/* * Copyright (c) 2012, 2013 Intel Corporation. All rights reserved. * Copyright (c) 2006 - 2012 QLogic Corporation. All rights reserved. * Copyright (c) 2003, 2004, 2005, 2006 PathScale, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include "qib.h" #include "qib_common.h" #include "qib_user_sdma.h" #undef pr_fmt #define pr_fmt(fmt) QIB_DRV_NAME ": " fmt static int qib_open(struct inode *, struct file *); static int qib_close(struct inode *, struct file *); static ssize_t qib_write(struct file *, const char __user *, size_t, loff_t *); static ssize_t qib_write_iter(struct kiocb *, struct iov_iter *); static __poll_t qib_poll(struct file *, struct poll_table_struct *); static int qib_mmapf(struct file *, struct vm_area_struct *); /* * This is really, really weird shit - write() and writev() here * have completely unrelated semantics. Sucky userland ABI, * film at 11. */ static const struct file_operations qib_file_ops = { .owner = THIS_MODULE, .write = qib_write, .write_iter = qib_write_iter, .open = qib_open, .release = qib_close, .poll = qib_poll, .mmap = qib_mmapf, .llseek = noop_llseek, }; /* * Convert kernel virtual addresses to physical addresses so they don't * potentially conflict with the chip addresses used as mmap offsets. * It doesn't really matter what mmap offset we use as long as we can * interpret it correctly. */ static u64 cvt_kvaddr(void *p) { struct page *page; u64 paddr = 0; page = vmalloc_to_page(p); if (page) paddr = page_to_pfn(page) << PAGE_SHIFT; return paddr; } static int qib_get_base_info(struct file *fp, void __user *ubase, size_t ubase_size) { struct qib_ctxtdata *rcd = ctxt_fp(fp); int ret = 0; struct qib_base_info *kinfo = NULL; struct qib_devdata *dd = rcd->dd; struct qib_pportdata *ppd = rcd->ppd; unsigned subctxt_cnt; int shared, master; size_t sz; subctxt_cnt = rcd->subctxt_cnt; if (!subctxt_cnt) { shared = 0; master = 0; subctxt_cnt = 1; } else { shared = 1; master = !subctxt_fp(fp); } sz = sizeof(*kinfo); /* If context sharing is not requested, allow the old size structure */ if (!shared) sz -= 7 * sizeof(u64); if (ubase_size < sz) { ret = -EINVAL; goto bail; } kinfo = kzalloc(sizeof(*kinfo), GFP_KERNEL); if (kinfo == NULL) { ret = -ENOMEM; goto bail; } ret = dd->f_get_base_info(rcd, kinfo); if (ret < 0) goto bail; kinfo->spi_rcvhdr_cnt = dd->rcvhdrcnt; kinfo->spi_rcvhdrent_size = dd->rcvhdrentsize; kinfo->spi_tidegrcnt = rcd->rcvegrcnt; kinfo->spi_rcv_egrbufsize = dd->rcvegrbufsize; /* * have to mmap whole thing */ kinfo->spi_rcv_egrbuftotlen = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; kinfo->spi_rcv_egrperchunk = rcd->rcvegrbufs_perchunk; kinfo->spi_rcv_egrchunksize = kinfo->spi_rcv_egrbuftotlen / rcd->rcvegrbuf_chunks; kinfo->spi_tidcnt = dd->rcvtidcnt / subctxt_cnt; if (master) kinfo->spi_tidcnt += dd->rcvtidcnt % subctxt_cnt; /* * for this use, may be cfgctxts summed over all chips that * are are configured and present */ kinfo->spi_nctxts = dd->cfgctxts; /* unit (chip/board) our context is on */ kinfo->spi_unit = dd->unit; kinfo->spi_port = ppd->port; /* for now, only a single page */ kinfo->spi_tid_maxsize = PAGE_SIZE; /* * Doing this per context, and based on the skip value, etc. This has * to be the actual buffer size, since the protocol code treats it * as an array. * * These have to be set to user addresses in the user code via mmap. * These values are used on return to user code for the mmap target * addresses only. For 32 bit, same 44 bit address problem, so use * the physical address, not virtual. Before 2.6.11, using the * page_address() macro worked, but in 2.6.11, even that returns the * full 64 bit address (upper bits all 1's). So far, using the * physical addresses (or chip offsets, for chip mapping) works, but * no doubt some future kernel release will change that, and we'll be * on to yet another method of dealing with this. * Normally only one of rcvhdr_tailaddr or rhf_offset is useful * since the chips with non-zero rhf_offset don't normally * enable tail register updates to host memory, but for testing, * both can be enabled and used. */ kinfo->spi_rcvhdr_base = (u64) rcd->rcvhdrq_phys; kinfo->spi_rcvhdr_tailaddr = (u64) rcd->rcvhdrqtailaddr_phys; kinfo->spi_rhf_offset = dd->rhf_offset; kinfo->spi_rcv_egrbufs = (u64) rcd->rcvegr_phys; kinfo->spi_pioavailaddr = (u64) dd->pioavailregs_phys; /* setup per-unit (not port) status area for user programs */ kinfo->spi_status = (u64) kinfo->spi_pioavailaddr + (char *) ppd->statusp - (char *) dd->pioavailregs_dma; kinfo->spi_uregbase = (u64) dd->uregbase + dd->ureg_align * rcd->ctxt; if (!shared) { kinfo->spi_piocnt = rcd->piocnt; kinfo->spi_piobufbase = (u64) rcd->piobufs; kinfo->spi_sendbuf_status = cvt_kvaddr(rcd->user_event_mask); } else if (master) { kinfo->spi_piocnt = (rcd->piocnt / subctxt_cnt) + (rcd->piocnt % subctxt_cnt); /* Master's PIO buffers are after all the slave's */ kinfo->spi_piobufbase = (u64) rcd->piobufs + dd->palign * (rcd->piocnt - kinfo->spi_piocnt); } else { unsigned slave = subctxt_fp(fp) - 1; kinfo->spi_piocnt = rcd->piocnt / subctxt_cnt; kinfo->spi_piobufbase = (u64) rcd->piobufs + dd->palign * kinfo->spi_piocnt * slave; } if (shared) { kinfo->spi_sendbuf_status = cvt_kvaddr(&rcd->user_event_mask[subctxt_fp(fp)]); /* only spi_subctxt_* fields should be set in this block! */ kinfo->spi_subctxt_uregbase = cvt_kvaddr(rcd->subctxt_uregbase); kinfo->spi_subctxt_rcvegrbuf = cvt_kvaddr(rcd->subctxt_rcvegrbuf); kinfo->spi_subctxt_rcvhdr_base = cvt_kvaddr(rcd->subctxt_rcvhdr_base); } /* * All user buffers are 2KB buffers. If we ever support * giving 4KB buffers to user processes, this will need some * work. Can't use piobufbase directly, because it has * both 2K and 4K buffer base values. */ kinfo->spi_pioindex = (kinfo->spi_piobufbase - dd->pio2k_bufbase) / dd->palign; kinfo->spi_pioalign = dd->palign; kinfo->spi_qpair = QIB_KD_QP; /* * user mode PIO buffers are always 2KB, even when 4KB can * be received, and sent via the kernel; this is ibmaxlen * for 2K MTU. */ kinfo->spi_piosize = dd->piosize2k - 2 * sizeof(u32); kinfo->spi_mtu = ppd->ibmaxlen; /* maxlen, not ibmtu */ kinfo->spi_ctxt = rcd->ctxt; kinfo->spi_subctxt = subctxt_fp(fp); kinfo->spi_sw_version = QIB_KERN_SWVERSION; kinfo->spi_sw_version |= 1U << 31; /* QLogic-built, not kernel.org */ kinfo->spi_hw_version = dd->revision; if (master) kinfo->spi_runtime_flags |= QIB_RUNTIME_MASTER; sz = (ubase_size < sizeof(*kinfo)) ? ubase_size : sizeof(*kinfo); if (copy_to_user(ubase, kinfo, sz)) ret = -EFAULT; bail: kfree(kinfo); return ret; } /** * qib_tid_update - update a context TID * @rcd: the context * @fp: the qib device file * @ti: the TID information * * The new implementation as of Oct 2004 is that the driver assigns * the tid and returns it to the caller. To reduce search time, we * keep a cursor for each context, walking the shadow tid array to find * one that's not in use. * * For now, if we can't allocate the full list, we fail, although * in the long run, we'll allocate as many as we can, and the * caller