit the chip */ ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); } if ((dd->ipath_flags & IPATH_HAS_SEND_DMA) && !test_bit(IPATH_SDMA_DISABLED, &dd->ipath_sdma_status) && test_bit(IPATH_SDMA_RUNNING, &dd->ipath_sdma_status)) { spin_lock_irqsave(&dd->ipath_sdma_lock, flags); /* only wait so long for intr */ dd->ipath_sdma_abort_intr_timeout = jiffies + HZ; dd->ipath_sdma_reset_wait = 200; if (!test_bit(IPATH_SDMA_SHUTDOWN, &dd->ipath_sdma_status)) tasklet_hi_schedule(&dd->ipath_sdma_abort_task); spin_unlock_irqrestore(&dd->ipath_sdma_lock, flags); } bail:; } /* * Force an update of in-memory copy of the pioavail registers, when * needed for any of a variety of reasons. We read the scratch register * to make it highly likely that the update will have happened by the * time we return. If already off (as in cancel_sends above), this * routine is a nop, on the assumption that the caller will "do the * right thing". */ void ipath_force_pio_avail_update(struct ipath_devdata *dd) { unsigned long flags; spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); if (dd->ipath_sendctrl & INFINIPATH_S_PIOBUFAVAILUPD) { ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl & ~INFINIPATH_S_PIOBUFAVAILUPD); ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl); ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); } spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); } static void ipath_set_ib_lstate(struct ipath_devdata *dd, int linkcmd, int linitcmd) { u64 mod_wd; static const char *what[4] = { [0] = "NOP", [INFINIPATH_IBCC_LINKCMD_DOWN] = "DOWN", [INFINIPATH_IBCC_LINKCMD_ARMED] = "ARMED", [INFINIPATH_IBCC_LINKCMD_ACTIVE] = "ACTIVE" }; if (linitcmd == INFINIPATH_IBCC_LINKINITCMD_DISABLE) { /* * If we are told to disable, note that so link-recovery * code does not attempt to bring us back up. */ preempt_disable(); dd->ipath_flags |= IPATH_IB_LINK_DISABLED; preempt_enable(); } else if (linitcmd) { /* * Any other linkinitcmd will lead to LINKDOWN and then * to INIT (if all is well), so clear flag to let * link-recovery code attempt to bring us back up. */ preempt_disable(); dd->ipath_flags &= ~IPATH_IB_LINK_DISABLED; preempt_enable(); } mod_wd = (linkcmd << dd->ibcc_lc_shift) | (linitcmd << INFINIPATH_IBCC_LINKINITCMD_SHIFT); ipath_cdbg(VERBOSE, "Moving unit %u to %s (initcmd=0x%x), current ltstate is %s\n", dd->ipath_unit, what[linkcmd], linitcmd, ipath_ibcstatus_str[ipath_ib_linktrstate(dd, ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus))]); ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl, dd->ipath_ibcctrl | mod_wd); /* read from chip so write is flushed */ (void) ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); } int ipath_set_linkstate(struct ipath_devdata *dd, u8 newstate) { u32 lstate; int ret; switch (newstate) { case IPATH_IB_LINKDOWN_ONLY: ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, 0); /* don't wait */ ret = 0; goto bail; case IPATH_IB_LINKDOWN: ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, INFINIPATH_IBCC_LINKINITCMD_POLL); /* don't wait */ ret = 0; goto bail; case IPATH_IB_LINKDOWN_SLEEP: ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, INFINIPATH_IBCC_LINKINITCMD_SLEEP); /* don't wait */ ret = 0; goto bail; case IPATH_IB_LINKDOWN_DISABLE: ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_DOWN, INFINIPATH_IBCC_LINKINITCMD_DISABLE); /* don't wait */ ret = 0; goto bail; case IPATH_IB_LINKARM: if (dd->ipath_flags & IPATH_LINKARMED) { ret = 0; goto bail; } if (!