/* SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause */ /* Authors: Bernard Metzler */ /* Copyright (c) 2008-2019, IBM Corporation */ #ifndef _SIW_H #define _SIW_H #include #include #include #include #include #include #include #include #include "iwarp.h" #define SIW_VENDOR_ID 0x626d74 /* ascii 'bmt' for now */ #define SIW_VENDORT_PART_ID 0 #define SIW_MAX_QP (1024 * 100) #define SIW_MAX_QP_WR (1024 * 32) #define SIW_MAX_ORD_QP 128 #define SIW_MAX_IRD_QP 128 #define SIW_MAX_SGE_PBL 256 /* max num sge's for PBL */ #define SIW_MAX_SGE_RD 1 /* iwarp limitation. we could relax */ #define SIW_MAX_CQ (1024 * 100) #define SIW_MAX_CQE (SIW_MAX_QP_WR * 100) #define SIW_MAX_MR (SIW_MAX_QP * 10) #define SIW_MAX_PD SIW_MAX_QP #define SIW_MAX_MW 0 /* to be set if MW's are supported */ #define SIW_MAX_SRQ SIW_MAX_QP #define SIW_MAX_SRQ_WR (SIW_MAX_QP_WR * 10) #define SIW_MAX_CONTEXT SIW_MAX_PD /* Min number of bytes for using zero copy transmit */ #define SENDPAGE_THRESH PAGE_SIZE /* Maximum number of frames which can be send in one SQ processing */ #define SQ_USER_MAXBURST 100 /* Maximum number of consecutive IRQ elements which get served * if SQ has pending work. Prevents starving local SQ processing * by serving peer Read Requests. */ #define SIW_IRQ_MAXBURST_SQ_ACTIVE 4 struct siw_dev_cap { int max_qp; int max_qp_wr; int max_ord; /* max. outbound read queue depth */ int max_ird; /* max. inbound read queue depth */ int max_sge; int max_sge_rd; int max_cq; int max_cqe; int max_mr; int max_pd; int max_mw; int max_srq; int max_srq_wr; int max_srq_sge; }; struct siw_pd { struct ib_pd base_pd; }; struct siw_device { struct ib_device base_dev; struct net_device *netdev; struct siw_dev_cap attrs; u32 vendor_part_id; int numa_node; /* physical port state (only one port per device) */ enum ib_port_state state; spinlock_t lock; struct xarray qp_xa; struct xarray mem_xa; struct list_head cep_list; struct list_head qp_list; /* active objects statistics to enforce limits */ atomic_t num_qp; atomic_t num_cq; atomic_t num_pd; atomic_t num_mr; atomic_t num_srq; atomic_t num_ctx; struct work_struct netdev_down; }; struct siw_ucontext { struct ib_ucontext base_ucontext; struct siw_device *sdev; }; /* * The RDMA core does not define LOCAL_READ access, which is always * enabled implictely. */ #define IWARP_ACCESS_MASK \ (IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE | \ IB_ACCESS_REMOTE_READ) /* * siw presentation of user memory registered as source * or target of RDMA operations. */ struct siw_page_chunk { struct page **plist; }; struct siw_umem { struct siw_page_chunk *page_chunk; int num_pages; bool writable; u64 fp_addr; /* First page base address */ struct mm_struct *owning_mm; }; struct siw_pble { dma_addr_t addr; /* Address of assigned buffer */ unsigned int size; /* Size of this entry */ unsigned long pbl_off; /* Total offset from start of PBL */ }; struct siw_pbl { unsigned int num_buf; unsigned int max_buf; struct siw_pble pbe[]; }; /* * Generic memory representation for registered siw memory. * Memory lookup always via higher 24 bit of STag (STag index). */ struct siw_mem { struct siw_device *sdev; struct kref ref; u64 va; /* VA of memory */ u64 len; /* length of the memory buffer in bytes */ u32 stag; /* iWarp memory access steering tag */ u8 stag_valid; /* VALID or INVALID */ u8 is_pbl; /* PBL or user space mem */ u8 is_mw; /* Memory Region or Memory Window */ enum ib_access_flags perms; /* local/remote READ & WRITE */ union { struct siw_umem *umem; struct siw_pbl *pbl; void *mem_obj; }; struct ib_pd *pd; }; struct siw_mr { struct ib_mr base_mr; struct siw_mem *mem; struct rcu_head rcu; }; /* * Error codes for local or remote * access to registered memory */ enum siw_access_state { E_ACCESS_OK, E_STAG_INVALID, E_BASE_BOUNDS, E_ACCESS_PERM, E_PD_MISMATCH }; enum siw_wr_state { SIW_WR_IDLE, SIW_WR_QUEUED, /* processing has not started yet */ SIW_WR_INPROGRESS /* initiated processing of the WR */ }; /* The WQE currently being processed (RX or TX) */ struct siw_wqe { /* Copy of applications SQE or RQE */ union { struct siw_sqe sqe; struct siw_rqe rqe; }; struct siw_mem *mem[SIW_MAX_SGE]; /* per sge's resolved mem */ enum siw_wr_state wr_status; enum siw_wc_status wc_status; u32 bytes; /* total bytes to process */ u32 processed; /* bytes processed */ }; struct siw_cq { struct ib_cq base_cq; spinlock_t lock; struct siw_cq_ctrl *notify; struct siw_cqe *queue; u32 cq_put; u32 cq_get; u32 num_cqe; struct rdma_user_mmap_entry *cq_entry; /* mmap info for CQE array */ u32 id; /* For debugging only */ }; enum siw_qp_state { SIW_QP_STATE_IDLE, SIW_QP_STATE_RTR, SIW_QP_STATE_RTS, SIW_QP_STATE_CLOSING, SIW_QP_STATE_TERMINATE, SIW_QP_STATE_ERROR, SIW_QP_STATE_COUNT }; enum siw_qp_flags { SIW_RDMA_BIND_ENABLED = (1 << 0), SIW_RDMA_WRITE_ENABLED = (1 << 1), SIW_RDMA_READ_ENABLED = (1 << 2), SIW_SIGNAL_ALL_WR = (1 << 3), SIW_MPA_CRC = (1 << 4), SIW_QP_IN_DESTROY = (1 << 5) }; enum siw_qp_attr_mask { SIW_QP_ATTR_STATE = (1 << 0), SIW_QP_ATTR_ACCESS_FLAGS = (1 << 1), SIW_QP_ATTR_LLP_HANDLE = (1 << 2), SIW_QP_ATTR_ORD = (1 << 3), SIW_QP_ATTR_IRD = (1 << 4), SIW_QP_ATTR_SQ_SIZE = (1 << 5), SIW_QP_ATTR_RQ_SIZE = (1 << 6), SIW_QP_ATTR_MPA = (1 << 7) }; struct siw_srq { struct ib_srq base_srq; spinlock_t lock; u32 max_sge; u32 limit; /* low watermark for async event */ struct siw_rqe *recvq; u32 rq_put; u32 rq_get; u32 num_rqe; /* max # of wqe's allowed */ struct rdma_user_mmap_entry *srq_entry; /* mmap info for SRQ array */ bool armed:1; /* inform user if limit hit */ bool is_kernel_res:1; /* true if kernel client */ }; struct siw_qp_attrs { enum siw_qp_state state; u32 sq_size; u32 rq_size; u32 orq_size; u32 irq_size; u32 sq_max_sges; u32 rq_max_sges; enum siw_qp_flags flags; struct socket *sk; }; enum siw_tx_ctx { SIW_SEND_HDR, /* start or continue sending HDR */ SIW_SEND_DATA, /* start or continue sending DDP payload */ SIW_SEND_TRAILER, /* start or continue sending TRAILER */ SIW_SEND_SHORT_FPDU/* send whole FPDU hdr|data|trailer at once */ }; enum siw_rx_state { SIW_GET_HDR, /* await new hdr or within hdr */ SIW_GET_DATA_START, /* start of inbound DDP payload */ SIW_GET_DATA_MORE, /* continuation of (misaligned) DDP payload */ SIW_GET_TRAILER/* await new trailer or within trailer */ }; struct siw_rx_stream { struct sk_buff *skb; int skb_new; /* pending unread bytes in skb */ int skb_offset; /* offset in skb */ int skb_copied; /* processed bytes in skb */ union iwarp_hdr hdr; struct mpa_trailer trailer; enum siw_rx_state state; /* * For each FPDU, main RX loop runs through 3 stages: * Receiving protocol headers, placing DDP payload and receiving * trailer information (CRC + possibly padding). * Next two variables keep state on receive status of the * current FPDU part (hdr, data, trailer). */ int fpdu_part_rcvd; /* bytes in pkt part copied */ int fpdu_part_rem; /* bytes in pkt part not seen */ /* * Next expected DDP MSN for each QN + * expected steering tag + * expected DDP tagget offset (all HBO) */ u32 ddp_msn[RDMAP_UNTAGGED_QN_COUNT]; u32 ddp_stag; u64 