will deal with that by trying the remaining pages later. * That means that when we fail, we have to mark the tids as not in * use again, in our shadow copy. * * It's up to the caller to free the tids when they are done. * We'll unlock the pages as they free them. * * Also, right now we are locking one page at a time, but since * the intended use of this routine is for a single group of * virtually contiguous pages, that should change to improve * performance. */ static int qib_tid_update(struct qib_ctxtdata *rcd, struct file *fp, const struct qib_tid_info *ti) { int ret = 0, ntids; u32 tid, ctxttid, cnt, i, tidcnt, tidoff; u16 *tidlist; struct qib_devdata *dd = rcd->dd; u64 physaddr; unsigned long vaddr; u64 __iomem *tidbase; unsigned long tidmap[8]; struct page **pagep = NULL; unsigned subctxt = subctxt_fp(fp); if (!dd->pageshadow) { ret = -ENOMEM; goto done; } cnt = ti->tidcnt; if (!cnt) { ret = -EFAULT; goto done; } ctxttid = rcd->ctxt * dd->rcvtidcnt; if (!rcd->subctxt_cnt) { tidcnt = dd->rcvtidcnt; tid = rcd->tidcursor; tidoff = 0; } else if (!subctxt) { tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + (dd->rcvtidcnt % rcd->subctxt_cnt); tidoff = dd->rcvtidcnt - tidcnt; ctxttid += tidoff; tid = tidcursor_fp(fp); } else { tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; tidoff = tidcnt * (subctxt - 1); ctxttid += tidoff; tid = tidcursor_fp(fp); } if (cnt > tidcnt) { /* make sure it all fits in tid_pg_list */ qib_devinfo(dd->pcidev, "Process tried to allocate %u TIDs, only trying max (%u)\n", cnt, tidcnt); cnt = tidcnt; } pagep = (struct page **) rcd->tid_pg_list; tidlist = (u16 *) &pagep[dd->rcvtidcnt]; pagep += tidoff; tidlist += tidoff; memset(tidmap, 0, sizeof(tidmap)); /* before decrement; chip actual # */ ntids = tidcnt; tidbase = (u64 __iomem *) (((char __iomem *) dd->kregbase) + dd->rcvtidbase + ctxttid * sizeof(*tidbase)); /* virtual address of first page in transfer */ vaddr = ti->tidvaddr; if (!access_ok((void __user *) vaddr, cnt * PAGE_SIZE)) { ret = -EFAULT; goto done; } ret = qib_get_user_pages(vaddr, cnt, pagep); if (ret) { /* * if (ret == -EBUSY) * We can't continue because the pagep array won't be * initialized. This should never happen, * unless perhaps the user has mpin'ed the pages * themselves. */ qib_devinfo( dd->pcidev, "Failed to lock addr %p, %u pages: errno %d\n", (void *) vaddr, cnt, -ret); goto done; } for (i = 0; i < cnt; i++, vaddr += PAGE_SIZE) { dma_addr_t daddr; for (; ntids--; tid++) { if (tid == tidcnt) tid = 0; if (!dd->pageshadow[ctxttid + tid]) break; } if (ntids < 0) { /* * Oops, wrapped all the way through their TIDs, * and didn't have enough free; see comments at * start of routine */ i--; /* last tidlist[i] not filled in */ ret = -ENOMEM; break; } ret = qib_map_page(dd->pcidev, pagep[i], &daddr); if (ret) break; tidlist[i] = tid + tidoff; /* we "know" system pages and TID pages are same size */ dd->pageshadow[ctxttid + tid] = pagep[i]; dd->physshadow[ctxttid + tid] = daddr; /* * don't need atomic or it's overhead */ __set_bit(tid, tidmap); physaddr = dd->physshadow[ctxttid + tid]; /* PERFORMANCE: below should almost certainly be cached */ dd->f_put_tid(dd, &tidbase[tid], RCVHQ_RCV_TYPE_EXPECTED, physaddr); /* * don't check this tid in qib_ctxtshadow, since we * just filled it in; start with the next one. */ tid++; } if (ret) { u32 limit; cleanup: /* jump here if copy out of updated info failed... */ /* same code that's in qib_free_tid() */ limit = sizeof(tidmap) * BITS_PER_BYTE; if (limit > tidcnt) /* just in case size changes in future */ limit = tidcnt; tid = find_first_bit((const unsigned long *)tidmap, limit); for (; tid < limit; tid++) { if (!test_bit(tid, tidmap)) continue; if (dd->pageshadow[ctxttid + tid]) { dma_addr_t phys; phys = dd->physshadow[ctxttid + tid]; dd->physshadow[ctxttid + tid] = dd->tidinvalid; /* PERFORMANCE: below should almost certainly * be cached */ dd->f_put_tid(dd, &tidbase[tid], RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, PCI_DMA_FROMDEVICE); dd->pageshadow[ctxttid + tid] = NULL; } } qib_release_user_pages(pagep, cnt); } else { /* * Copy the updated array, with qib_tid's filled in, back * to user. Since we did the copy in already, this "should * never fail" If it does, we have to clean up... */ if (copy_to_user((void __user *) (unsigned long) ti->tidlist, tidlist, cnt * sizeof(*tidlist))) { ret = -EFAULT; goto cleanup; } if (copy_to_user(u64_to_user_ptr(ti->tidmap), tidmap, sizeof(tidmap))) { ret = -EFAULT; goto cleanup; } if (tid == tidcnt) tid = 0; if (!rcd->subctxt_cnt) rcd->tidcursor = tid; else tidcursor_fp(fp) = tid; } done: return ret; } /** * qib_tid_free - free a context TID * @rcd: the context * @subctxt: the subcontext * @ti: the TID info * * right now we are unlocking one page at a time, but since * the intended use of this routine is for a single group of * virtually contiguous pages, that should change to improve * performance. We check that the TID is in range for this context * but otherwise don't check validity; if user has an error and * frees the wrong tid, it's only their own data that can thereby * be corrupted. We do check that the TID was in use, for sanity * We always use our idea of the saved address, not the address that * they pass in to us. */ static int qib_tid_free(struct qib_ctxtdata *rcd, unsigned subctxt, const struct qib_tid_info *ti) { int ret = 0; u32 tid, ctxttid, cnt, limit, tidcnt; struct qib_devdata *dd = rcd->dd; u64 __iomem *tidbase; unsigned long tidmap[8]; if (!dd->pageshadow) { ret = -ENOMEM; goto done; } if (copy_from_user(tidmap, u64_to_user_ptr(ti->tidmap), sizeof(tidmap))) { ret = -EFAULT; goto done; } ctxttid = rcd->ctxt * dd->rcvtidcnt; if (!rcd->subctxt_cnt) tidcnt = dd->rcvtidcnt; else if (!subctxt) { tidcnt = (dd->rcvtidcnt / rcd->subctxt_cnt) + (dd->rcvtidcnt % rcd->subctxt_cnt); ctxttid += dd->rcvtidcnt - tidcnt; } else { tidcnt = dd->rcvtidcnt / rcd->subctxt_cnt; ctxttid += tidcnt * (subctxt - 1); } tidbase = (u64 __iomem *) ((char __iomem *)(dd->kregbase) + dd->rcvtidbase + ctxttid * sizeof(*tidbase)); limit = sizeof(tidmap) * BITS_PER_BYTE; if (limit > tidcnt) /* just in case size changes in future */ limit = tidcnt; tid = find_first_bit(tidmap, limit); for (cnt = 0; tid < limit; tid++) { /* * small optimization; if we detect a run of 3 or so without * any set, use find_first_bit again. That's mainly to * accelerate the case where we wrapped, so we have some at * the beginning, and some at the end, and a big gap * in the middle. */ if (!test_bit(tid, tidmap)) continue; cnt++; if (dd->pageshadow[ctxttid + tid]) { struct page *p; dma_addr_t phys; p = dd->pageshadow[ctxttid + tid]; dd->pageshadow[ctxttid + tid] = NULL; phys = dd->physshadow[ctxttid + tid]; dd->physshadow[ctxttid + tid] = dd->tidinvalid; /* PERFORMANCE: below should almost certainly be * cached */ dd->f_put_tid(dd, &tidbase[tid], RCVHQ_RCV_TYPE_EXPECTED, dd->tidinvalid); pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, PCI_DMA_FROMDEVICE); qib_release_user_pages(&p, 1); } } done: return ret; } /** * qib_set_part_key - set a partition key * @rcd: the context * @key: the key * * We can have up to 4 active at a time (other than the default, which is * always allowed). This is somewhat tricky, since multiple contexts may set * the same key, so we reference count them, and clean up at exit. All 4 * partition keys are packed into a single qlogic_ib register. It's an * error for a process to set the same pkey multiple times. We provide no * mechanism to de-allocate a pkey at this time, we may eventually need to * do that. I've used the atomic operations, and no locking, and only make * a single pass through what's available. This should be more than * adequate for some time. I'll think about spinlocks or the like if and as * it's necessary. */ static int qib_set_part_key(struct qib_ctxtdata *rcd, u16 key) { struct qib_pportdata *ppd = rcd->ppd; int i, pidx = -1; bool any = false; u16 lkey = key & 0x7FFF; if (lkey == (QIB_DEFAULT_P_KEY & 0x7FFF)) /* nothing to do; this key always valid */ return 0; if (!lkey) return -EINVAL; /* * Set the full membership bit, because it has to be * set in the register or the packet, and it seems * cleaner to set in the register than to force all * callers to set it. */ key |= 0x8000; for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { if (!rcd->pkeys[i] && pidx == -1) pidx = i; if (rcd->pkeys[i] == key) return -EEXIST; } if (pidx == -1) return -EBUSY; for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { if (!ppd->pkeys[i]) { any = true; continue; } if (ppd->pkeys[i] == key) { atomic_t *pkrefs = &ppd->pkeyrefs[i]; if (atomic_inc_return(pkrefs) > 1) { rcd->pkeys[pidx] = key; return 0; } /* * lost race, decrement count, catch below */ atomic_dec(pkrefs); any = true; } if ((ppd->pkeys[i] & 0x7FFF) == lkey) /* * It makes no sense to have both the limited and * full membership PKEY set at the same time since * the unlimited one will disable the limited one. */ return -EEXIST; } if (!any) return -EBUSY; for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++) { if (!ppd->pkeys[i] && atomic_inc_return(&ppd->pkeyrefs[i]) == 1) { rcd->pkeys[pidx] = key; ppd->pkeys[i] = key; (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); return 0; } } return -EBUSY; } /** * qib_manage_rcvq - manage a context's receive queue * @rcd: the context * @subctxt: the subcontext * @start_stop: action to carry out * * start_stop == 0 disables receive on the context, for use in queue * overflow conditions. start_stop==1 re-enables, to be used to * re-init the software copy of the head register */ static int qib_manage_rcvq(struct qib_ctxtdata *rcd, unsigned subctxt, int start_stop) { struct qib_devdata *dd = rcd->dd; unsigned int rcvctrl_op; if (subctxt) goto bail; /* atomically clear receive enable ctxt. */ if (start_stop) { /* * On enable, force in-memory copy of the tail register to * 0, so that protocol code doesn't have to worry about * whether or not the chip has yet updated the in-memory * copy or not on return from the system call. The chip * always resets it's tail register back to 0 on a * transition from disabled to enabled. */ if (rcd->rcvhdrtail_kvaddr) qib_clear_rcvhdrtail(rcd); rcvctrl_op = QIB_RCVCTRL_CTXT_ENB; } else rcvctrl_op = QIB_RCVCTRL_CTXT_DIS; dd->f_rcvctrl(rcd->ppd, rcvctrl_op, rcd->ctxt); /* always; new head should be equal to new tail; see above */ bail: return 0; } static void qib_clean_part_key(struct qib_ctxtdata *rcd, struct qib_devdata *dd) { int i, j, pchanged = 0; struct qib_pportdata *ppd = rcd->ppd; for (i = 0; i < ARRAY_SIZE(rcd->pkeys); i++) { if (!rcd->pkeys[i]) continue; for (j = 0; j < ARRAY_SIZE(ppd->pkeys); j++) { /* check for match independent of the global bit */ if ((ppd->pkeys[j] & 0x7fff) != (rcd->pkeys[i] & 0x7fff)) continue; if (atomic_dec_and_test(&ppd->pkeyrefs[j])) { ppd->pkeys[j] = 0; pchanged++; } break; } rcd->pkeys[i] = 0; } if (pchanged) (void) ppd->dd->f_set_ib_cfg(ppd, QIB_IB_CFG_PKEYS, 0); } /* common code for the mappings on dma_alloc_coherent mem */ static int qib_mmap_mem(struct vm_area_struct *vma, struct qib_ctxtdata *rcd, unsigned len, void *kvaddr, u32 write_ok, char *what) { struct qib_devdata *dd = rcd->dd; unsigned long pfn; int ret; if ((vma->vm_end - vma->vm_start) > len) { qib_devinfo(dd->pcidev, "FAIL on %s: len %lx > %x\n", what, vma->vm_end - vma->vm_start, len); ret = -EFAULT; goto bail; } /* * shared context user code requires rcvhdrq mapped r/w, others * only allowed readonly mapping. */ if (!write_ok) { if (vma->vm_flags & VM_WRITE) { qib_devinfo(dd->pcidev, "%s must be mapped readonly\n", what); ret = -EPERM; goto bail; } /* don't allow them to later change with mprotect */ vma->vm_flags &= ~VM_MAYWRITE; } pfn = virt_to_phys(kvaddr) >> PAGE_SHIFT; ret = remap_pfn_range(vma, vma->vm_start, pfn, len, vma->vm_page_prot); if (ret) qib_devinfo(dd->pcidev, "%s ctxt%u mmap of %lx, %x bytes failed: %d\n", what, rcd->ctxt, pfn, len, ret); bail: return ret; } static int mmap_ureg(struct vm_area_struct *vma, struct qib_devdata *dd, u64 ureg) { unsigned long phys; unsigned long sz; int ret; /* * This is real hardware, so use io_remap. This is the mechanism * for the user process to update the head registers for their ctxt * in the chip. */ sz = dd->flags & QIB_HAS_HDRSUPP ? 2 * PAGE_SIZE : PAGE_SIZE; if ((vma->vm_end - vma->vm_start) > sz) { qib_devinfo(dd->pcidev, "FAIL mmap userreg: reqlen %lx > PAGE\n", vma->vm_end - vma->vm_start); ret = -EFAULT; } else { phys = dd->physaddr + ureg; vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot); } return ret; } static int mmap_piobufs(struct vm_area_struct *vma, struct qib_devdata *dd, struct qib_ctxtdata *rcd, unsigned piobufs, unsigned piocnt) { unsigned long phys; int ret; /* * When we map the PIO buffers in the chip, we want to map them as * writeonly, no read possible; unfortunately, x86 doesn't allow * for this in hardware, but we still prevent users from asking * for it. */ if ((vma->vm_end - vma->vm_start) > (piocnt * dd->palign)) { qib_devinfo(dd->pcidev, "FAIL mmap piobufs: reqlen %lx > PAGE\n", vma->vm_end - vma->vm_start); ret = -EINVAL; goto bail; } phys = dd->physaddr + piobufs; #if defined(__powerpc__) vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); #endif /* * don't allow them to later change to readable with mprotect (for when * not initially mapped readable, as is normally the case) */ vma->vm_flags &= ~VM_MAYREAD; vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND; /* We used PAT if wc_cookie == 0 */ if (!dd->wc_cookie) vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); ret = io_remap_pfn_range(vma, vma->vm_start, phys >> PAGE_SHIFT, vma->vm_end - vma->vm_start, vma->vm_page_prot); bail: return ret; } static int mmap_rcvegrbufs(struct vm_area_struct *vma, struct qib_ctxtdata *rcd) { struct qib_devdata *dd = rcd->dd; unsigned long start, size; size_t total_size, i; unsigned long pfn; int ret; size = rcd->rcvegrbuf_size; total_size = rcd->rcvegrbuf_chunks * size; if ((vma->vm_end - vma->vm_start) > total_size) { qib_devinfo(dd->pcidev, "FAIL