/* * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "mlx5_ib.h" #include "cmd.h" #define MAX_PREFETCH_LEN (4*1024*1024U) /* Timeout in ms to wait for an active mmu notifier to complete when handling * a pagefault. */ #define MMU_NOTIFIER_TIMEOUT 1000 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT) #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT) #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS) #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT) #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1)) #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT static u64 mlx5_imr_ksm_entries; static int check_parent(struct ib_umem_odp *odp, struct mlx5_ib_mr *parent) { struct mlx5_ib_mr *mr = odp->private; return mr && mr->parent == parent && !odp->dying; } static struct ib_umem_odp *odp_next(struct ib_umem_odp *odp) { struct mlx5_ib_mr *mr = odp->private, *parent = mr->parent; struct ib_ucontext *ctx = odp->umem->context; struct rb_node *rb; down_read(&ctx->umem_rwsem); while (1) { rb = rb_next(&odp->interval_tree.rb); if (!rb) goto not_found; odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); if (check_parent(odp, parent)) goto end; } not_found: odp = NULL; end: up_read(&ctx->umem_rwsem); return odp; } static struct ib_umem_odp *odp_lookup(struct ib_ucontext *ctx, u64 start, u64 length, struct mlx5_ib_mr *parent) { struct ib_umem_odp *odp; struct rb_node *rb; down_read(&ctx->umem_rwsem); odp = rbt_ib_umem_lookup(&ctx->umem_tree, start, length); if (!odp) goto end; while (1) { if (check_parent(odp, parent)) goto end; rb = rb_next(&odp->interval_tree.rb); if (!rb) goto not_found; odp = rb_entry(rb, struct ib_umem_odp, interval_tree.rb); if (ib_umem_start(odp->umem) > start + length) goto not_found; } not_found: odp = NULL; end: up_read(&ctx->umem_rwsem); return odp; } void mlx5_odp_populate_klm(struct mlx5_klm *pklm, size_t offset, size_t nentries, struct mlx5_ib_mr *mr, int flags) { struct ib_pd *pd = mr->ibmr.pd; struct ib_ucontext *ctx = pd->uobject->context; struct mlx5_ib_dev *dev = to_mdev(pd->device); struct ib_umem_odp *odp; unsigned long va; int i; if (flags & MLX5_IB_UPD_XLT_ZAP) { for (i = 0; i < nentries; i++, pklm++) { pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); pklm->key = cpu_to_be32(dev->null_mkey); pklm->va = 0; } return; } odp = odp_lookup(ctx, offset * MLX5_IMR_MTT_SIZE, nentries * MLX5_IMR_MTT_SIZE, mr); for (i = 0; i < nentries; i++, pklm++) { pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE); va = (offset + i) * MLX5_IMR_MTT_SIZE; if (odp && odp->umem->address == va) { struct mlx5_ib_mr *mtt = odp->private; pklm->key = cpu_to_be32(mtt->ibmr.lkey); odp = odp_next(odp); } else { pklm->key = cpu_to_be32(dev->null_mkey); } mlx5_ib_dbg(dev, "[%d] va %lx key %x\n", i, va, be32_to_cpu(pklm->key)); } } static void mr_leaf_free_action(struct work_struct *work) { struct ib_umem_odp *odp = container_of(work, struct ib_umem_odp, work); int idx = ib_umem_start(odp->umem) >> MLX5_IMR_MTT_SHIFT; struct mlx5_ib_mr *mr = odp->private, *imr = mr->parent; mr->parent = NULL; synchronize_srcu(&mr->dev->mr_srcu); ib_umem_release(odp->umem); if (imr->live) mlx5_ib_update_xlt(imr, idx, 1, 0, MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC); mlx5_mr_cache_free(mr->dev, mr); if (atomic_dec_and_test(&imr->num_leaf_free)) wake_up(&imr->q_leaf_free); } void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start, unsigned long end) { struct mlx5_ib_mr *mr; const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / sizeof(struct mlx5_mtt)) - 1; u64 idx = 0, blk_start_idx = 0; int in_block = 0; u64 addr; if (!umem || !umem->odp_data) { pr_err("invalidation called on NULL umem or non-ODP umem\n"); return; } mr = umem->odp_data->private; if (!mr || !mr->ibmr.pd) return; start = max_t(u64, ib_umem_start(umem), start); end = min_t(u64, ib_umem_end(umem), end); /* * Iteration one - zap the HW's MTTs. The notifiers_count ensures that * while we are doing the invalidation, no page fault will attempt to * overwrite the same MTTs. Concurent invalidations might race us, * but they will write 0s as well, so no difference in the end result. */ for (addr = start; addr < end; addr += BIT(umem->page_shift)) { idx = (addr - ib_umem_start(umem)) >> umem->page_shift; /* * Strive to write the MTTs in chunks, but avoid overwriting * non-existing MTTs. The huristic here can be improved to * estimate the cost of another UMR vs. the cost of bigger * UMR. */ if (umem->odp_data->dma_list[idx] & (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { if (!in_block) { blk_start_idx = idx; in_block = 1; } } else { u64 umr_offset = idx & umr_block_mask; if (in_block && umr_offset == 0) { mlx5_ib_update_xlt(mr, blk_start_idx, idx - blk_start_idx, 0, MLX5_IB_UPD_XLT_ZAP | MLX5_IB_UPD_XLT_ATOMIC); in_block = 0; } } } if (in_block) mlx5_ib_update_xlt(mr, blk_start_idx, idx - blk_start_idx + 1, 0, MLX5_IB_UPD_XLT_ZAP | MLX5_IB_UPD_XLT_ATOMIC); /* * We are now sure that the device will not access the * memory. We can safely unmap it, and mark it as dirty if * needed. */ ib_umem_odp_unmap_dma_pages(umem, start, end); if (unlikely(!umem->npages && mr->parent && !umem->odp_data->dying)) { WRITE_ONCE(umem->odp_data->dying, 1); atomic_inc(&mr->parent->num_leaf_free); schedule_work(&umem->odp_data->work); } } void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev) { struct ib_odp_caps *caps = &dev->odp_caps; memset(caps, 0, sizeof(*caps)); if (!MLX5_CAP_GEN(dev->mdev, pg)) return; caps->general_caps = IB_ODP_SUPPORT; if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) dev->odp_max_size = U64_MAX; else dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT); if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send)) caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ; if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic)) caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC; if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) && MLX5_CAP_GEN(dev->mdev, null_mkey) && MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset)) caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT; return; } static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, int error) { int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ? pfault->wqe.wq_num : pfault->token; int ret = mlx5_core_page_fault_resume(dev->mdev, pfault->token, wq_num, pfault->type, error); if (ret) mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x\n", wq_num); } static struct mlx5_ib_mr *implicit_mr_alloc(struct ib_pd *pd, struct ib_umem *umem, bool ksm, int access_flags) { struct mlx5_ib_dev *dev = to_mdev(pd->device); struct mlx5_ib_mr *mr; int err; mr = mlx5_mr_cache_alloc(dev, ksm ? MLX5_IMR_KSM_CACHE_ENTRY : MLX5_IMR_MTT_CACHE_ENTRY); if (IS_ERR(mr)) return mr; mr->ibmr.pd = pd; mr->dev = dev; mr->access_flags = access_flags; mr->mmkey.iova = 0; mr->umem = umem; if (ksm) { err = mlx5_ib_update_xlt(mr, 