ddp_to; u32 inval_stag; /* Stag to be invalidated */ struct shash_desc *mpa_crc_hd; u8 rx_suspend : 1; u8 pad : 2; /* # of pad bytes expected */ u8 rdmap_op : 4; /* opcode of current frame */ }; struct siw_rx_fpdu { /* * Local destination memory of inbound RDMA operation. * Valid, according to wqe->wr_status */ struct siw_wqe wqe_active; unsigned int pbl_idx; /* Index into current PBL */ unsigned int sge_idx; /* current sge in rx */ unsigned int sge_off; /* already rcvd in curr. sge */ char first_ddp_seg; /* this is the first DDP seg */ char more_ddp_segs; /* more DDP segs expected */ u8 prev_rdmap_op : 4; /* opcode of prev frame */ }; /* * Shorthands for short packets w/o payload * to be transmitted more efficient. */ struct siw_send_pkt { struct iwarp_send send; __be32 crc; }; struct siw_write_pkt { struct iwarp_rdma_write write; __be32 crc; }; struct siw_rreq_pkt { struct iwarp_rdma_rreq rreq; __be32 crc; }; struct siw_rresp_pkt { struct iwarp_rdma_rresp rresp; __be32 crc; }; struct siw_iwarp_tx { union { union iwarp_hdr hdr; /* Generic part of FPDU header */ struct iwarp_ctrl ctrl; struct iwarp_ctrl_untagged c_untagged; struct iwarp_ctrl_tagged c_tagged; /* FPDU headers */ struct iwarp_rdma_write rwrite; struct iwarp_rdma_rreq rreq; struct iwarp_rdma_rresp rresp; struct iwarp_terminate terminate; struct iwarp_send send; struct iwarp_send_inv send_inv; /* complete short FPDUs */ struct siw_send_pkt send_pkt; struct siw_write_pkt write_pkt; struct siw_rreq_pkt rreq_pkt; struct siw_rresp_pkt rresp_pkt; } pkt; struct mpa_trailer trailer; /* DDP MSN for untagged messages */ u32 ddp_msn[RDMAP_UNTAGGED_QN_COUNT]; enum siw_tx_ctx state; u16 ctrl_len; /* ddp+rdmap hdr */ u16 ctrl_sent; int burst; int bytes_unsent; /* ddp payload bytes */ struct shash_desc *mpa_crc_hd; u8 do_crc : 1; /* do crc for segment */ u8 use_sendpage : 1; /* send w/o copy */ u8 tx_suspend : 1; /* stop sending DDP segs. */ u8 pad : 2; /* # pad in current fpdu */ u8 orq_fence : 1; /* ORQ full or Send fenced */ u8 in_syscall : 1; /* TX out of user context */ u8 zcopy_tx : 1; /* Use TCP_SENDPAGE if possible */ u8 gso_seg_limit; /* Maximum segments for GSO, 0 = unbound */ u16 fpdu_len; /* len of FPDU to tx */ unsigned int tcp_seglen; /* remaining tcp seg space */ struct siw_wqe wqe_active; int pbl_idx; /* Index into current PBL */ int sge_idx; /* current sge in tx */ u32 sge_off; /* already sent in curr. sge */ }; struct siw_qp { struct ib_qp base_qp; struct siw_device *sdev; struct kref ref; struct list_head devq; int tx_cpu; struct siw_qp_attrs attrs; struct siw_cep *cep; struct rw_semaphore state_lock; struct ib_pd *pd; struct siw_cq *scq; struct siw_cq *rcq; struct siw_srq *srq; struct siw_iwarp_tx tx_ctx; /* Transmit context */ spinlock_t sq_lock; struct siw_sqe *sendq; /* send queue element array */ uint32_t sq_get; /* consumer index into sq array */ uint32_t sq_put; /* kernel prod. index into sq array */ struct llist_node tx_list; struct siw_sqe *orq; /* outbound read queue element array */ spinlock_t orq_lock; uint32_t orq_get; /* consumer index into orq array */ uint32_t orq_put; /* shared producer index for ORQ */ struct siw_rx_stream rx_stream; struct siw_rx_fpdu *rx_fpdu; struct siw_rx_fpdu rx_tagged; struct siw_rx_fpdu rx_untagged; spinlock_t rq_lock; struct siw_rqe *recvq; /* recv queue element array */ uint32_t rq_get; /* consumer index into rq array */ uint32_t rq_put; /* kernel prod. index into rq array */ struct siw_sqe *irq; /* inbound read queue element array */ uint32_t irq_get; /* consumer