/* * Copyright (c) 2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include "mlx5_ib.h" #define MAX_PREFETCH_LEN (4*1024*1024U) /* Timeout in ms to wait for an active mmu notifier to complete when handling * a pagefault. */ #define MMU_NOTIFIER_TIMEOUT 1000 struct workqueue_struct *mlx5_ib_page_fault_wq; void mlx5_ib_invalidate_range(struct ib_umem *umem, unsigned long start, unsigned long end) { struct mlx5_ib_mr *mr; const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT / sizeof(u64)) - 1; u64 idx = 0, blk_start_idx = 0; int in_block = 0; u64 addr; if (!umem || !umem->odp_data) { pr_err("invalidation called on NULL umem or non-ODP umem\n"); return; } mr = umem->odp_data->private; if (!mr || !mr->ibmr.pd) return; start = max_t(u64, ib_umem_start(umem), start); end = min_t(u64, ib_umem_end(umem), end); /* * Iteration one - zap the HW's MTTs. The notifiers_count ensures that * while we are doing the invalidation, no page fault will attempt to * overwrite the same MTTs. Concurent invalidations might race us, * but they will write 0s as well, so no difference in the end result. */ for (addr = start; addr < end; addr += (u64)umem->page_size) { idx = (addr - ib_umem_start(umem)) / PAGE_SIZE; /* * Strive to write the MTTs in chunks, but avoid overwriting * non-existing MTTs. The huristic here can be improved to * estimate the cost of another UMR vs. the cost of bigger * UMR. */ if (umem->odp_data->dma_list[idx] & (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) { if (!in_block) { blk_start_idx = idx; in_block = 1; } } else { u64 umr_offset = idx & umr_block_mask; if (in_block && umr_offset == 0) { mlx5_ib_update_mtt(mr, blk_start_idx, idx - blk_start_idx, 1); in_block = 0; } } } if (in_block) mlx5_ib_update_mtt(mr, blk_start_idx, idx - blk_start_idx + 1, 1); /* * We are now sure that the device will not access the * memory. We can safely unmap it, and mark it as dirty if * needed. */ ib_umem_odp_unmap_dma_pages(umem, start, end); } #define COPY_ODP_BIT_MLX_TO_IB(reg, ib_caps, field_name, bit_name) do { \ if (be32_to_cpu(reg.field_name) & MLX5_ODP_SUPPORT_##bit_name) \ ib_caps->field_name |= IB_ODP_SUPPORT_##bit_name; \ } while (0) int mlx5_ib_internal_query_odp_caps(struct mlx5_ib_dev *dev) { int err; struct mlx5_odp_caps hw_caps; struct ib_odp_caps *caps = &dev->odp_caps; memset(caps, 0, sizeof(*caps)); if (!(dev->mdev->caps.gen.flags & MLX5_DEV_CAP_FLAG_ON_DMND_PG)) return 0; err = mlx5_query_odp_caps(dev->mdev, &hw_caps); if (err) goto out; caps->general_caps = IB_ODP_SUPPORT; COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.ud_odp_caps, SEND); COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps, SEND); COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps, RECV); COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps, WRITE); COPY_ODP_BIT_MLX_TO_IB(hw_caps, caps, per_transport_caps.rc_odp_caps, READ); out: return err; } static struct mlx5_ib_mr *mlx5_ib_odp_find_mr_lkey(struct mlx5_ib_dev *dev, u32 key) { u32 base_key = mlx5_base_mkey(key); struct mlx5_core_mr *mmr = __mlx5_mr_lookup(dev->mdev, base_key); struct mlx5_ib_mr *mr = container_of(mmr, struct mlx5_ib_mr, mmr); if (!mmr || mmr->key != key || !mr->live) return NULL; return container_of(mmr, struct mlx5_ib_mr, mmr); } static void mlx5_ib_page_fault_resume(struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault, int error) { struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device); int ret = mlx5_core_page_fault_resume(dev->mdev, qp->mqp.qpn, pfault->mpfault.flags, error); if (ret) pr_err("Failed to resolve the page fault on QP 0x%x\n", qp->mqp.qpn); } /* * Handle a single data segment in a page-fault WQE. * * Returns number of pages retrieved on success. The caller will continue to * the next data segment. * Can return the following error codes: * -EAGAIN to designate a temporary error. The caller will abort handling the * page fault and resolve it. * -EFAULT when there's an error mapping the requested pages. The caller will * abort the page fault handling and possibly move the QP to an error state. * On other errors the QP should also be closed with an error. */ static int pagefault_single_data_segment(struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault, u32 key, u64 io_virt, size_t bcnt, u32 *bytes_mapped) { struct mlx5_ib_dev *mib_dev = to_mdev(qp->ibqp.pd->device); int srcu_key; unsigned int current_seq; u64 start_idx; int npages = 0, ret = 0; struct mlx5_ib_mr *mr; u64 access_mask = ODP_READ_ALLOWED_BIT; srcu_key = srcu_read_lock(&mib_dev->mr_srcu); mr = mlx5_ib_odp_find_mr_lkey(mib_dev, key); /* * If we didn't find the MR, it means the MR was closed while we were * handling the ODP event. In this case we return -EFAULT so that the * QP will be closed. */ if (!mr || !mr->ibmr.pd) { pr_err("Failed to find relevant mr for lkey=0x%06x, probably the MR was destroyed\n", key); ret = -EFAULT; goto srcu_unlock; } if (!mr->umem->odp_data) { pr_debug("skipping non ODP MR (lkey=0x%06x) in page fault handler.\n", key); if (bytes_mapped) *bytes_mapped += (bcnt - pfault->mpfault.bytes_committed); goto srcu_unlock; } if (mr->ibmr.pd != qp->ibqp.pd) { pr_err("Page-fault with different PDs for QP and MR.\n"); ret = -EFAULT; goto srcu_unlock; } current_seq = ACCESS_ONCE(mr->umem->odp_data->notifiers_seq); /* * Ensure the sequence number is valid for some time before we call * gup. */ smp_rmb(); /* * Avoid branches - this code will perform correctly * in all iterations (in iteration 2 and above, * bytes_committed == 0). */ io_virt += pfault->mpfault.bytes_committed; bcnt -= pfault->mpfault.bytes_committed; start_idx = (io_virt - (mr->mmr.iova & PAGE_MASK)) >> PAGE_SHIFT; if (mr->umem->writable) access_mask |= ODP_WRITE_ALLOWED_BIT; npages = ib_umem_odp_map_dma_pages(mr->umem, io_virt, bcnt, access_mask, current_seq); if (npages < 0) { ret = npages; goto srcu_unlock; } if (npages > 0) { mutex_lock(&mr->umem->odp_data->umem_mutex); if (!ib_umem_mmu_notifier_retry(mr->umem, current_seq)) { /* * No need to check whether the MTTs really belong to * this MR, since ib_umem_odp_map_dma_pages already * checks this. */ ret = mlx5_ib_update_mtt(mr, start_idx, npages, 0); } else { ret = -EAGAIN; } mutex_unlock(&mr->umem->odp_data->umem_mutex); if (ret < 0) { if (ret != -EAGAIN) pr_err("Failed to update mkey page tables\n"); goto srcu_unlock; } if (bytes_mapped) { u32 new_mappings = npages * PAGE_SIZE - (io_virt - round_down(io_virt, PAGE_SIZE)); *bytes_mapped += min_t(u32, new_mappings, bcnt); } } srcu_unlock: if (ret == -EAGAIN) { if (!mr->umem->odp_data->dying) { struct ib_umem_odp *odp_data = mr->umem->odp_data; unsigned long timeout = msecs_to_jiffies(MMU_NOTIFIER_TIMEOUT); if (!wait_for_completion_timeout( &odp_data->notifier_completion, timeout)) { pr_warn("timeout