0, mlx5_imr_ksm_entries, MLX5_KSM_PAGE_SHIFT, MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ZAP | MLX5_IB_UPD_XLT_ENABLE); } else { err = mlx5_ib_update_xlt(mr, 0, MLX5_IMR_MTT_ENTRIES, PAGE_SHIFT, MLX5_IB_UPD_XLT_ZAP | MLX5_IB_UPD_XLT_ENABLE | MLX5_IB_UPD_XLT_ATOMIC); } if (err) goto fail; mr->ibmr.lkey = mr->mmkey.key; mr->ibmr.rkey = mr->mmkey.key; mr->live = 1; mlx5_ib_dbg(dev, "key %x dev %p mr %p\n", mr->mmkey.key, dev->mdev, mr); return mr; fail: mlx5_ib_err(dev, "Failed to register MKEY %d\n", err); mlx5_mr_cache_free(dev, mr); return ERR_PTR(err); } static struct ib_umem_odp *implicit_mr_get_data(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt) { struct ib_ucontext *ctx = mr->ibmr.pd->uobject->context; struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.pd->device); struct ib_umem_odp *odp, *result = NULL; u64 addr = io_virt & MLX5_IMR_MTT_MASK; int nentries = 0, start_idx = 0, ret; struct mlx5_ib_mr *mtt; struct ib_umem *umem; mutex_lock(&mr->umem->odp_data->umem_mutex); odp = odp_lookup(ctx, addr, 1, mr); mlx5_ib_dbg(dev, "io_virt:%llx bcnt:%zx addr:%llx odp:%p\n", io_virt, bcnt, addr, odp); next_mr: if (likely(odp)) { if (nentries) nentries++; } else { umem = ib_alloc_odp_umem(ctx, addr, MLX5_IMR_MTT_SIZE); if (IS_ERR(umem)) { mutex_unlock(&mr->umem->odp_data->umem_mutex); return ERR_CAST(umem); } mtt = implicit_mr_alloc(mr->ibmr.pd, umem, 0, mr->access_flags); if (IS_ERR(mtt)) { mutex_unlock(&mr->umem->odp_data->umem_mutex); ib_umem_release(umem); return ERR_CAST(mtt); } odp = umem->odp_data; odp->private = mtt; mtt->umem = umem; mtt->mmkey.iova = addr; mtt->parent = mr; INIT_WORK(&odp->work, mr_leaf_free_action); if (!nentries) start_idx = addr >> MLX5_IMR_MTT_SHIFT; nentries++; } /* Return first odp if region not covered by single one */ if (likely(!result)) result = odp; addr += MLX5_IMR_MTT_SIZE; if (unlikely(addr < io_virt + bcnt)) { odp = odp_next(odp); if (odp && odp->umem->address != addr) odp = NULL; goto next_mr; } if (unlikely(nentries)) { ret = mlx5_ib_update_xlt(mr, start_idx, nentries, 0, MLX5_IB_UPD_XLT_INDIRECT | MLX5_IB_UPD_XLT_ATOMIC); if (ret) { mlx5_ib_err(dev, "Failed to update PAS\n"); result = ERR_PTR(ret); } } mutex_unlock(&mr->umem->odp_data->umem_mutex); return result; } struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd, int access_flags) { struct ib_ucontext *ctx = pd->ibpd.uobject->context; struct mlx5_ib_mr *imr; struct ib_umem *umem; umem = ib_umem_get(ctx, 0, 0, IB_ACCESS_ON_DEMAND, 0); if (IS_ERR(umem)) return ERR_CAST(umem); imr = implicit_mr_alloc(&pd->ibpd, umem, 1, access_flags); if (IS_ERR(imr)) { ib_umem_release(umem); return ERR_CAST(imr); } imr->umem = umem; init_waitqueue_head(&imr->q_leaf_free); atomic_set(&imr->num_leaf_free, 0); return imr; } static int mr_leaf_free(struct ib_umem *umem, u64 start, u64 end, void *cookie) { struct mlx5_ib_mr *mr = umem->odp_data->private, *imr = cookie; if (mr->parent != imr) return 0; ib_umem_odp_unmap_dma_pages(umem, ib_umem_start(umem), ib_umem_end(umem)); if (umem->odp_data->dying) return 0; WRITE_ONCE(umem->odp_data->dying, 1); atomic_inc(&imr->num_leaf_free); schedule_work(&umem->odp_data->work); return 0; } void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr) { struct ib_ucontext *ctx = imr->ibmr.pd->uobject->context; down_read(&ctx->umem_rwsem); rbt_ib_umem_for_each_in_range(&ctx->umem_tree, 0, ULLONG_MAX, mr_leaf_free, imr); up_read(&ctx->umem_rwsem); wait_event(imr->q_leaf_free, !atomic_read(&imr->num_leaf_free)); } static