index into irq array */ uint32_t irq_put; /* producer index into irq array */ int irq_burst; struct { /* information to be carried in TERMINATE pkt, if valid */ u8 valid; u8 in_tx; u8 layer : 4, etype : 4; u8 ecode; } term_info; struct rdma_user_mmap_entry *sq_entry; /* mmap info for SQE array */ struct rdma_user_mmap_entry *rq_entry; /* mmap info for RQE array */ struct rcu_head rcu; }; /* helper macros */ #define rx_qp(rx) container_of(rx, struct siw_qp, rx_stream) #define tx_qp(tx) container_of(tx, struct siw_qp, tx_ctx) #define tx_wqe(qp) (&(qp)->tx_ctx.wqe_active) #define rx_wqe(rctx) (&(rctx)->wqe_active) #define rx_mem(rctx) ((rctx)->wqe_active.mem[0]) #define tx_type(wqe) ((wqe)->sqe.opcode) #define rx_type(wqe) ((wqe)->rqe.opcode) #define tx_flags(wqe) ((wqe)->sqe.flags) struct iwarp_msg_info { int hdr_len; struct iwarp_ctrl ctrl; int (*rx_data)(struct siw_qp *qp); }; struct siw_user_mmap_entry { struct rdma_user_mmap_entry rdma_entry; void *address; }; /* Global siw parameters. Currently set in siw_main.c */ extern const bool zcopy_tx; extern const bool try_gso; extern const bool loopback_enabled; extern const bool mpa_crc_required; extern const bool mpa_crc_strict; extern const bool siw_tcp_nagle; extern u_char mpa_version; extern const bool peer_to_peer; extern struct task_struct *siw_tx_thread[]; extern struct crypto_shash *siw_crypto_shash; extern struct iwarp_msg_info iwarp_pktinfo[RDMAP_TERMINATE + 1]; /* QP general functions */ int siw_qp_modify(struct siw_qp *qp, struct siw_qp_attrs *attr, enum siw_qp_attr_mask mask); int siw_qp_mpa_rts(struct siw_qp *qp, enum mpa_v2_ctrl ctrl); void siw_qp_llp_close(struct siw_qp *qp); void siw_qp_cm_drop(struct siw_qp *qp, int schedule); void siw_send_terminate(struct siw_qp *qp); void siw_qp_get_ref(struct ib_qp *qp); void siw_qp_put_ref(struct ib_qp *qp); int siw_qp_add(struct siw_device *sdev, struct siw_qp *qp); void siw_free_qp(struct kref *ref); void siw_init_terminate(struct siw_qp *qp, enum term_elayer layer, u8 etype, u8 ecode, int in_tx); enum ddp_ecode siw_tagged_error(enum siw_access_state state); enum rdmap_ecode siw_rdmap_error(enum siw_access_state state); void siw_read_to_orq(struct siw_sqe *rreq, struct siw_sqe *sqe); int siw_sqe_complete(struct siw_qp *qp, struct siw_sqe *sqe, u32 bytes, enum siw_wc_status status); int siw_rqe_complete(struct siw_qp *qp, struct siw_rqe *rqe, u32 bytes, u32 inval_stag, enum siw_wc_status status); void siw_qp_llp_data_ready(struct sock *sk); void siw_qp_llp_write_space(struct sock *sk); /* QP TX path functions */ int siw_run_sq(void *arg); int siw_qp_sq_process(struct siw_qp *qp); int siw_sq_start(struct siw_qp *qp); int siw_activate_tx(struct siw_qp *qp); void siw_stop_tx_thread(int nr_cpu); int siw_get_tx_cpu(struct siw_device *sdev); void siw_put_tx_cpu(int cpu); /* QP RX path functions */ int siw_proc_send(struct siw_qp *qp); int siw_proc_rreq(struct siw_qp *qp); int siw_proc_rresp(struct siw_qp *qp); int siw_proc_write(struct siw_qp *qp); int siw_proc_terminate(struct siw_qp *qp); int siw_tcp_rx_data(read_descriptor_t *rd_desc, struct sk_buff *skb, unsigned int off, size_t len); static inline void set_rx_fpdu_context(struct siw_qp *qp, u8 opcode) { if (opcode == RDMAP_RDMA_WRITE || opcode == RDMAP_RDMA_READ_RESP) qp->rx_fpdu = &qp->rx_tagged; else qp->rx_fpdu = &qp->rx_untagged; qp->rx_stream.rdmap_op = opcode; } static inline struct siw_ucontext *to_siw_ctx(struct ib_ucontext *base_ctx) { return container_of(base_ctx, struct siw_ucontext, base_ucontext); } static