waiting for mmu notifier completion\n"); } } else { /* The MR is being killed, kill the QP as well. */ ret = -EFAULT; } } srcu_read_unlock(&mib_dev->mr_srcu, srcu_key); pfault->mpfault.bytes_committed = 0; return ret ? ret : npages; } /** * Parse a series of data segments for page fault handling. * * @qp the QP on which the fault occurred. * @pfault contains page fault information. * @wqe points at the first data segment in the WQE. * @wqe_end points after the end of the WQE. * @bytes_mapped receives the number of bytes that the function was able to * map. This allows the caller to decide intelligently whether * enough memory was mapped to resolve the page fault * successfully (e.g. enough for the next MTU, or the entire * WQE). * @total_wqe_bytes receives the total data size of this WQE in bytes (minus * the committed bytes). * * Returns the number of pages loaded if positive, zero for an empty WQE, or a * negative error code. */ static int pagefault_data_segments(struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault, void *wqe, void *wqe_end, u32 *bytes_mapped, u32 *total_wqe_bytes, int receive_queue) { int ret = 0, npages = 0; u64 io_virt; u32 key; u32 byte_count; size_t bcnt; int inline_segment; /* Skip SRQ next-WQE segment. */ if (receive_queue && qp->ibqp.srq) wqe += sizeof(struct mlx5_wqe_srq_next_seg); if (bytes_mapped) *bytes_mapped = 0; if (total_wqe_bytes) *total_wqe_bytes = 0; while (wqe < wqe_end) { struct mlx5_wqe_data_seg *dseg = wqe; io_virt = be64_to_cpu(dseg->addr); key = be32_to_cpu(dseg->lkey); byte_count = be32_to_cpu(dseg->byte_count); inline_segment = !!(byte_count & MLX5_INLINE_SEG); bcnt = byte_count & ~MLX5_INLINE_SEG; if (inline_segment) { bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK; wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt, 16); } else { wqe += sizeof(*dseg); } /* receive WQE end of sg list. */ if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY && io_virt == 0) break; if (!inline_segment && total_wqe_bytes) { *total_wqe_bytes += bcnt - min_t(size_t, bcnt, pfault->mpfault.bytes_committed); } /* A zero length data segment designates a length of 2GB. */ if (bcnt == 0) bcnt = 1U << 31; if (inline_segment || bcnt <= pfault->mpfault.bytes_committed) { pfault->mpfault.bytes_committed -= min_t(size_t, bcnt, pfault->mpfault.bytes_committed); continue; } ret = pagefault_single_data_segment(qp, pfault, key, io_virt, bcnt, bytes_mapped); if (ret < 0) break; npages += ret; } return ret < 0 ? ret : npages; } /* * Parse initiator WQE. Advances the wqe pointer to point at the * scatter-gather list, and set wqe_end to the end of the WQE. */ static int mlx5_ib_mr_initiator_pfault_handler( struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault, void **wqe, void **wqe_end, int wqe_length) { struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device); struct mlx5_wqe_ctrl_seg *ctrl = *wqe; u16 wqe_index = pfault->mpfault.wqe.wqe_index; unsigned ds, opcode; #if defined(DEBUG) u32 ctrl_wqe_index, ctrl_qpn; #endif ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK; if (ds * MLX5_WQE_DS_UNITS > wqe_length) { mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n", ds, wqe_length); return -EFAULT; } if (ds == 0) { mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n", wqe_index, qp->mqp.qpn); return -EFAULT; } #if