int pagefault_mr(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt, u32 *bytes_mapped) { u64 access_mask = ODP_READ_ALLOWED_BIT; int npages = 0, page_shift, np; u64 start_idx, page_mask; struct ib_umem_odp *odp; int current_seq; size_t size; int ret; if (!mr->umem->odp_data->page_list) { odp = implicit_mr_get_data(mr, io_virt, bcnt); if (IS_ERR(odp)) return PTR_ERR(odp); mr = odp->private; } else { odp = mr->umem->odp_data; } next_mr: size = min_t(size_t, bcnt, ib_umem_end(odp->umem) - io_virt); page_shift = mr->umem->page_shift; page_mask = ~(BIT(page_shift) - 1); start_idx = (io_virt - (mr->mmkey.iova & page_mask)) >> page_shift; if (mr->umem->writable) access_mask |= ODP_WRITE_ALLOWED_BIT; current_seq = READ_ONCE(odp->notifiers_seq); /* * Ensure the sequence number is valid for some time before we call * gup. */ smp_rmb(); ret = ib_umem_odp_map_dma_pages(mr->umem, io_virt, size, access_mask, current_seq); if (ret < 0) goto out; np = ret; mutex_lock(&odp->umem_mutex); if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) { /* * No need to check whether the MTTs really belong to * this MR, since ib_umem_odp_map_dma_pages already * checks this. */ ret = mlx5_ib_update_xlt(mr, start_idx, np, page_shift, MLX5_IB_UPD_XLT_ATOMIC); } else { ret = -EAGAIN; } mutex_unlock(&odp->umem_mutex); if (ret < 0) { if (ret != -EAGAIN) mlx5_ib_err(dev, "Failed to update mkey page tables\n"); goto out; } if (bytes_mapped) { u32 new_mappings = (np << page_shift) - (io_virt - round_down(io_virt, 1 << page_shift)); *bytes_mapped += min_t(u32, new_mappings, size); } npages += np << (page_shift - PAGE_SHIFT); bcnt -= size; if (unlikely(bcnt)) { struct ib_umem_odp *next; io_virt += size; next = odp_next(odp); if (unlikely(!next || next->umem->address != io_virt)) { mlx5_ib_dbg(dev, "next implicit leaf removed at 0x%llx. got %p\n", io_virt, next); return -EAGAIN; } odp = next; mr = odp->private; goto next_mr; } return npages; out: if (ret == -EAGAIN) { if (mr->parent || !odp->dying) { unsigned long timeout = msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT); if (!wait_for_completion_timeout( &odp->notifier_completion, timeout)) { mlx5_ib_warn(dev, "timeout waiting for mmu notifier. seq %d against %d\n", current_seq, odp->notifiers_seq); } } else { /* The MR is being killed, kill the QP as well. */ ret = -EFAULT; } } return ret; } struct pf_frame { struct pf_frame *next; u32 key; u64 io_virt; size_t bcnt; int depth; }; /* * Handle a single data segment in a page-fault WQE or RDMA region. * * Returns number of OS pages retrieved on success. The caller may continue to * the next data segment. * Can return the following error codes: * -EAGAIN to designate a temporary error. The caller will abort handling the * page fault and resolve it. * -EFAULT when there's an error mapping the requested pages. The caller will * abort the page fault handling. */ static int pagefault_single_data_segment(struct mlx5_ib_dev *dev, u32 key, u64 io_virt, size_t bcnt, u32 *bytes_committed, u32 *bytes_mapped) { int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0; struct pf_frame *head = NULL, *frame; struct mlx5_core_mkey *mmkey; struct mlx5_ib_mw *mw; struct mlx5_ib_mr *mr; struct mlx5_klm *pklm; u32 *out = NULL; size_t offset; srcu_key = srcu_read_lock(&dev->mr_srcu); io_virt += *bytes_committed; bcnt -= *bytes_committed; next_mr: mmkey = __mlx5_mr_lookup(dev->mdev, mlx5_base_mkey(key)); if (!mmkey || mmkey->key != key) { mlx5_ib_dbg(dev, "failed to find