(dd->ipath_flags & (IPATH_LINKINIT | IPATH_LINKACTIVE))) { ret = -EINVAL; goto bail; } ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ARMED, 0); /* * Since the port can transition to ACTIVE by receiving * a non VL 15 packet, wait for either state. */ lstate = IPATH_LINKARMED | IPATH_LINKACTIVE; break; case IPATH_IB_LINKACTIVE: if (dd->ipath_flags & IPATH_LINKACTIVE) { ret = 0; goto bail; } if (!(dd->ipath_flags & IPATH_LINKARMED)) { ret = -EINVAL; goto bail; } ipath_set_ib_lstate(dd, INFINIPATH_IBCC_LINKCMD_ACTIVE, 0); lstate = IPATH_LINKACTIVE; break; case IPATH_IB_LINK_LOOPBACK: dev_info(&dd->pcidev->dev, "Enabling IB local loopback\n"); dd->ipath_ibcctrl |= INFINIPATH_IBCC_LOOPBACK; ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl, dd->ipath_ibcctrl); /* turn heartbeat off, as it causes loopback to fail */ dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT, IPATH_IB_HRTBT_OFF); /* don't wait */ ret = 0; goto bail; case IPATH_IB_LINK_EXTERNAL: dev_info(&dd->pcidev->dev, "Disabling IB local loopback (normal)\n"); dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT, IPATH_IB_HRTBT_ON); dd->ipath_ibcctrl &= ~INFINIPATH_IBCC_LOOPBACK; ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl, dd->ipath_ibcctrl); /* don't wait */ ret = 0; goto bail; /* * Heartbeat can be explicitly enabled by the user via * "hrtbt_enable" "file", and if disabled, trying to enable here * will have no effect. Implicit changes (heartbeat off when * loopback on, and vice versa) are included to ease testing. */ case IPATH_IB_LINK_HRTBT: ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT, IPATH_IB_HRTBT_ON); goto bail; case IPATH_IB_LINK_NO_HRTBT: ret = dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_HRTBT, IPATH_IB_HRTBT_OFF); goto bail; default: ipath_dbg("Invalid linkstate 0x%x requested\n", newstate); ret = -EINVAL; goto bail; } ret = ipath_wait_linkstate(dd, lstate, 2000); bail: return ret; } /** * ipath_set_mtu - set the MTU * @dd: the infinipath device * @arg: the new MTU * * we can handle "any" incoming size, the issue here is whether we * need to restrict our outgoing size. For now, we don't do any * sanity checking on this, and we don't deal with what happens to * programs that are already running when the size changes. * NOTE: changing the MTU will usually cause the IBC to go back to * link INIT state... */ int ipath_set_mtu(struct ipath_devdata *dd, u16 arg) { u32 piosize; int changed = 0; int ret; /* * mtu is IB data payload max. It's the largest power of 2 less * than piosize (or even larger, since it only really controls the * largest we can receive; we can send the max of the mtu and * piosize). We check that it's one of the valid IB sizes. */ if (arg != 256 && arg != 512 && arg != 1024 && arg != 2048 && (arg != 4096 || !ipath_mtu4096)) { ipath_dbg("Trying to set invalid mtu %u, failing\n", arg); ret = -EINVAL; goto bail; } if (dd->ipath_ibmtu == arg) { ret = 0; /* same as current */ goto bail; } piosize = dd->ipath_ibmaxlen; dd->ipath_ibmtu = arg; if (arg >= (piosize - IPATH_PIO_MAXIBHDR)) { /* Only if it's not the initial value (or reset to it) */ if (piosize != dd->ipath_init_ibmaxlen) { if (arg > piosize && arg <= dd->ipath_init_ibmaxlen) piosize = dd->ipath_init_ibmaxlen; dd->ipath_ibmaxlen = piosize; changed = 1; } } else if ((arg + IPATH_PIO_MAXIBHDR) != dd->ipath_ibmaxlen) { piosize = arg + IPATH_PIO_MAXIBHDR; ipath_cdbg(VERBOSE, "ibmaxlen was 0x%x, setting to 0x%x " "(mtu 0x%x)\n", dd->ipath_ibmaxlen, piosize, arg); dd->ipath_ibmaxlen = piosize; changed = 1; } if (changed) { u64 ibc = dd->ipath_ibcctrl, ibdw; /* * update our housekeeping variables, and set IBC max * size, same as init code; max IBC is max we allow in * buffer, less the qword pbc, plus 1 for ICRC, in dwords */ dd->ipath_ibmaxlen = piosize - 2 * sizeof(u32); ibdw = (dd->ipath_ibmaxlen >> 2) + 1; ibc &= ~(INFINIPATH_IBCC_MAXPKTLEN_MASK << dd->ibcc_mpl_shift); ibc |= ibdw << dd->ibcc_mpl_shift; dd->ipath_ibcctrl = ibc; ipath_write_kreg(dd, dd->ipath_kregs->kr_ibcctrl, dd->ipath_ibcctrl); dd->ipath_f_tidtemplate(dd); } ret = 0; bail: return ret; } int ipath_set_lid(struct ipath_devdata *dd, u32 lid, u8 lmc) { dd->ipath_lid = lid; dd->ipath_lmc = lmc; dd->ipath_f_set_ib_cfg(dd, IPATH_IB_CFG_LIDLMC, lid | (~((1U << lmc) - 1)) << 16); dev_info(&dd->pcidev->dev, "We got a lid: 0x%x\n", lid); return 0; } /** * ipath_write_kreg_port - write a device's per-port 64-bit kernel register * @dd: the infinipath device * @regno: the register number to write * @port: the port containing the register * @value: the value to write * * Registers that vary with the chip implementation constants (port) * use this routine. */ void ipath_write_kreg_port(const struct ipath_devdata *dd, ipath_kreg regno, unsigned port, u64 value) { u16 where; if (port < dd->ipath_portcnt && (regno == dd->ipath_kregs->kr_rcvhdraddr || regno == dd->ipath_kregs->kr_rcvhdrtailaddr)) where = regno + port; else where = -1; ipath_write_kreg(dd, where, value); } /* * Following deal with the "obviously simple" task of overriding the state * of the LEDS, which normally indicate link physical and logical status. * The complications arise in dealing with different hardware mappings * and the board-dependent routine being called from interrupts. * and then there's the requirement to _flash_ them. */ #define LED_OVER_FREQ_SHIFT 8 #define LED_OVER_FREQ_MASK (0xFF<ipath_flags & IPATH_INITTED)) return; pidx = dd->ipath_led_override_phase++ & 1; dd->ipath_led_override = dd->ipath_led_override_vals[pidx]; timeoff = dd->ipath_led_override_timeoff; /* * below potentially restores the LED values per current status, * should also possibly setup the traffic-blink register, * but leave that to per-chip functions. */ val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_ibcstatus); ltstate = ipath_ib_linktrstate(dd, val); lstate = ipath_ib_linkstate(dd, val); dd->ipath_f_setextled(dd, lstate, ltstate); mod_timer(&dd->ipath_led_override_timer, jiffies + timeoff); } void ipath_set_led_override(struct ipath_devdata *dd, unsigned int val) { int timeoff, freq; if (!(dd->ipath_flags & IPATH_INITTED)) return; /* First check if we are blinking. If not, use 1HZ polling */ timeoff = HZ; freq = (val & LED_OVER_FREQ_MASK) >> LED_OVER_FREQ_SHIFT; if (freq) { /* For blink, set each phase from one nybble of val */ dd->ipath_led_override_vals[0] = val & 0xF; dd->ipath_led_override_vals[1] = (val >> 4) & 0xF; timeoff = (HZ << 4)/freq; } else { /* Non-blink set both phases the same. */ dd->ipath_led_override_vals[0] = val & 0xF; dd->ipath_led_override_vals[1] = val & 0xF; } dd->ipath_led_override_timeoff = timeoff; /* * If the timer has not already been started, do so. Use a "quick" * timeout so the