on egr bufs: reqlen %lx > actual %lx\n", vma->vm_end - vma->vm_start, (unsigned long) total_size); ret = -EINVAL; goto bail; } if (vma->vm_flags & VM_WRITE) { qib_devinfo(dd->pcidev, "Can't map eager buffers as writable (flags=%lx)\n", vma->vm_flags); ret = -EPERM; goto bail; } /* don't allow them to later change to writeable with mprotect */ vma->vm_flags &= ~VM_MAYWRITE; start = vma->vm_start; for (i = 0; i < rcd->rcvegrbuf_chunks; i++, start += size) { pfn = virt_to_phys(rcd->rcvegrbuf[i]) >> PAGE_SHIFT; ret = remap_pfn_range(vma, start, pfn, size, vma->vm_page_prot); if (ret < 0) goto bail; } ret = 0; bail: return ret; } /* * qib_file_vma_fault - handle a VMA page fault. */ static vm_fault_t qib_file_vma_fault(struct vm_fault *vmf) { struct page *page; page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT)); if (!page) return VM_FAULT_SIGBUS; get_page(page); vmf->page = page; return 0; } static const struct vm_operations_struct qib_file_vm_ops = { .fault = qib_file_vma_fault, }; static int mmap_kvaddr(struct vm_area_struct *vma, u64 pgaddr, struct qib_ctxtdata *rcd, unsigned subctxt) { struct qib_devdata *dd = rcd->dd; unsigned subctxt_cnt; unsigned long len; void *addr; size_t size; int ret = 0; subctxt_cnt = rcd->subctxt_cnt; size = rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size; /* * Each process has all the subctxt uregbase, rcvhdrq, and * rcvegrbufs mmapped - as an array for all the processes, * and also separately for this process. */ if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase)) { addr = rcd->subctxt_uregbase; size = PAGE_SIZE * subctxt_cnt; } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base)) { addr = rcd->subctxt_rcvhdr_base; size = rcd->rcvhdrq_size * subctxt_cnt; } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf)) { addr = rcd->subctxt_rcvegrbuf; size *= subctxt_cnt; } else if (pgaddr == cvt_kvaddr(rcd->subctxt_uregbase + PAGE_SIZE * subctxt)) { addr = rcd->subctxt_uregbase + PAGE_SIZE * subctxt; size = PAGE_SIZE; } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvhdr_base + rcd->rcvhdrq_size * subctxt)) { addr = rcd->subctxt_rcvhdr_base + rcd->rcvhdrq_size * subctxt; size = rcd->rcvhdrq_size; } else if (pgaddr == cvt_kvaddr(&rcd->user_event_mask[subctxt])) { addr = rcd->user_event_mask; size = PAGE_SIZE; } else if (pgaddr == cvt_kvaddr(rcd->subctxt_rcvegrbuf + size * subctxt)) { addr = rcd->subctxt_rcvegrbuf + size * subctxt; /* rcvegrbufs are read-only on the slave */ if (vma->vm_flags & VM_WRITE) { qib_devinfo(dd->pcidev, "Can't map eager buffers as writable (flags=%lx)\n", vma->vm_flags); ret = -EPERM; goto bail; } /* * Don't allow permission to later change to writeable * with mprotect. */ vma->vm_flags &= ~VM_MAYWRITE; } else goto bail; len = vma->vm_end - vma->vm_start; if (len > size) { ret = -EINVAL; goto bail; } vma->vm_pgoff = (unsigned long) addr >> PAGE_SHIFT; vma->vm_ops = &qib_file_vm_ops; vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP; ret = 1; bail: return ret; } /** * qib_mmapf - mmap various structures into user space * @fp: the file pointer * @vma: the VM area * * We use this to have a shared buffer between the kernel and the user code * for the rcvhdr queue, egr buffers, and the per-context user regs and pio * buffers in the chip. We have the open and close entries so we can bump * the ref count and keep the driver from being unloaded while still mapped. */ static int qib_mmapf(struct file *fp, struct vm_area_struct *vma) { struct qib_ctxtdata *rcd; struct qib_devdata *dd; u64 pgaddr, ureg; unsigned piobufs, piocnt; int ret, match = 1; rcd = ctxt_fp(fp); if (!rcd || !(vma->vm_flags & VM_SHARED)) { ret = -EINVAL; goto bail; } dd = rcd->dd; /* * This is the qib_do_user_init() code, mapping the shared buffers * and per-context user registers into the user process. The address * referred to by vm_pgoff is the file offset passed via mmap(). * For shared contexts, this is the kernel vmalloc() address of the * pages to share with the master. * For non-shared or master ctxts, this is a physical address. * We only do one mmap for each space mapped. */ pgaddr = vma->vm_pgoff << PAGE_SHIFT; /* * Check for 0 in case one of the allocations failed, but user * called mmap anyway. */ if (!pgaddr) { ret = -EINVAL; goto bail; } /* * Physical addresses must fit in 40 bits for our hardware. * Check for kernel virtual addresses first, anything else must * match a HW or memory address. */ ret = mmap_kvaddr(vma, pgaddr, rcd, subctxt_fp(fp)); if (ret) { if (ret > 0) ret = 0; goto bail; } ureg = dd->uregbase + dd->ureg_align * rcd->ctxt; if (!rcd->subctxt_cnt) { /* ctxt is not shared */ piocnt = rcd->piocnt; piobufs = rcd->piobufs; } else if (!subctxt_fp(fp)) { /* caller is the master */ piocnt = (rcd->piocnt / rcd->subctxt_cnt) + (rcd->piocnt % rcd->subctxt_cnt); piobufs = rcd->piobufs + dd->palign * (rcd->piocnt - piocnt); } else { unsigned slave = subctxt_fp(fp) - 1; /* caller is a slave */ piocnt = rcd->piocnt / rcd->subctxt_cnt; piobufs = rcd->piobufs + dd->palign * piocnt * slave; } if (pgaddr == ureg) ret = mmap_ureg(vma, dd, ureg); else if (pgaddr == piobufs) ret = mmap_piobufs(vma, dd, rcd, piobufs, piocnt); else if (pgaddr == dd->pioavailregs_phys) /* in-memory copy of pioavail registers */ ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, (void *) dd->pioavailregs_dma, 0, "pioavail registers"); else if (pgaddr == rcd->rcvegr_phys) ret = mmap_rcvegrbufs(vma, rcd); else if (pgaddr == (u64) rcd->rcvhdrq_phys) /* * The rcvhdrq itself; multiple pages, contiguous * from an i/o perspective. Shared contexts need * to map r/w, so we allow writing. */ ret = qib_mmap_mem(vma, rcd, rcd->rcvhdrq_size, rcd->rcvhdrq, 1, "rcvhdrq"); else if (pgaddr == (u64) rcd->rcvhdrqtailaddr_phys) /* in-memory copy of rcvhdrq tail register */ ret = qib_mmap_mem(vma, rcd, PAGE_SIZE, rcd->rcvhdrtail_kvaddr, 0, "rcvhdrq tail"); else match = 0; if (!match) ret = -EINVAL; vma->vm_private_data = NULL; if (ret < 0) qib_devinfo(dd->pcidev, "mmap Failure %d: off %llx len %lx\n", -ret, (unsigned long long)pgaddr, vma->vm_end - vma->vm_start); bail: return ret; } static __poll_t qib_poll_urgent(struct qib_ctxtdata *rcd, struct file *fp, struct poll_table_struct *pt) { struct qib_devdata *dd = rcd->dd; __poll_t pollflag; poll_wait(fp, &rcd->wait, pt); spin_lock_irq(&dd->uctxt_lock); if (rcd->urgent != rcd->urgent_poll) { pollflag = EPOLLIN | EPOLLRDNORM; rcd->urgent_poll = rcd->urgent; } else { pollflag = 0; set_bit(QIB_CTXT_WAITING_URG, &rcd->flag); } spin_unlock_irq(&dd->uctxt_lock); return pollflag; } static __poll_t qib_poll_next(struct qib_ctxtdata *rcd, struct file *fp, struct poll_table_struct *pt) { struct qib_devdata *dd = rcd->dd; __poll_t pollflag; poll_wait(fp, &rcd->wait, pt); spin_lock_irq(&dd->uctxt_lock); if (dd->f_hdrqempty(rcd)) { set_bit(QIB_CTXT_WAITING_RCV, &rcd->flag); dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_INTRAVAIL_ENB, rcd->ctxt); pollflag = 0; } else pollflag = EPOLLIN | EPOLLRDNORM; spin_unlock_irq(&dd->uctxt_lock); return