mkey %x\n", key); ret = -EFAULT; goto srcu_unlock; } switch (mmkey->type) { case MLX5_MKEY_MR: mr = container_of(mmkey, struct mlx5_ib_mr, mmkey); if (!mr->live || !mr->ibmr.pd) { mlx5_ib_dbg(dev, "got dead MR\n"); ret = -EFAULT; goto srcu_unlock; } ret = pagefault_mr(dev, mr, io_virt, bcnt, bytes_mapped); if (ret < 0) goto srcu_unlock; npages += ret; ret = 0; break; case MLX5_MKEY_MW: mw = container_of(mmkey, struct mlx5_ib_mw, mmkey); if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) { mlx5_ib_dbg(dev, "indirection level exceeded\n"); ret = -EFAULT; goto srcu_unlock; } outlen = MLX5_ST_SZ_BYTES(query_mkey_out) + sizeof(*pklm) * (mw->ndescs - 2); if (outlen > cur_outlen) { kfree(out); out = kzalloc(outlen, GFP_KERNEL); if (!out) { ret = -ENOMEM; goto srcu_unlock; } cur_outlen = outlen; } pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out, bsf0_klm0_pas_mtt0_1); ret = mlx5_core_query_mkey(dev->mdev, &mw->mmkey, out, outlen); if (ret) goto srcu_unlock; offset = io_virt - MLX5_GET64(query_mkey_out, out, memory_key_mkey_entry.start_addr); for (i = 0; bcnt && i < mw->ndescs; i++, pklm++) { if (offset >= be32_to_cpu(pklm->bcount)) { offset -= be32_to_cpu(pklm->bcount); continue; } frame = kzalloc(sizeof(*frame), GFP_KERNEL); if (!frame) { ret = -ENOMEM; goto srcu_unlock; } frame->key = be32_to_cpu(pklm->key); frame->io_virt = be64_to_cpu(pklm->va) + offset; frame->bcnt = min_t(size_t, bcnt, be32_to_cpu(pklm->bcount) - offset); frame->depth = depth + 1; frame->next = head; head = frame; bcnt -= frame->bcnt; } break; default: mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type); ret = -EFAULT; goto srcu_unlock; } if (head) { frame = head; head = frame->next; key = frame->key; io_virt = frame->io_virt; bcnt = frame->bcnt; depth = frame->depth; kfree(frame); goto next_mr; } srcu_unlock: while (head) { frame = head; head = frame->next; kfree(frame); } kfree(out); srcu_read_unlock(&dev->mr_srcu, srcu_key); *bytes_committed = 0; return ret ? ret : npages; } /** * Parse a series of data segments for page fault handling. * * @qp the QP on which the fault occurred. * @pfault contains page fault information. * @wqe points at the first data segment in the WQE. * @wqe_end points after the end of the WQE. * @bytes_mapped receives the number of bytes that the function was able to * map. This allows the caller to decide intelligently whether * enough memory was mapped to resolve the page fault * successfully (e.g. enough for the next MTU, or the entire * WQE). * @total_wqe_bytes receives the total data size of this WQE in bytes (minus * the committed bytes). * * Returns the number of pages loaded if positive, zero for an empty WQE, or a * negative error code. */ static int pagefault_data_segments(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, struct mlx5_ib_qp *qp, void *wqe, void *wqe_end, u32 *bytes_mapped, u32 *total_wqe_bytes, int receive_queue) { int ret = 0, npages = 0; u64 io_virt; u32 key; u32 byte_count; size_t bcnt; int inline_segment; /* Skip SRQ next-WQE segment. */ if (receive_queue && qp->ibqp.srq) wqe += sizeof(struct mlx5_wqe_srq_next_seg); if (bytes_mapped) *bytes_mapped = 0; if (total_wqe_bytes) *total_wqe_bytes = 0; while (wqe < wqe_end) { struct mlx5_wqe_data_seg *dseg = wqe; io_virt = be64_to_cpu(dseg->addr); key = be32_to_cpu(dseg->lkey); byte_count = be32_to_cpu(dseg->byte_count); inline_segment = !!