function will be called soon, to look at our request. */ if (atomic_inc_return(&dd->ipath_led_override_timer_active) == 1) { /* Need to start timer */ init_timer(&dd->ipath_led_override_timer); dd->ipath_led_override_timer.function = ipath_run_led_override; dd->ipath_led_override_timer.data = (unsigned long) dd; dd->ipath_led_override_timer.expires = jiffies + 1; add_timer(&dd->ipath_led_override_timer); } else atomic_dec(&dd->ipath_led_override_timer_active); } /** * ipath_shutdown_device - shut down a device * @dd: the infinipath device * * This is called to make the device quiet when we are about to * unload the driver, and also when the device is administratively * disabled. It does not free any data structures. * Everything it does has to be setup again by ipath_init_chip(dd,1) */ void ipath_shutdown_device(struct ipath_devdata *dd) { unsigned long flags; ipath_dbg("Shutting down the device\n"); ipath_hol_up(dd); /* make sure user processes aren't suspended */ dd->ipath_flags |= IPATH_LINKUNK; dd->ipath_flags &= ~(IPATH_INITTED | IPATH_LINKDOWN | IPATH_LINKINIT | IPATH_LINKARMED | IPATH_LINKACTIVE); *dd->ipath_statusp &= ~(IPATH_STATUS_IB_CONF | IPATH_STATUS_IB_READY); /* mask interrupts, but not errors */ ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL); dd->ipath_rcvctrl = 0; ipath_write_kreg(dd, dd->ipath_kregs->kr_rcvctrl, dd->ipath_rcvctrl); if (dd->ipath_flags & IPATH_HAS_SEND_DMA) teardown_sdma(dd); /* * gracefully stop all sends allowing any in progress to trickle out * first. */ spin_lock_irqsave(&dd->ipath_sendctrl_lock, flags); dd->ipath_sendctrl = 0; ipath_write_kreg(dd, dd->ipath_kregs->kr_sendctrl, dd->ipath_sendctrl); /* flush it */ ipath_read_kreg64(dd, dd->ipath_kregs->kr_scratch); spin_unlock_irqrestore(&dd->ipath_sendctrl_lock, flags); /* * enough for anything that's going to trickle out to have actually * done so. */ udelay(5); dd->ipath_f_setextled(dd, 0, 0); /* make sure LEDs are off */ ipath_set_ib_lstate(dd, 0, INFINIPATH_IBCC_LINKINITCMD_DISABLE); ipath_cancel_sends(dd, 0); /* * we are shutting down, so tell components that care. We don't do * this on just a link state change, much like ethernet, a cable * unplug, etc. doesn't change driver state */ signal_ib_event(dd, IB_EVENT_PORT_ERR); /* disable IBC */ dd->ipath_control &= ~INFINIPATH_C_LINKENABLE; ipath_write_kreg(dd, dd->ipath_kregs->kr_control, dd->ipath_control | INFINIPATH_C_FREEZEMODE); /* * clear SerdesEnable and turn the leds off; do this here because * we are unloading, so don't count on interrupts to move along * Turn the LEDs off explictly for the same reason. */ dd->ipath_f_quiet_serdes(dd); /* stop all the timers that might still be running */ del_timer_sync(&dd->ipath_hol_timer); if (dd->ipath_stats_timer_active) { del_timer_sync(&dd->ipath_stats_timer); dd->ipath_stats_timer_active = 0; } if (dd->ipath_intrchk_timer.data) { del_timer_sync(&dd->ipath_intrchk_timer); dd->ipath_intrchk_timer.data = 0; } if (atomic_read(&dd->ipath_led_override_timer_active)) { del_timer_sync(&dd->ipath_led_override_timer); atomic_set(&dd->ipath_led_override_timer_active, 0); } /* * clear all interrupts and errors, so that the next time the driver * is loaded or device is enabled, we know that whatever is set * happened while we were unloaded */ ipath_write_kreg(dd, dd->ipath_kregs->kr_hwerrclear, ~0ULL & ~INFINIPATH_HWE_MEMBISTFAILED); ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, -1LL); ipath_write_kreg(dd, dd->ipath_kregs->kr_intclear, -1LL); ipath_cdbg(VERBOSE, "Flush time and errors to EEPROM\n"); ipath_update_eeprom_log(dd); } /** * ipath_free_pddata - free a port's allocated data * @dd: the infinipath device * @pd: the portdata structure * * free up any allocated data for a port * This should not touch anything that would affect a simultaneous * re-allocation of port data, because it is called after ipath_mutex * is released (and can be called from reinit as well). * It should never change any chip state, or global driver state. * (The only exception to global state is freeing the port0 port0_skbs.) */ void ipath_free_pddata(struct ipath_devdata *dd, struct ipath_portdata *pd) { if (!pd) return; if (pd->port_rcvhdrq) { ipath_cdbg(VERBOSE, "free closed port %d rcvhdrq @ %p " "(size=%lu)\n", pd->port_port, pd->port_rcvhdrq, (unsigned long) pd->port_rcvhdrq_size); dma_free_coherent(&dd->pcidev->dev, pd->port_rcvhdrq_size, pd->port_rcvhdrq, pd->port_rcvhdrq_phys); pd->port_rcvhdrq = NULL; if (pd->port_rcvhdrtail_kvaddr) { dma_free_coherent(&dd->pcidev->dev, PAGE_SIZE, pd->port_rcvhdrtail_kvaddr, pd->port_rcvhdrqtailaddr_phys); pd->port_rcvhdrtail_kvaddr = NULL; } } if (pd->port_port && pd->port_rcvegrbuf) { unsigned e; for (e = 0; e < pd->port_rcvegrbuf_chunks; e++) { void *base = pd->port_rcvegrbuf[e]; size_t size = pd->port_rcvegrbuf_size; ipath_cdbg(VERBOSE, "egrbuf free(%p, %lu), " "chunk %u/%u\n", base, (unsigned long) size, e, pd->port_rcvegrbuf_chunks); dma_free_coherent(&dd->pcidev->dev, size, base, pd->port_rcvegrbuf_phys[e]); } kfree(pd->port_rcvegrbuf); pd->port_rcvegrbuf = NULL; kfree(pd->port_rcvegrbuf_phys); pd->port_rcvegrbuf_phys = NULL; pd->port_rcvegrbuf_chunks = 0; } else if (pd->port_port == 0 && dd->ipath_port0_skbinfo) { unsigned e; struct ipath_skbinfo *skbinfo = dd->ipath_port0_skbinfo; dd->ipath_port0_skbinfo = NULL; ipath_cdbg(VERBOSE, "free closed port %d " "ipath_port0_skbinfo @ %p\n", pd->port_port, skbinfo); for (e = 0; e < dd->ipath_p0_rcvegrcnt; e++) if (skbinfo[e].skb) { pci_unmap_single(dd->pcidev, skbinfo[e].phys, dd->ipath_ibmaxlen, PCI_DMA_FROMDEVICE); dev_kfree_skb(skbinfo[e].skb); } vfree(skbinfo); } kfree(pd->port_tid_pg_list); vfree(pd->subport_uregbase); vfree(pd->subport_rcvegrbuf); vfree(pd->subport_rcvhdr_base); kfree(pd); } static int __init infinipath_init(void) { int ret; if (ipath_debug & __IPATH_DBG) printk(KERN_INFO DRIVER_LOAD_MSG "%s", ib_ipath_version); /* * These must be called before the driver is registered with * the PCI subsystem. */ idr_init(&unit_table); if (!idr_pre_get(&unit_table, GFP_KERNEL)) { printk(KERN_ERR IPATH_DRV_NAME ": idr_pre_get() failed\n"); ret = -ENOMEM; goto bail; } ret = pci_register_driver(&ipath_driver); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Unable to register driver: error %d\n", -ret); goto bail_unit; } ret = ipath_init_ipathfs(); if (ret < 0) { printk(KERN_ERR IPATH_DRV_NAME ": Unable to create " "ipathfs: error %d\n", -ret); goto bail_pci; } goto bail; bail_pci: pci_unregister_driver(&ipath_driver); bail_unit: idr_destroy(&unit_table); bail: return ret; } static void __exit infinipath_cleanup(void) { ipath_exit_ipathfs(); ipath_cdbg(VERBOSE, "Unregistering pci driver\n"); pci_unregister_driver(&ipath_driver); idr_destroy(&unit_table); } /** * ipath_reset_device - reset the chip if possible * @unit: the device to reset * * Whether or not reset is successful, we attempt to re-initialize the chip * (that is, much like a driver unload/reload). We clear the INITTED flag * so that the various entry points will fail until we reinitialize. For * now, we only allow this if no user ports are open that use chip resources */ int ipath_reset_device(int unit) { int ret, i; struct ipath_devdata *dd = ipath_lookup(unit); unsigned long flags; if (!dd) { ret = -ENODEV; goto bail; } if (atomic_read(&dd->ipath_led_override_timer_active)) { /* Need to stop LED timer, _then_ shut off LEDs */ del_timer_sync(&dd->ipath_led_override_timer); atomic_set(&dd->ipath_led_override_timer_active, 0); } /* Shut off LEDs after we are sure timer is not running */ dd->ipath_led_override = LED_OVER_BOTH_OFF; dd->ipath_f_setextled(dd, 0, 0); dev_info(&dd->pcidev->dev, "Reset on unit %u requested\n", unit); if (!dd->ipath_kregbase || !(dd->ipath_flags & IPATH_PRESENT)) { dev_info(&dd->pcidev->dev, "Invalid unit number %u or " "not initialized or not present\n", unit); ret = -ENXIO; goto bail; } spin_lock_irqsave(&dd->ipath_uctxt_lock, flags); if (dd->ipath_pd) for (i = 1; i < dd->ipath_cfgports; i++) { if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt) continue; spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags); ipath_dbg("unit %u port %d is in use " "(PID %u cmd %s), can't reset\n", unit, i, pid_nr(dd->ipath_pd[i]->port_pid), dd->ipath_pd[i]->port_comm); ret = -EBUSY; goto bail; } spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags); if (dd->ipath_flags & IPATH_HAS_SEND_DMA) teardown_sdma(dd); dd->ipath_flags &= ~IPATH_INITTED; ipath_write_kreg(dd, dd->ipath_kregs->kr_intmask, 0ULL); ret = dd->ipath_f_reset(dd); if (ret == 1) { ipath_dbg("Reinitializing unit %u after reset attempt\n", unit); ret = ipath_init_chip(dd, 1); } else ret = -EAGAIN; if (ret) ipath_dev_err(dd, "Reinitialize unit %u after " "reset failed with %d\n", unit, ret); else dev_info(&dd->pcidev->dev, "Reinitialized unit %u after " "resetting\n", unit); bail: return ret; } /* * send a signal to all the processes that have the driver open * through the normal interfaces (i.e., everything other than diags * interface). Returns number of signalled processes. */ static int ipath_signal_procs(struct ipath_devdata *dd, int sig) { int i, sub, any = 0; struct pid *pid; unsigned long flags; if (!dd->ipath_pd) return 0; spin_lock_irqsave(&dd->ipath_uctxt_lock, flags); for (i = 1; i < dd->ipath_cfgports; i++) { if (!dd->ipath_pd[i] || !dd->ipath_pd[i]->port_cnt) continue; pid = dd->ipath_pd[i]->port_pid; if (!pid) continue; dev_info(&dd->pcidev->dev, "context %d in use " "(PID %u), sending signal %d\n", i, pid_nr(pid), sig); kill_pid(pid, sig, 1); any++; for (sub = 0; sub < INFINIPATH_MAX_SUBPORT; sub++) { pid = dd->ipath_pd[i]->port_subpid[sub]; if (!pid) continue; dev_info(&dd->pcidev->dev, "sub-context " "%d:%d in use (PID %u), sending " "signal %d\n", i, sub, pid_nr(pid), sig); kill_pid(pid, sig, 1); any++; } } spin_unlock_irqrestore(&dd->ipath_uctxt_lock, flags); return any; } static void ipath_hol_signal_down(struct ipath_devdata *dd) { if (ipath_signal_procs(dd, SIGSTOP)) ipath_dbg("Stopped some processes\n"); ipath_cancel_sends(dd, 1); } static void ipath_hol_signal_up(struct ipath_devdata *dd) { if (ipath_signal_procs(dd, SIGCONT)) ipath_dbg("Continued some processes\n"); } /* * link