pollflag; } static __poll_t qib_poll(struct file *fp, struct poll_table_struct *pt) { struct qib_ctxtdata *rcd; __poll_t pollflag; rcd = ctxt_fp(fp); if (!rcd) pollflag = EPOLLERR; else if (rcd->poll_type == QIB_POLL_TYPE_URGENT) pollflag = qib_poll_urgent(rcd, fp, pt); else if (rcd->poll_type == QIB_POLL_TYPE_ANYRCV) pollflag = qib_poll_next(rcd, fp, pt); else /* invalid */ pollflag = EPOLLERR; return pollflag; } static void assign_ctxt_affinity(struct file *fp, struct qib_devdata *dd) { struct qib_filedata *fd = fp->private_data; const unsigned int weight = current->nr_cpus_allowed; const struct cpumask *local_mask = cpumask_of_pcibus(dd->pcidev->bus); int local_cpu; /* * If process has NOT already set it's affinity, select and * reserve a processor for it on the local NUMA node. */ if ((weight >= qib_cpulist_count) && (cpumask_weight(local_mask) <= qib_cpulist_count)) { for_each_cpu(local_cpu, local_mask) if (!test_and_set_bit(local_cpu, qib_cpulist)) { fd->rec_cpu_num = local_cpu; return; } } /* * If process has NOT already set it's affinity, select and * reserve a processor for it, as a rendevous for all * users of the driver. If they don't actually later * set affinity to this cpu, or set it to some other cpu, * it just means that sooner or later we don't recommend * a cpu, and let the scheduler do it's best. */ if (weight >= qib_cpulist_count) { int cpu; cpu = find_first_zero_bit(qib_cpulist, qib_cpulist_count); if (cpu == qib_cpulist_count) qib_dev_err(dd, "no cpus avail for affinity PID %u\n", current->pid); else { __set_bit(cpu, qib_cpulist); fd->rec_cpu_num = cpu; } } } /* * Check that userland and driver are compatible for subcontexts. */ static int qib_compatible_subctxts(int user_swmajor, int user_swminor) { /* this code is written long-hand for clarity */ if (QIB_USER_SWMAJOR != user_swmajor) { /* no promise of compatibility if major mismatch */ return 0; } if (QIB_USER_SWMAJOR == 1) { switch (QIB_USER_SWMINOR) { case 0: case 1: case 2: /* no subctxt implementation so cannot be compatible */ return 0; case 3: /* 3 is only compatible with itself */ return user_swminor == 3; default: /* >= 4 are compatible (or are expected to be) */ return user_swminor <= QIB_USER_SWMINOR; } } /* make no promises yet for future major versions */ return 0; } static int init_subctxts(struct qib_devdata *dd, struct qib_ctxtdata *rcd, const struct qib_user_info *uinfo) { int ret = 0; unsigned num_subctxts; size_t size; /* * If the user is requesting zero subctxts, * skip the subctxt allocation. */ if (uinfo->spu_subctxt_cnt <= 0) goto bail; num_subctxts = uinfo->spu_subctxt_cnt; /* Check for subctxt compatibility */ if (!qib_compatible_subctxts(uinfo->spu_userversion >> 16, uinfo->spu_userversion & 0xffff)) { qib_devinfo(dd->pcidev, "Mismatched user version (%d.%d) and driver version (%d.%d) while context sharing. Ensure that driver and library are from the same release.\n", (int) (uinfo->spu_userversion >> 16), (int) (uinfo->spu_userversion & 0xffff), QIB_USER_SWMAJOR, QIB_USER_SWMINOR); goto bail; } if (num_subctxts > QLOGIC_IB_MAX_SUBCTXT) { ret = -EINVAL; goto bail; } rcd->subctxt_uregbase = vmalloc_user(PAGE_SIZE * num_subctxts); if (!rcd->subctxt_uregbase) { ret = -ENOMEM; goto bail; } /* Note: rcd->rcvhdrq_size isn't initialized yet. */ size = ALIGN(dd->rcvhdrcnt * dd->rcvhdrentsize * sizeof(u32), PAGE_SIZE) * num_subctxts; rcd->subctxt_rcvhdr_base = vmalloc_user(size); if (!rcd->subctxt_rcvhdr_base) { ret = -ENOMEM; goto bail_ureg; } rcd->subctxt_rcvegrbuf = vmalloc_user(rcd->rcvegrbuf_chunks * rcd->rcvegrbuf_size * num_subctxts); if (!rcd->subctxt_rcvegrbuf) { ret = -ENOMEM; goto bail_rhdr; } rcd->subctxt_cnt = uinfo->spu_subctxt_cnt; rcd->subctxt_id = uinfo->spu_subctxt_id; rcd->active_slaves = 1; rcd->redirect_seq_cnt = 1; set_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); goto bail; bail_rhdr: vfree(rcd->subctxt_rcvhdr_base); bail_ureg: vfree(rcd->subctxt_uregbase); rcd->subctxt_uregbase = NULL; bail: return ret; } static int setup_ctxt(struct qib_pportdata *ppd, int ctxt, struct file *fp, const struct qib_user_info *uinfo) { struct qib_filedata *fd = fp->private_data; struct qib_devdata *dd = ppd->dd; struct qib_ctxtdata *rcd; void *ptmp = NULL; int ret; int numa_id; assign_ctxt_affinity(fp, dd); numa_id = qib_numa_aware ? ((fd->rec_cpu_num != -1) ? cpu_to_node(fd->rec_cpu_num) : numa_node_id()) : dd->assigned_node_id; rcd = qib_create_ctxtdata(ppd, ctxt, numa_id); /* * Allocate memory for use in qib_tid_update() at open to * reduce cost of expected send setup per message segment */ if (rcd) ptmp = kmalloc(dd->rcvtidcnt * sizeof(u16) + dd->rcvtidcnt * sizeof(struct page **), GFP_KERNEL); if (!rcd || !ptmp) { qib_dev_err(dd, "Unable to allocate ctxtdata memory, failing open\n"); ret = -ENOMEM; goto bailerr; } rcd->userversion = uinfo->spu_userversion; ret = init_subctxts(dd, rcd, uinfo); if (ret) goto bailerr; rcd->tid_pg_list = ptmp; rcd->pid = current->pid; init_waitqueue_head(&dd->rcd[ctxt]->wait); strlcpy(rcd->comm, current->comm, sizeof(rcd->comm)); ctxt_fp(fp) = rcd; qib_stats.sps_ctxts++; dd->freectxts--; ret = 0; goto bail; bailerr: if (fd->rec_cpu_num != -1) __clear_bit(fd->rec_cpu_num, qib_cpulist); dd->rcd[ctxt] = NULL; kfree(rcd); kfree(ptmp); bail: return ret; } static inline int usable(struct qib_pportdata *ppd) { struct qib_devdata *dd = ppd->dd; return dd && (dd->flags & QIB_PRESENT) && dd->kregbase && ppd->lid && (ppd->lflags & QIBL_LINKACTIVE); } /* * Select a context on the given device, either using a requested port * or the port based on the context number. */ static int choose_port_ctxt(struct file *fp, struct qib_devdata *dd, u32 port, const struct qib_user_info *uinfo) { struct qib_pportdata *ppd = NULL; int ret, ctxt; if (port) { if (!usable(dd->pport + port - 1)) { ret = -ENETDOWN; goto done; } else ppd = dd->pport + port - 1; } for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts && dd->rcd[ctxt]; ctxt++) ; if (ctxt == dd->cfgctxts) { ret = -EBUSY; goto done; } if (!ppd) { u32 pidx = ctxt % dd->num_pports; if (usable(dd->pport + pidx)) ppd = dd->pport + pidx; else { for (pidx = 0; pidx < dd->num_pports && !ppd; pidx++) if (usable(dd->pport + pidx)) ppd = dd->pport + pidx; } } ret = ppd ? setup_ctxt(ppd, ctxt, fp, uinfo) : -ENETDOWN; done: return ret; } static int find_free_ctxt(int unit, struct file *fp, const struct qib_user_info *uinfo) { struct qib_devdata *dd = qib_lookup(unit); int ret; if (!dd || (uinfo->spu_port && uinfo->spu_port > dd->num_pports)) ret = -ENODEV; else ret = choose_port_ctxt(fp, dd, uinfo->spu_port, uinfo); return ret; } static int get_a_ctxt(struct file *fp, const struct qib_user_info *uinfo, unsigned alg) { struct qib_devdata *udd = NULL; int ret = 0, devmax, npresent, nup, ndev, dusable = 0, i; u32 port = uinfo->spu_port, ctxt; devmax = qib_count_units(&npresent, &nup); if (!npresent) { ret = -ENXIO; goto done; } if (nup == 0) { ret = -ENETDOWN; goto done; } if (alg == QIB_PORT_ALG_ACROSS) { unsigned inuse = ~0U; /* find device (with ACTIVE ports) with fewest ctxts in use */ for (ndev = 0; ndev < devmax; ndev++) { struct qib_devdata *dd = qib_lookup(ndev); unsigned cused = 0, cfree = 0, pusable = 0; if (!dd) continue; if (port && port <= dd->num_pports && usable(dd->pport + port - 1)) pusable = 1; else for (i = 0; i < dd->num_pports; i++) if (usable(dd->pport + i)) pusable++; if (!pusable) continue; for (ctxt = dd->first_user_ctxt; ctxt < dd->cfgctxts; ctxt++) if (dd->rcd[ctxt]) cused++; else cfree++; if (cfree && cused < inuse) { udd = dd; inuse = cused; } } if (udd) { ret = choose_port_ctxt(fp, udd, port, uinfo); goto done; } } else { for (ndev = 0; ndev < devmax; ndev++) { struct qib_devdata *dd = qib_lookup(ndev); if (dd) { ret = choose_port_ctxt(fp, dd, port, uinfo); if (!ret) goto done; if (ret == -EBUSY) dusable++; } } } ret = dusable ? -EBUSY : -ENETDOWN; done: return ret; } static int find_shared_ctxt(struct file *fp, const struct qib_user_info *uinfo) { int devmax, ndev, i; int ret = 0; devmax = qib_count_units(NULL, NULL); for (ndev = 0; ndev < devmax; ndev++) { struct qib_devdata *dd = qib_lookup(ndev); /* device portion of usable() */ if (!(dd && (dd->flags & QIB_PRESENT) && dd->kregbase)) continue; for (i = dd->first_user_ctxt; i < dd->cfgctxts; i++) { struct qib_ctxtdata *rcd = dd->rcd[i]; /* Skip ctxts which are not yet open */ if (!rcd || !rcd->cnt) continue; /* Skip ctxt if it doesn't match the requested one */ if (rcd->subctxt_id != uinfo->spu_subctxt_id) continue; /* Verify the sharing process matches the master */ if (rcd->subctxt_cnt != uinfo->spu_subctxt_cnt || rcd->userversion != uinfo->spu_userversion || rcd->cnt >= rcd->subctxt_cnt) { ret = -EINVAL; goto done; } ctxt_fp(fp) = rcd; subctxt_fp(fp) = rcd->cnt++; rcd->subpid[subctxt_fp(fp)] = current->pid; tidcursor_fp(fp) = 0; rcd->active_slaves |= 1 << subctxt_fp(fp); ret = 1; goto done; } } done: return ret; } static int qib_open(struct inode *in, struct file *fp) { /* The real work is performed later in qib_assign_ctxt() */ fp->private_data = kzalloc(sizeof(struct qib_filedata), GFP_KERNEL); if (fp->private_data) /* no cpu affinity by default */ ((struct qib_filedata *)fp->private_data)->rec_cpu_num = -1; return fp->private_data ? 0 : -ENOMEM; } static int find_hca(unsigned int cpu, int *unit) { int ret = 0, devmax, npresent, nup, ndev; *unit = -1; devmax = qib_count_units(&npresent, &nup); if (!npresent) { ret = -ENXIO; goto done; } if (!nup) { ret = -ENETDOWN; goto done; } for (ndev = 0; ndev < devmax; ndev++) { struct qib_devdata *dd = qib_lookup(ndev); if (dd) { if (pcibus_to_node(dd->pcidev->bus) < 0) { ret = -EINVAL; goto done; } if (cpu_to_node(cpu) == pcibus_to_node(dd->pcidev->bus)) { *unit = ndev; goto done; } } } done: return ret; } static int do_qib_user_sdma_queue_create(struct file *fp) { struct qib_filedata *fd = fp->private_data; struct qib_ctxtdata *rcd = fd->rcd; struct qib_devdata *dd = rcd->dd; if (dd->flags & QIB_HAS_SEND_DMA) { fd->pq = qib_user_sdma_queue_create(&dd->pcidev->dev, dd->unit, rcd->ctxt, fd->subctxt); if (!fd->pq) return -ENOMEM; } return 0; } /* * Get ctxt early, so can set affinity prior to memory allocation. */ static int qib_assign_ctxt(struct file *fp, const struct qib_user_info *uinfo) { int ret; int i_minor; unsigned swmajor, swminor, alg = QIB_PORT_ALG_ACROSS; /* Check to be sure we haven't already initialized this file */ if (ctxt_fp(fp)) { ret = -EINVAL; goto done; } /* for now, if major version is different, bail */ swmajor = uinfo->spu_userversion >> 16; if (swmajor != QIB_USER_SWMAJOR) { ret = -ENODEV; goto done; } swminor = uinfo->spu_userversion & 0xffff; if (swminor >= 11 && uinfo->spu_port_alg < QIB_PORT_ALG_COUNT) alg = uinfo->spu_port_alg; mutex_lock(&qib_mutex); if (qib_compatible_subctxts(swmajor, swminor) && uinfo->spu_subctxt_cnt) { ret = find_shared_ctxt(fp, uinfo); if (ret > 0) { ret = do_qib_user_sdma_queue_create(fp); if (!ret) assign_ctxt_affinity(fp, (ctxt_fp(fp))->dd); goto done_ok; } } i_minor = iminor(file_inode(fp)) - QIB_USER_MINOR_BASE; if (i_minor) ret = find_free_ctxt(i_minor - 1, fp, uinfo); else { int unit; const unsigned int cpu = cpumask_first(current->cpus_ptr); const unsigned int weight = current->nr_cpus_allowed; if (weight == 1 && !test_bit(cpu, qib_cpulist)) if (!find_hca(cpu, &unit) && unit >= 0) if (!find_free_ctxt(unit, fp, uinfo)) { ret = 0; goto done_chk_sdma; } ret = get_a_ctxt(fp, uinfo, alg); } done_chk_sdma: if (!ret) ret = do_qib_user_sdma_queue_create(fp); done_ok: mutex_unlock(&qib_mutex); done: return ret; } static int qib_do_user_init(struct file *fp, const struct qib_user_info *uinfo) { int ret; struct qib_ctxtdata *rcd = ctxt_fp(fp); struct qib_devdata *dd; unsigned uctxt; /* Subctxts don't need to initialize anything since master did it. */ if (subctxt_fp(fp)) { ret = wait_event_interruptible(rcd->wait, !test_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag)); goto bail; } dd = rcd->dd; /* some ctxts may get extra buffers, calculate that here */ uctxt = rcd->ctxt - dd->first_user_ctxt; if (uctxt < dd->ctxts_extrabuf) { rcd->piocnt = dd->pbufsctxt + 1; rcd->pio_base = rcd->piocnt * uctxt; } else { rcd->piocnt = dd->pbufsctxt; rcd->pio_base = rcd->piocnt * uctxt + dd->ctxts_extrabuf; } /* * All user buffers are 2KB buffers. If we ever support * giving 4KB buffers to user processes, this will need some * work. Can't use piobufbase directly, because it has * both 2K and 4K buffer base values. So check and handle. */ if ((rcd->pio_base + rcd->piocnt) > dd->piobcnt2k) { if (rcd->pio_base >= dd->piobcnt2k) { qib_dev_err(dd, "%u:ctxt%u: no 2KB buffers available\n", dd->unit, rcd->ctxt); ret = -ENOBUFS; goto bail; } rcd->piocnt = dd->piobcnt2k - rcd->pio_base; qib_dev_err(dd, "Ctxt%u: would use 4KB bufs, using %u\n", rcd->ctxt, rcd->piocnt); } rcd->piobufs = dd->pio2k_bufbase + rcd->pio_base * dd->palign; qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, TXCHK_CHG_TYPE_USER, rcd); /* * try to ensure that processes start up with consistent avail update * for their own range, at least. If system very quiet, it might * have the in-memory copy out of date at startup for this range of * buffers, when a context gets re-used. Do after the chg_pioavail * and before the rest of setup, so it's "almost certain" the dma * will have occurred (can't 100% guarantee, but should be many * decimals of 9s, with this ordering), given how much else happens * after this. */ dd->f_sendctrl(dd->pport, QIB_SENDCTRL_AVAIL_BLIP); /* * Now allocate the rcvhdr Q and eager TIDs; skip the TID * array for time being. If rcd->ctxt > chip-supported, * we need to do extra stuff here to handle by handling overflow * through ctxt 0, someday */ ret = qib_create_rcvhdrq(dd, rcd); if (!ret) ret = qib_setup_eagerbufs(rcd); if (ret) goto bail_pio; rcd->tidcursor = 0; /* start at beginning after open */ /* initialize poll variables... */ rcd->urgent = 0; rcd->urgent_poll = 0; /* * Now enable the ctxt for receive. * For chips that are set to DMA the tail register to memory * when they