(byte_count & MLX5_INLINE_SEG); bcnt = byte_count & ~MLX5_INLINE_SEG; if (inline_segment) { bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 16); } else { wqe += sizeof(*dseg); } /* receive WQE end of sg list. */ if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && io_virt == 0) break; if (!inline_segment && total_wqe_bytes) { *total_wqe_bytes += bcnt - min_t(size_t, bcnt, pfault->bytes_committed); } /* A zero length data segment designates a length of 2GB. */ if (bcnt == 0) bcnt = 1U << 31; if (inline_segment || bcnt <= pfault->bytes_committed) { pfault->bytes_committed -= min_t(size_t, bcnt, pfault->bytes_committed); continue; } ret = pagefault_single_data_segment(dev, key, io_virt, bcnt, &pfault->bytes_committed, bytes_mapped); if (ret < 0) break; npages += ret; } return ret < 0 ? ret : npages; } static const u32 mlx5_ib_odp_opcode_cap[] = { [MLX5_OPCODE_SEND] = IB_ODP_SUPPORT_SEND, [MLX5_OPCODE_SEND_IMM] = IB_ODP_SUPPORT_SEND, [MLX5_OPCODE_SEND_INVAL] = IB_ODP_SUPPORT_SEND, [MLX5_OPCODE_RDMA_WRITE] = IB_ODP_SUPPORT_WRITE, [MLX5_OPCODE_RDMA_WRITE_IMM] = IB_ODP_SUPPORT_WRITE, [MLX5_OPCODE_RDMA_READ] = IB_ODP_SUPPORT_READ, [MLX5_OPCODE_ATOMIC_CS] = IB_ODP_SUPPORT_ATOMIC, [MLX5_OPCODE_ATOMIC_FA] = IB_ODP_SUPPORT_ATOMIC, }; /* * Parse initiator WQE. Advances the wqe pointer to point at the * scatter-gather list, and set wqe_end to the end of the WQE. */ static int mlx5_ib_mr_initiator_pfault_handler( struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) { struct mlx5_wqe_ctrl_seg *ctrl = *wqe; u16 wqe_index = pfault->wqe.wqe_index; u32 transport_caps; struct mlx5_base_av *av; unsigned ds, opcode; #if defined(DEBUG) u32 ctrl_wqe_index, ctrl_qpn; #endif u32 qpn = qp->trans_qp.base.mqp.qpn; ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; if (ds * MLX5_WQE_DS_UNITS > wqe_length) { mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", ds, wqe_length); return -EFAULT; } if (ds == 0) { mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", wqe_index, qpn); return -EFAULT; } #if defined(DEBUG) ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) & MLX5_WQE_CTRL_WQE_INDEX_MASK) >> MLX5_WQE_CTRL_WQE_INDEX_SHIFT; if (wqe_index != ctrl_wqe_index) { mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n", wqe_index, qpn, ctrl_wqe_index); return -EFAULT; } ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >> MLX5_WQE_CTRL_QPN_SHIFT; if (qpn != ctrl_qpn) { mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n", wqe_index, qpn, ctrl_qpn); return -EFAULT; } #endif /* DEBUG */ *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; *wqe += sizeof(*ctrl); opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & MLX5_WQE_CTRL_OPCODE_MASK; switch (qp->ibqp.qp_type) { case IB_QPT_RC: transport_caps = dev->odp_caps.per_transport_caps.rc_odp_caps; break; case IB_QPT_UD: transport_caps = dev->odp_caps.per_transport_caps.ud_odp_caps; break; default: mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport 0x%x\n", qp->ibqp.qp_type); return -EFAULT; } if (unlikely(opcode >= sizeof(mlx5_ib_odp_opcode_cap) / sizeof(mlx5_ib_odp_opcode_cap[0]) || !