defined(DEBUG) ctrl_wqe_index = (be32_to_cpu(ctrl->opmod_idx_opcode) & MLX5_WQE_CTRL_WQE_INDEX_MASK) >> MLX5_WQE_CTRL_WQE_INDEX_SHIFT; if (wqe_index != ctrl_wqe_index) { mlx5_ib_err(dev, "Got WQE with invalid wqe_index. wqe_index=0x%x, qpn=0x%x ctrl->wqe_index=0x%x\n", wqe_index, qp->mqp.qpn, ctrl_wqe_index); return -EFAULT; } ctrl_qpn = (be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_QPN_MASK) >> MLX5_WQE_CTRL_QPN_SHIFT; if (qp->mqp.qpn != ctrl_qpn) { mlx5_ib_err(dev, "Got WQE with incorrect QP number. wqe_index=0x%x, qpn=0x%x ctrl->qpn=0x%x\n", wqe_index, qp->mqp.qpn, ctrl_qpn); return -EFAULT; } #endif /* DEBUG */ *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS; *wqe += sizeof(*ctrl); opcode = be32_to_cpu(ctrl->opmod_idx_opcode) & MLX5_WQE_CTRL_OPCODE_MASK; switch (qp->ibqp.qp_type) { case IB_QPT_RC: switch (opcode) { case MLX5_OPCODE_SEND: case MLX5_OPCODE_SEND_IMM: case MLX5_OPCODE_SEND_INVAL: if (!(dev->odp_caps.per_transport_caps.rc_odp_caps & IB_ODP_SUPPORT_SEND)) goto invalid_transport_or_opcode; break; case MLX5_OPCODE_RDMA_WRITE: case MLX5_OPCODE_RDMA_WRITE_IMM: if (!(dev->odp_caps.per_transport_caps.rc_odp_caps & IB_ODP_SUPPORT_WRITE)) goto invalid_transport_or_opcode; *wqe += sizeof(struct mlx5_wqe_raddr_seg); break; case MLX5_OPCODE_RDMA_READ: if (!(dev->odp_caps.per_transport_caps.rc_odp_caps & IB_ODP_SUPPORT_READ)) goto invalid_transport_or_opcode; *wqe += sizeof(struct mlx5_wqe_raddr_seg); break; default: goto invalid_transport_or_opcode; } break; case IB_QPT_UD: switch (opcode) { case MLX5_OPCODE_SEND: case MLX5_OPCODE_SEND_IMM: if (!(dev->odp_caps.per_transport_caps.ud_odp_caps & IB_ODP_SUPPORT_SEND)) goto invalid_transport_or_opcode; *wqe += sizeof(struct mlx5_wqe_datagram_seg); break; default: goto invalid_transport_or_opcode; } break; default: invalid_transport_or_opcode: mlx5_ib_err(dev, "ODP fault on QP of an unsupported opcode or transport. transport: 0x%x opcode: 0x%x.\n", qp->ibqp.qp_type, opcode); return -EFAULT; } return 0; } /* * Parse responder WQE. Advances the wqe pointer to point at the * scatter-gather list, and set wqe_end to the end of the WQE. */ static int mlx5_ib_mr_responder_pfault_handler( struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault, void **wqe, void **wqe_end, int wqe_length) { struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device); struct mlx5_ib_wq *wq = &qp->rq; int wqe_size = 1 << wq->wqe_shift; if (qp->ibqp.srq) { mlx5_ib_err(dev, "ODP fault on SRQ is not supported\n"); return -EFAULT; } if (qp->wq_sig) { mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n"); return -EFAULT; } if (wqe_size > wqe_length) { mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n"); return -EFAULT; } switch (qp->ibqp.qp_type) { case IB_QPT_RC: if (!(dev->odp_caps.per_transport_caps.rc_odp_caps & IB_ODP_SUPPORT_RECV)) goto invalid_transport_or_opcode; break; default: invalid_transport_or_opcode: mlx5_ib_err(dev, "ODP fault on QP of an unsupported transport. transport: 0x%x\n", qp->ibqp.qp_type); return -EFAULT; } *wqe_end = *wqe + wqe_size; return 0; } static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault) { struct mlx5_ib_dev *dev = to_mdev(qp->ibqp.pd->device); int ret; void *wqe, *wqe_end; u32 bytes_mapped, total_wqe_bytes; char *buffer = NULL; int resume_with_error = 0; u16 wqe_index = pfault->mpfault.wqe.wqe_index; int