is down, stop any users processes, and flush pending sends * to prevent HoL blocking, then start the HoL timer that * periodically continues, then stop procs, so they can detect * link down if they want, and do something about it. * Timer may already be running, so use mod_timer, not add_timer. */ void ipath_hol_down(struct ipath_devdata *dd) { dd->ipath_hol_state = IPATH_HOL_DOWN; ipath_hol_signal_down(dd); dd->ipath_hol_next = IPATH_HOL_DOWNCONT; dd->ipath_hol_timer.expires = jiffies + msecs_to_jiffies(ipath_hol_timeout_ms); mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires); } /* * link is up, continue any user processes, and ensure timer * is a nop, if running. Let timer keep running, if set; it * will nop when it sees the link is up */ void ipath_hol_up(struct ipath_devdata *dd) { ipath_hol_signal_up(dd); dd->ipath_hol_state = IPATH_HOL_UP; } /* * toggle the running/not running state of user proceses * to prevent HoL blocking on chip resources, but still allow * user processes to do link down special case handling. * Should only be called via the timer */ void ipath_hol_event(unsigned long opaque) { struct ipath_devdata *dd = (struct ipath_devdata *)opaque; if (dd->ipath_hol_next == IPATH_HOL_DOWNSTOP && dd->ipath_hol_state != IPATH_HOL_UP) { dd->ipath_hol_next = IPATH_HOL_DOWNCONT; ipath_dbg("Stopping processes\n"); ipath_hol_signal_down(dd); } else { /* may do "extra" if also in ipath_hol_up() */ dd->ipath_hol_next = IPATH_HOL_DOWNSTOP; ipath_dbg("Continuing processes\n"); ipath_hol_signal_up(dd); } if (dd->ipath_hol_state == IPATH_HOL_UP) ipath_dbg("link's up, don't resched timer\n"); else { dd->ipath_hol_timer.expires = jiffies + msecs_to_jiffies(ipath_hol_timeout_ms); mod_timer(&dd->ipath_hol_timer, dd->ipath_hol_timer.expires); } } int ipath_set_rx_pol_inv(struct ipath_devdata *dd, u8 new_pol_inv) { u64 val; if (new_pol_inv > INFINIPATH_XGXS_RX_POL_MASK) return -1; if (dd->ipath_rx_pol_inv != new_pol_inv) { dd->ipath_rx_pol_inv = new_pol_inv; val = ipath_read_kreg64(dd, dd->ipath_kregs->kr_xgxsconfig); val &= ~(INFINIPATH_XGXS_RX_POL_MASK << INFINIPATH_XGXS_RX_POL_SHIFT); val |= ((u64)dd->ipath_rx_pol_inv) << INFINIPATH_XGXS_RX_POL_SHIFT; ipath_write_kreg(dd, dd->ipath_kregs->kr_xgxsconfig, val); } return 0; } /* * Disable and enable the armlaunch error. Used for PIO bandwidth testing on * the 7220, which is count-based, rather than trigger-based. Safe for the * driver check, since it's at init. Not completely safe when used for * user-mode checking, since some error checking can be lost, but not * particularly risky, and only has problematic side-effects in the face of * very buggy user code. There is no reference counting, but that's also * fine, given the intended use. */ void ipath_enable_armlaunch(struct ipath_devdata *dd) { dd->ipath_lasterror &= ~INFINIPATH_E_SPIOARMLAUNCH; ipath_write_kreg(dd, dd->ipath_kregs->kr_errorclear, INFINIPATH_E_SPIOARMLAUNCH); dd->ipath_errormask |= INFINIPATH_E_SPIOARMLAUNCH; ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask, dd->ipath_errormask); } void ipath_disable_armlaunch(struct ipath_devdata *dd) { /* so don't re-enable if already set */ dd->ipath_maskederrs &= ~INFINIPATH_E_SPIOARMLAUNCH; dd->ipath_errormask &= ~INFINIPATH_E_SPIOARMLAUNCH; ipath_write_kreg(dd, dd->ipath_kregs->kr_errormask, dd->ipath_errormask); } module_init(infinipath_init); module_exit(infinipath_cleanup);