change (and when the update bit transitions from * 0 to 1. So for those chips, we turn it off and then back on. * This will (very briefly) affect any other open ctxts, but the * duration is very short, and therefore isn't an issue. We * explicitly set the in-memory tail copy to 0 beforehand, so we * don't have to wait to be sure the DMA update has happened * (chip resets head/tail to 0 on transition to enable). */ if (rcd->rcvhdrtail_kvaddr) qib_clear_rcvhdrtail(rcd); dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_ENB | QIB_RCVCTRL_TIDFLOW_ENB, rcd->ctxt); /* Notify any waiting slaves */ if (rcd->subctxt_cnt) { clear_bit(QIB_CTXT_MASTER_UNINIT, &rcd->flag); wake_up(&rcd->wait); } return 0; bail_pio: qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, TXCHK_CHG_TYPE_KERN, rcd); bail: return ret; } /** * unlock_exptid - unlock any expected TID entries context still had in use * @rcd: ctxt * * We don't actually update the chip here, because we do a bulk update * below, using f_clear_tids. */ static void unlock_expected_tids(struct qib_ctxtdata *rcd) { struct qib_devdata *dd = rcd->dd; int ctxt_tidbase = rcd->ctxt * dd->rcvtidcnt; int i, cnt = 0, maxtid = ctxt_tidbase + dd->rcvtidcnt; for (i = ctxt_tidbase; i < maxtid; i++) { struct page *p = dd->pageshadow[i]; dma_addr_t phys; if (!p) continue; phys = dd->physshadow[i]; dd->physshadow[i] = dd->tidinvalid; dd->pageshadow[i] = NULL; pci_unmap_page(dd->pcidev, phys, PAGE_SIZE, PCI_DMA_FROMDEVICE); qib_release_user_pages(&p, 1); cnt++; } } static int qib_close(struct inode *in, struct file *fp) { struct qib_filedata *fd; struct qib_ctxtdata *rcd; struct qib_devdata *dd; unsigned long flags; unsigned ctxt; mutex_lock(&qib_mutex); fd = fp->private_data; fp->private_data = NULL; rcd = fd->rcd; if (!rcd) { mutex_unlock(&qib_mutex); goto bail; } dd = rcd->dd; /* ensure all pio buffer writes in progress are flushed */ qib_flush_wc(); /* drain user sdma queue */ if (fd->pq) { qib_user_sdma_queue_drain(rcd->ppd, fd->pq); qib_user_sdma_queue_destroy(fd->pq); } if (fd->rec_cpu_num != -1) __clear_bit(fd->rec_cpu_num, qib_cpulist); if (--rcd->cnt) { /* * XXX If the master closes the context before the slave(s), * revoke the mmap for the eager receive queue so * the slave(s) don't wait for receive data forever. */ rcd->active_slaves &= ~(1 << fd->subctxt); rcd->subpid[fd->subctxt] = 0; mutex_unlock(&qib_mutex); goto bail; } /* early; no interrupt users after this */ spin_lock_irqsave(&dd->uctxt_lock, flags); ctxt = rcd->ctxt; dd->rcd[ctxt] = NULL; rcd->pid = 0; spin_unlock_irqrestore(&dd->uctxt_lock, flags); if (rcd->rcvwait_to || rcd->piowait_to || rcd->rcvnowait || rcd->pionowait) { rcd->rcvwait_to = 0; rcd->piowait_to = 0; rcd->rcvnowait = 0; rcd->pionowait = 0; } if (rcd->flag) rcd->flag = 0; if (dd->kregbase) { /* atomically clear receive enable ctxt and intr avail. */ dd->f_rcvctrl(rcd->ppd, QIB_RCVCTRL_CTXT_DIS | QIB_RCVCTRL_INTRAVAIL_DIS, ctxt); /* clean up the pkeys for this ctxt user */ qib_clean_part_key(rcd, dd); qib_disarm_piobufs(dd, rcd->pio_base, rcd->piocnt); qib_chg_pioavailkernel(dd, rcd->pio_base, rcd->piocnt, TXCHK_CHG_TYPE_KERN, NULL); dd->f_clear_tids(dd, rcd); if (dd->pageshadow) unlock_expected_tids(rcd); qib_stats.sps_ctxts--; dd->freectxts++; } mutex_unlock(&qib_mutex); qib_free_ctxtdata(dd, rcd); /* after releasing the mutex */ bail: kfree(fd); return 0; } static int qib_ctxt_info(struct file *fp, struct qib_ctxt_info __user *uinfo) { struct qib_ctxt_info info; int ret; size_t sz; struct qib_ctxtdata *rcd = ctxt_fp(fp); struct qib_filedata *fd; fd = fp->private_data; info.num_active = qib_count_active_units(); info.unit = rcd->dd->unit; info.port = rcd->ppd->port; info.ctxt = rcd->ctxt; info.subctxt = subctxt_fp(fp); /* Number of user ctxts available for this device. */ info.num_ctxts = rcd->dd->cfgctxts - rcd->dd->first_user_ctxt; info.num_subctxts = rcd->subctxt_cnt; info.rec_cpu = fd->rec_cpu_num; sz = sizeof(info); if (copy_to_user(uinfo, &info, sz)) { ret = -EFAULT; goto bail; } ret = 0; bail: return ret; } static int qib_sdma_get_inflight(struct qib_user_sdma_queue *pq, u32 __user *inflightp) { const u32 val = qib_user_sdma_inflight_counter(pq); if (put_user(val, inflightp)) return -EFAULT; return 0; } static int qib_sdma_get_complete(struct qib_pportdata *ppd, struct qib_user_sdma_queue *pq, u32 __user *completep) { u32 val; int err; if (!pq) return -EINVAL; err = qib_user_sdma_make_progress(ppd, pq); if (err < 0) return err; val = qib_user_sdma_complete_counter(pq); if (put_user(val, completep)) return -EFAULT; return 0; } static int disarm_req_delay(struct qib_ctxtdata *rcd) { int ret = 0; if (!usable(rcd->ppd)) { int i; /* * if link is down, or otherwise not usable, delay * the caller up to 30 seconds, so we don't thrash * in trying to get the chip back to ACTIVE, and * set flag so they make the call again. */ if (rcd->user_event_mask) { /* * subctxt_cnt is 0 if not shared, so do base * separately, first, then remaining subctxt, if any */ set_bit(_QIB_EVENT_DISARM_BUFS_BIT, &rcd->user_event_mask[0]); for (i = 1; i < rcd->subctxt_cnt; i++) set_bit(_QIB_EVENT_DISARM_BUFS_BIT, &rcd->user_event_mask[i]); } for (i = 0; !usable(rcd->ppd) && i < 300; i++) msleep(100); ret = -ENETDOWN; } return ret; } /* * Find all user contexts in use, and set the specified bit in their * event mask. * See also find_ctxt() for a similar use, that is specific to send buffers. */ int qib_set_uevent_bits(struct qib_pportdata *ppd, const int evtbit) { struct qib_ctxtdata *rcd; unsigned ctxt; int ret = 0; unsigned long flags; spin_lock_irqsave(&ppd->dd->uctxt_lock, flags); for (ctxt = ppd->dd->first_user_ctxt; ctxt < ppd->dd->cfgctxts; ctxt++) { rcd = ppd->dd->rcd[ctxt]; if (!rcd) continue; if (rcd->user_event_mask) { int i; /* * subctxt_cnt is 0 if not shared, so do base * separately, first, then remaining subctxt, if any */ set_bit(evtbit, &rcd->user_event_mask[0]); for (i = 1; i < rcd->subctxt_cnt; i++) set_bit(evtbit, &rcd->user_event_mask[i]); } ret = 1; break; } spin_unlock_irqrestore(&ppd->dd->uctxt_lock, flags); return ret; } /* * clear the event notifier events for this context. * For the DISARM_BUFS case, we also take action (this obsoletes * the older QIB_CMD_DISARM_BUFS, but we keep it for backwards * compatibility. * Other bits don't currently require actions, just atomically clear. * User process then performs actions appropriate to bit having been * set, if desired, and checks again in future. */ static int qib_user_event_ack(struct qib_ctxtdata *rcd, int subctxt, unsigned long events) { int ret = 0, i; for (i = 0; i <= _QIB_MAX_EVENT_BIT; i++) { if (!test_bit(i, &events)) continue; if (i == _QIB_EVENT_DISARM_BUFS_BIT) { (void)qib_disarm_piobufs_ifneeded(rcd); ret = disarm_req_delay(rcd); } else clear_bit(i, &rcd->user_event_mask[subctxt]); } return ret; } static ssize_t qib_write(struct file *fp, const char __user *data, size_t count, loff_t *off) { const struct qib_cmd __user *ucmd; struct qib_ctxtdata *rcd; const void __user *src; size_t consumed, copy = 0; struct qib_cmd cmd; ssize_t ret = 0; void *dest; if (!ib_safe_file_access(fp)) { pr_err_once("qib_write: process %d (%s) changed security contexts after opening file descriptor, this is not allowed.