(transport_caps & mlx5_ib_odp_opcode_cap[opcode]))) { mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode 0x%x\n", opcode); return -EFAULT; } if (qp->ibqp.qp_type != IB_QPT_RC) { av = *wqe; if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV)) *wqe += sizeof(struct mlx5_av); else *wqe += sizeof(struct mlx5_base_av); } switch (opcode) { case MLX5_OPCODE_RDMA_WRITE: case MLX5_OPCODE_RDMA_WRITE_IMM: case MLX5_OPCODE_RDMA_READ: *wqe += sizeof(struct mlx5_wqe_raddr_seg); break; case MLX5_OPCODE_ATOMIC_CS: case MLX5_OPCODE_ATOMIC_FA: *wqe += sizeof(struct mlx5_wqe_raddr_seg); *wqe += sizeof(struct mlx5_wqe_atomic_seg); break; } return 0; } /* * Parse responder WQE. Advances the wqe pointer to point at the * scatter-gather list, and set wqe_end to the end of the WQE. */ static int mlx5_ib_mr_responder_pfault_handler( struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault, struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length) { struct mlx5_ib_wq *wq = &qp->rq; int wqe_size = 1 << wq->wqe_shift; if (qp->ibqp.srq) { mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n"); return -EFAULT; } if (qp->wq_sig) { mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); return -EFAULT; } if (wqe_size > wqe_length) { mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); return -EFAULT; } switch (qp->ibqp.qp_type) { case IB_QPT_RC: if (!(dev->odp_caps.per_transport_caps.rc_odp_caps & IB_ODP_SUPPORT_RECV)) goto invalid_transport_or_opcode; break; default: invalid_transport_or_opcode: mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n", qp->ibqp.qp_type); return -EFAULT; } *wqe_end = *wqe + wqe_size; return 0; } static struct mlx5_ib_qp *mlx5_ib_odp_find_qp(struct mlx5_ib_dev *dev, u32 wq_num) { struct mlx5_core_qp *mqp = __mlx5_qp_lookup(dev->mdev, wq_num); if (!mqp) { mlx5_ib_err(dev, "QPN 0x%6x not found\n", wq_num); return NULL; } return to_mibqp(mqp); } static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) { int ret; void *wqe, *wqe_end; u32 bytes_mapped, total_wqe_bytes; char *buffer = NULL; int resume_with_error = 1; u16 wqe_index = pfault->wqe.wqe_index; int requestor = pfault->type & MLX5_PFAULT_REQUESTOR; struct mlx5_ib_qp *qp; buffer = (char *)__get_free_page(GFP_KERNEL); if (!buffer) { mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); goto resolve_page_fault; } qp = mlx5_ib_odp_find_qp(dev, pfault->wqe.wq_num); if (!qp) goto resolve_page_fault; ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer, PAGE_SIZE, &qp->trans_qp.base); if (ret < 0) { mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%d, wqe_index=%x, qpn=%x\n", ret, wqe_index, pfault->token); goto resolve_page_fault; } wqe = buffer; if (requestor) ret = mlx5_ib_mr_initiator_pfault_handler(dev, pfault, qp, &wqe, &wqe_end, ret); else ret = mlx5_ib_mr_responder_pfault_handler(dev, pfault, qp, &wqe, &wqe_end, ret); if (ret < 0) goto resolve_page_fault; if (wqe >= wqe_end) { mlx5_ib_err(dev, "ODP fault on invalid WQE.\n"); goto resolve_page_fault; } ret = pagefault_data_segments(dev, pfault, qp, wqe, wqe_end, &bytes_mapped, &total_wqe_bytes, !requestor); if (ret == -EAGAIN) { resume_with_error = 0; goto resolve_page_fault; } else if (ret < 0 || total_wqe_bytes > bytes_mapped) { goto resolve_page_fault; } resume_with_error = 0; resolve_page_fault: mlx5_ib_page_fault_resume(dev, pfault, resume_with_error); mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n", pfault->wqe.wq_num, resume_with_error, pfault->type); free_page((unsigned long)buffer); } static int pages_in_range(u64 address, u32 length) { return (ALIGN(address + length, PAGE_SIZE) - (address & PAGE_MASK)) >> PAGE_SHIFT; } static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault) { u64 address; u32 length; u32 prefetch_len = pfault->bytes_committed; int prefetch_activated = 0; u32 rkey = pfault->rdma.r_key; int ret; /* The RDMA responder handler handles the page fault in two parts. * First it brings the necessary pages for the