requestor = pfault->mpfault.flags & MLX5_PFAULT_REQUESTOR; buffer = (char *)__get_free_page(GFP_KERNEL); if (!buffer) { mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n"); resume_with_error = 1; goto resolve_page_fault; } ret = mlx5_ib_read_user_wqe(qp, requestor, wqe_index, buffer, PAGE_SIZE); if (ret < 0) { mlx5_ib_err(dev, "Failed reading a WQE following page fault, error=%x, wqe_index=%x, qpn=%x\n", -ret, wqe_index, qp->mqp.qpn); resume_with_error = 1; goto resolve_page_fault; } wqe = buffer; if (requestor) ret = mlx5_ib_mr_initiator_pfault_handler(qp, pfault, &wqe, &wqe_end, ret); else ret = mlx5_ib_mr_responder_pfault_handler(qp, pfault, &wqe, &wqe_end, ret); if (ret < 0) { resume_with_error = 1; goto resolve_page_fault; } if (wqe >= wqe_end) { mlx5_ib_err(dev, "ODP fault on invalid WQE.\n"); resume_with_error = 1; goto resolve_page_fault; } ret = pagefault_data_segments(qp, pfault, wqe, wqe_end, &bytes_mapped, &total_wqe_bytes, !requestor); if (ret == -EAGAIN) { goto resolve_page_fault; } else if (ret < 0 || total_wqe_bytes > bytes_mapped) { mlx5_ib_err(dev, "Error getting user pages for page fault. Error: 0x%x\n", -ret); resume_with_error = 1; goto resolve_page_fault; } resolve_page_fault: mlx5_ib_page_fault_resume(qp, pfault, resume_with_error); mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, flags: 0x%x\n", qp->mqp.qpn, resume_with_error, pfault->mpfault.flags); free_page((unsigned long)buffer); } static int pages_in_range(u64 address, u32 length) { return (ALIGN(address + length, PAGE_SIZE) - (address & PAGE_MASK)) >> PAGE_SHIFT; } static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault) { struct mlx5_pagefault *mpfault = &pfault->mpfault; u64 address; u32 length; u32 prefetch_len = mpfault->bytes_committed; int prefetch_activated = 0; u32 rkey = mpfault->rdma.r_key; int ret; /* The RDMA responder handler handles the page fault in two parts. * First it brings the necessary pages for the current packet * (and uses the pfault context), and then (after resuming the QP) * prefetches more pages. The second operation cannot use the pfault * context and therefore uses the dummy_pfault context allocated on * the stack */ struct mlx5_ib_pfault dummy_pfault = {}; dummy_pfault.mpfault.bytes_committed = 0; mpfault->rdma.rdma_va += mpfault->bytes_committed; mpfault->rdma.rdma_op_len -= min(mpfault->bytes_committed, mpfault->rdma.rdma_op_len); mpfault->bytes_committed = 0; address = mpfault->rdma.rdma_va; length = mpfault->rdma.rdma_op_len; /* For some operations, the hardware cannot tell the exact message * length, and in those cases it reports zero. Use prefetch * logic. */ if (length == 0) { prefetch_activated = 1; length = mpfault->rdma.packet_size; prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len); } ret = pagefault_single_data_segment(qp, pfault, rkey, address, length, NULL); if (ret == -EAGAIN) { /* We're racing with an invalidation, don't prefetch */ prefetch_activated = 0; } else if (ret < 0 || pages_in_range(address, length) > ret) { mlx5_ib_page_fault_resume(qp, pfault, 1); return; } mlx5_ib_page_fault_resume(qp, pfault, 0); /* At this point, there might be a new pagefault already arriving in * the eq, switch to the dummy pagefault for the rest of the * processing. We're still OK with the objects being alive as the * work-queue is being fenced. */ if (prefetch_activated) { ret = pagefault_single_data_segment(qp, &dummy_pfault, rkey, address, prefetch_len, NULL); if (ret < 0) { pr_warn("Prefetch failed (ret = %d, prefetch_activated = %d) for QPN %d, address: 0x%.16llx, length = 0x%.16x\n", ret, prefetch_activated, qp->ibqp.qp_num, address, prefetch_len); } } } void mlx5_ib_mr_pfault_handler(struct mlx5_ib_qp *qp, struct mlx5_ib_pfault *pfault) { u8 event_subtype = pfault->mpfault.event_subtype; switch (event_subtype) { case MLX5_PFAULT_SUBTYPE_WQE: mlx5_ib_mr_wqe_pfault_handler(qp, pfault); break; case MLX5_PFAULT_SUBTYPE_RDMA: mlx5_ib_mr_rdma_pfault_handler(qp, pfault); break; default: pr_warn("Invalid page fault event subtype: 0x%x\n", event_subtype); mlx5_ib_page_fault_resume(qp, pfault, 1); break; } } static void mlx5_ib_qp_pfault_action(struct work_struct *work) { struct mlx5_ib_pfault *pfault = container_of(work, struct mlx5_ib_pfault, work); enum mlx5_ib_pagefault_context context = mlx5_ib_get_pagefault_context(&pfault->mpfault); struct mlx5_ib_qp *qp = container_of(pfault, struct mlx5_ib_qp, pagefaults[context]); mlx5_ib_mr_pfault_handler(qp, pfault); } void mlx5_ib_qp_disable_pagefaults(struct mlx5_ib_qp *qp) { unsigned long flags; spin_lock_irqsave(&qp->disable_page_faults_lock, flags); qp->disable_page_faults = 1; spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags); /* * Note that at this point, we are guarenteed that no more * work queue elements will be posted to the work queue with * the QP we are closing. */ flush_workqueue(mlx5_ib_page_fault_wq); } void mlx5_ib_qp_enable_pagefaults(struct mlx5_ib_qp *qp) { unsigned long flags; spin_lock_irqsave(&qp->disable_page_faults_lock, flags); qp->disable_page_faults = 0; spin_unlock_irqrestore(&qp->disable_page_faults_lock, flags); } static void mlx5_ib_pfault_handler(struct mlx5_core_qp *qp, struct mlx5_pagefault *pfault) { /* * Note that we will only get one fault event per QP per context * (responder/initiator, read/write), until we resolve the page fault * with the mlx5_ib_page_fault_resume command. Since this function is * called from within the work element, there is no risk of missing * events. */ struct mlx5_ib_qp *mibqp = to_mibqp(qp); enum mlx5_ib_pagefault_context context = mlx5_ib_get_pagefault_context(pfault); struct mlx5_ib_pfault *qp_pfault = &mibqp->pagefaults[context]; qp_pfault->mpfault = *pfault; /* No need to stop interrupts here since we are in an interrupt */ spin_lock(&mibqp->disable_page_faults_lock); if (!mibqp->disable_page_faults) queue_work(mlx5_ib_page_fault_wq, &qp_pfault->work); spin_unlock(&mibqp->disable_page_faults_lock); } void mlx5_ib_odp_create_qp(struct mlx5_ib_qp *qp) { int i; qp->disable_page_faults = 1; spin_lock_init(&qp->disable_page_faults_lock); qp->mqp.pfault_handler = mlx5_ib_pfault_handler; for (i = 0; i < MLX5_IB_PAGEFAULT_CONTEXTS; ++i) INIT_WORK(&qp->pagefaults[i].work, mlx5_ib_qp_pfault_action); } int mlx5_ib_odp_init_one(struct mlx5_ib_dev *ibdev) { int ret; ret = init_srcu_struct(&ibdev->mr_srcu); if (ret) return ret; return 0; } void mlx5_ib_odp_remove_one(struct mlx5_ib_dev *ibdev) { cleanup_srcu_struct(&ibdev->mr_srcu); } int __init mlx5_ib_odp_init(void) { mlx5_ib_page_fault_wq = create_singlethread_workqueue("mlx5_ib_page_faults"); if (!mlx5_ib_page_fault_wq) return -ENOMEM; return 0; } void mlx5_ib_odp_cleanup(void) { destroy_workqueue(mlx5_ib_page_fault_wq); }