\n", task_tgid_vnr(current), current->comm); return -EACCES; } if (count < sizeof(cmd.type)) { ret = -EINVAL; goto bail; } ucmd = (const struct qib_cmd __user *) data; if (copy_from_user(&cmd.type, &ucmd->type, sizeof(cmd.type))) { ret = -EFAULT; goto bail; } consumed = sizeof(cmd.type); switch (cmd.type) { case QIB_CMD_ASSIGN_CTXT: case QIB_CMD_USER_INIT: copy = sizeof(cmd.cmd.user_info); dest = &cmd.cmd.user_info; src = &ucmd->cmd.user_info; break; case QIB_CMD_RECV_CTRL: copy = sizeof(cmd.cmd.recv_ctrl); dest = &cmd.cmd.recv_ctrl; src = &ucmd->cmd.recv_ctrl; break; case QIB_CMD_CTXT_INFO: copy = sizeof(cmd.cmd.ctxt_info); dest = &cmd.cmd.ctxt_info; src = &ucmd->cmd.ctxt_info; break; case QIB_CMD_TID_UPDATE: case QIB_CMD_TID_FREE: copy = sizeof(cmd.cmd.tid_info); dest = &cmd.cmd.tid_info; src = &ucmd->cmd.tid_info; break; case QIB_CMD_SET_PART_KEY: copy = sizeof(cmd.cmd.part_key); dest = &cmd.cmd.part_key; src = &ucmd->cmd.part_key; break; case QIB_CMD_DISARM_BUFS: case QIB_CMD_PIOAVAILUPD: /* force an update of PIOAvail reg */ copy = 0; src = NULL; dest = NULL; break; case QIB_CMD_POLL_TYPE: copy = sizeof(cmd.cmd.poll_type); dest = &cmd.cmd.poll_type; src = &ucmd->cmd.poll_type; break; case QIB_CMD_ARMLAUNCH_CTRL: copy = sizeof(cmd.cmd.armlaunch_ctrl); dest = &cmd.cmd.armlaunch_ctrl; src = &ucmd->cmd.armlaunch_ctrl; break; case QIB_CMD_SDMA_INFLIGHT: copy = sizeof(cmd.cmd.sdma_inflight); dest = &cmd.cmd.sdma_inflight; src = &ucmd->cmd.sdma_inflight; break; case QIB_CMD_SDMA_COMPLETE: copy = sizeof(cmd.cmd.sdma_complete); dest = &cmd.cmd.sdma_complete; src = &ucmd->cmd.sdma_complete; break; case QIB_CMD_ACK_EVENT: copy = sizeof(cmd.cmd.event_mask); dest = &cmd.cmd.event_mask; src = &ucmd->cmd.event_mask; break; default: ret = -EINVAL; goto bail; } if (copy) { if ((count - consumed) < copy) { ret = -EINVAL; goto bail; } if (copy_from_user(dest, src, copy)) { ret = -EFAULT; goto bail; } consumed += copy; } rcd = ctxt_fp(fp); if (!rcd && cmd.type != QIB_CMD_ASSIGN_CTXT) { ret = -EINVAL; goto bail; } switch (cmd.type) { case QIB_CMD_ASSIGN_CTXT: if (rcd) { ret = -EINVAL; goto bail; } ret = qib_assign_ctxt(fp, &cmd.cmd.user_info); if (ret) goto bail; break; case QIB_CMD_USER_INIT: ret = qib_do_user_init(fp, &cmd.cmd.user_info); if (ret) goto bail; ret = qib_get_base_info(fp, u64_to_user_ptr( cmd.cmd.user_info.spu_base_info), cmd.cmd.user_info.spu_base_info_size); break; case QIB_CMD_RECV_CTRL: ret = qib_manage_rcvq(rcd, subctxt_fp(fp), cmd.cmd.recv_ctrl); break; case QIB_CMD_CTXT_INFO: ret = qib_ctxt_info(fp, (struct qib_ctxt_info __user *) (unsigned long) cmd.cmd.ctxt_info); break; case QIB_CMD_TID_UPDATE: ret = qib_tid_update(rcd, fp, &cmd.cmd.tid_info); break; case QIB_CMD_TID_FREE: ret = qib_tid_free(rcd, subctxt_fp(fp), &cmd.cmd.tid_info); break; case QIB_CMD_SET_PART_KEY: ret = qib_set_part_key(rcd, cmd.cmd.part_key); break; case QIB_CMD_DISARM_BUFS: (void)qib_disarm_piobufs_ifneeded(rcd); ret = disarm_req_delay(rcd); break; case QIB_CMD_PIOAVAILUPD: qib_force_pio_avail_update(rcd->dd); break; case QIB_CMD_POLL_TYPE: rcd->poll_type = cmd.cmd.poll_type; break; case QIB_CMD_ARMLAUNCH_CTRL: rcd->dd->f_set_armlaunch(rcd->dd, cmd.cmd.armlaunch_ctrl); break; case QIB_CMD_SDMA_INFLIGHT: ret = qib_sdma_get_inflight(user_sdma_queue_fp(fp), (u32 __user *) (unsigned long) cmd.cmd.sdma_inflight); break; case QIB_CMD_SDMA_COMPLETE: ret = qib_sdma_get_complete(rcd->ppd, user_sdma_queue_fp(fp), (u32 __user *) (unsigned long) cmd.cmd.sdma_complete); break; case QIB_CMD_ACK_EVENT: ret = qib_user_event_ack(rcd, subctxt_fp(fp), cmd.cmd.event_mask); break; } if (ret >= 0) ret = consumed; bail: return ret; } static ssize_t qib_write_iter(struct kiocb *iocb, struct iov_iter *from) { struct qib_filedata *fp = iocb->ki_filp->private_data; struct qib_ctxtdata *rcd = ctxt_fp(iocb->ki_filp); struct qib_user_sdma_queue *pq = fp->pq; if (!iter_is_iovec(from) || !from->nr_segs || !pq) return -EINVAL; return qib_user_sdma_writev(rcd, pq, from->iov, from->nr_segs); } static struct class *qib_class; static dev_t qib_dev; int qib_cdev_init(int minor, const char *name, const struct file_operations *fops, struct cdev **cdevp, struct device **devp) { const dev_t dev = MKDEV(MAJOR(qib_dev), minor); struct cdev *cdev; struct device *device = NULL; int ret; cdev = cdev_alloc(); if (!cdev) { pr_err("Could not allocate cdev for minor %d, %s\n", minor, name); ret = -ENOMEM; goto done; } cdev->owner = THIS_MODULE; cdev->ops = fops; kobject_set_name(&cdev->kobj, name); ret = cdev_add(cdev, dev, 1); if (ret < 0) { pr_err("Could not add cdev for minor %d, %s (err %d)\n", minor, name, -ret); goto err_cdev; } device = device_create(qib_class, NULL, dev, NULL, "%s", name); if (!IS_ERR(device)) goto done; ret = PTR_ERR(device); device = NULL; pr_err("Could not create device for minor %d, %s (err %d)\n", minor, name, -ret); err_cdev: cdev_del(cdev); cdev = NULL; done: *cdevp = cdev; *devp = device; return ret; } void qib_cdev_cleanup(struct cdev **cdevp, struct device **devp) { struct device *device = *devp; if (device) { device_unregister(device); *devp = NULL; } if (*cdevp) { cdev_del(*cdevp); *cdevp = NULL; } } static struct cdev *wildcard_cdev; static struct device *wildcard_device; int __init qib_dev_init(void) { int ret; ret = alloc_chrdev_region(&qib_dev, 0, QIB_NMINORS, QIB_DRV_NAME); if (ret < 0) { pr_err("Could not allocate chrdev region (err %d)\n", -ret); goto done; } qib_class = class_create(THIS_MODULE, "ipath"); if (IS_ERR(qib_class)) { ret = PTR_ERR(qib_class); pr_err("Could not create device class (err %d)\n", -ret); unregister_chrdev_region(qib_dev, QIB_NMINORS); } done: return ret; } void qib_dev_cleanup(void) { if (qib_class) { class_destroy(qib_class); qib_class = NULL; } unregister_chrdev_region(qib_dev, QIB_NMINORS); } static atomic_t user_count = ATOMIC_INIT(0); static void qib_user_remove(struct qib_devdata *dd) { if (atomic_dec_return(&user_count) == 0) qib_cdev_cleanup(&wildcard_cdev, &wildcard_device); qib_cdev_cleanup(&dd->user_cdev, &dd->user_device); } static int qib_user_add(struct qib_devdata *dd) { char name[10]; int ret; if (atomic_inc_return(&user_count) == 1) { ret = qib_cdev_init(0, "ipath", &qib_file_ops, &wildcard_cdev, &wildcard_device); if (ret) goto done; } snprintf(name, sizeof(name), "ipath%d", dd->unit); ret = qib_cdev_init(dd->unit + 1, name, &qib_file_ops, &dd->user_cdev, &dd->user_device); if (ret) qib_user_remove(dd); done: return ret; } /* * Create per-unit files in /dev */ int qib_device_create(struct qib_devdata *dd) { int r, ret; r = qib_user_add(dd); ret = qib_diag_add(dd); if (r && !ret) ret = r; return ret; } /* * Remove per-unit files in /dev * void, core kernel returns no errors for this stuff */ void qib_device_remove(struct qib_devdata *dd) { qib_user_remove(dd); qib_diag_remove(dd); }