current packet * (and uses the pfault context), and then (after resuming the QP) * prefetches more pages. The second operation cannot use the pfault * context and therefore uses the dummy_pfault context allocated on * the stack */ pfault->rdma.rdma_va += pfault->bytes_committed; pfault->rdma.rdma_op_len -= min(pfault->bytes_committed, pfault->rdma.rdma_op_len); pfault->bytes_committed = 0; address = pfault->rdma.rdma_va; length = pfault->rdma.rdma_op_len; /* For some operations, the hardware cannot tell the exact message * length, and in those cases it reports zero. Use prefetch * logic. */ if (length == 0) { prefetch_activated = 1; length = pfault->rdma.packet_size; prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); } ret = pagefault_single_data_segment(dev, rkey, address, length, &pfault->bytes_committed, NULL); if (ret == -EAGAIN) { /* We're racing with an invalidation, don't prefetch */ prefetch_activated = 0; } else if (ret < 0 || pages_in_range(address, length) > ret) { mlx5_ib_page_fault_resume(dev, pfault, 1); if (ret != -ENOENT) mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n", ret, pfault->token, pfault->type); return; } mlx5_ib_page_fault_resume(dev, pfault, 0); mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n", pfault->token, pfault->type, prefetch_activated); /* At this point, there might be a new pagefault already arriving in * the eq, switch to the dummy pagefault for the rest of the * processing. We're still OK with the objects being alive as the * work-queue is being fenced. */ if (prefetch_activated) { u32 bytes_committed = 0; ret = pagefault_single_data_segment(dev, rkey, address, prefetch_len, &bytes_committed, NULL); if (ret < 0 && ret != -EAGAIN) { mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n", ret, pfault->token, address, prefetch_len); } } } void mlx5_ib_pfault(struct mlx5_core_dev *mdev, void *context, struct mlx5_pagefault *pfault) { struct mlx5_ib_dev *dev = context; u8 event_subtype = pfault->event_subtype; switch (event_subtype) { case MLX5_PFAULT_SUBTYPE_WQE: mlx5_ib_mr_wqe_pfault_handler(dev, pfault); break; case MLX5_PFAULT_SUBTYPE_RDMA: mlx5_ib_mr_rdma_pfault_handler(dev, pfault); break; default: mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n", event_subtype); mlx5_ib_page_fault_resume(dev, pfault, 1); } } void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent) { if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT)) return; switch (ent->order - 2) { case MLX5_IMR_MTT_CACHE_ENTRY: ent->page = PAGE_SHIFT; ent->xlt = MLX5_IMR_MTT_ENTRIES * sizeof(struct mlx5_mtt) / MLX5_IB_UMR_OCTOWORD; ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT; ent->limit = 0; break; case MLX5_IMR_KSM_CACHE_ENTRY: ent->page = MLX5_KSM_PAGE_SHIFT; ent->xlt = mlx5_imr_ksm_entries * sizeof(struct mlx5_klm) / MLX5_IB_UMR_OCTOWORD; ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM; ent->limit = 0; break; } } int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev) { int ret; ret = init_srcu_struct(&dev->mr_srcu); if (ret) return ret; if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) { ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey); if (ret) { mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret); return ret; } } return 0; } void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *dev) { cleanup_srcu_struct(&dev->mr_srcu); } int mlx5_ib_odp_init(void) { mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) - MLX5_IMR_MTT_BITS); return 0; }