inline struct siw_qp *to_siw_qp(struct ib_qp *base_qp) { return container_of(base_qp, struct siw_qp, base_qp); } static inline struct siw_cq *to_siw_cq(struct ib_cq *base_cq) { return container_of(base_cq, struct siw_cq, base_cq); } static inline struct siw_srq *to_siw_srq(struct ib_srq *base_srq) { return container_of(base_srq, struct siw_srq, base_srq); } static inline struct siw_device *to_siw_dev(struct ib_device *base_dev) { return container_of(base_dev, struct siw_device, base_dev); } static inline struct siw_mr *to_siw_mr(struct ib_mr *base_mr) { return container_of(base_mr, struct siw_mr, base_mr); } static inline struct siw_user_mmap_entry * to_siw_mmap_entry(struct rdma_user_mmap_entry *rdma_mmap) { return container_of(rdma_mmap, struct siw_user_mmap_entry, rdma_entry); } static inline struct siw_qp *siw_qp_id2obj(struct siw_device *sdev, int id) { struct siw_qp *qp; rcu_read_lock(); qp = xa_load(&sdev->qp_xa, id); if (likely(qp && kref_get_unless_zero(&qp->ref))) { rcu_read_unlock(); return qp; } rcu_read_unlock(); return NULL; } static inline u32 qp_id(struct siw_qp *qp) { return qp->base_qp.qp_num; } static inline void siw_qp_get(struct siw_qp *qp) { kref_get(&qp->ref); } static inline void siw_qp_put(struct siw_qp *qp) { kref_put(&qp->ref, siw_free_qp); } static inline int siw_sq_empty(struct siw_qp *qp) { struct siw_sqe *sqe = &qp->sendq[qp->sq_get % qp->attrs.sq_size]; return READ_ONCE(sqe->flags) == 0; } static inline struct siw_sqe *sq_get_next(struct siw_qp *qp) { struct siw_sqe *sqe = &qp->sendq[qp->sq_get % qp->attrs.sq_size]; if (READ_ONCE(sqe->flags) & SIW_WQE_VALID) return sqe; return NULL; } static inline struct siw_sqe *orq_get_current(struct siw_qp *qp) { return &qp->orq[qp->orq_get % qp->attrs.orq_size]; } static inline struct siw_sqe *orq_get_tail(struct siw_qp *qp) { return &qp->orq[qp->orq_put % qp->attrs.orq_size]; } static inline struct siw_sqe *orq_get_free(struct siw_qp *qp) { struct siw_sqe *orq_e = orq_get_tail(qp); if (orq_e && READ_ONCE(orq_e->flags) == 0) return orq_e; return NULL; } static inline int siw_orq_empty(struct siw_qp *qp) { return qp->orq[qp->orq_get % qp->attrs.orq_size].flags == 0 ? 1 : 0; } static inline struct siw_sqe *irq_alloc_free(struct siw_qp *qp) { struct siw_sqe *irq_e = &qp->irq[qp->irq_put % qp->attrs.irq_size]; if (READ_ONCE(irq_e->flags) == 0) { qp->irq_put++; return irq_e; } return NULL; } static inline __wsum siw_csum_update(const void *buff, int len, __wsum sum) { return (__force __wsum)crc32c((__force __u32)sum, buff, len); } static inline __wsum siw_csum_combine(__wsum csum, __wsum csum2, int offset, int len) { return (__force __wsum)__crc32c_le_combine((__force __u32)csum, (__force __u32)csum2, len); } static inline void siw_crc_skb(struct siw_rx_stream *srx, unsigned int len) { const struct skb_checksum_ops siw_cs_ops = { .update = siw_csum_update, .combine = siw_csum_combine, }; __wsum crc = *(u32 *)shash_desc_ctx(srx->mpa_crc_hd); crc = __skb_checksum(srx->skb, srx->skb_offset, len, crc, &siw_cs_ops); *(u32 *)shash_desc_ctx(srx->mpa_crc_hd) = crc; } #define siw_dbg(ibdev, fmt, ...) \ ibdev_dbg(ibdev, "%s: " fmt, __func__, ##__VA_ARGS__) #define siw_dbg_qp(qp, fmt, ...) \ ibdev_dbg(&qp->sdev->base_dev, "QP[%u] %s: " fmt, qp_id(qp), __func__, \ ##__VA_ARGS__) #define siw_dbg_cq(cq, fmt, ...) \ ibdev_dbg(cq->base_cq.device, "CQ[%u] %s: " fmt, cq->id, __func__, \ ##__VA_ARGS__) #define siw_dbg_pd(pd, fmt, ...) \ ibdev_dbg(pd->device, "PD[%u] %s: " fmt, pd->res.id, __func__, \ ##__VA_ARGS__) #define siw_dbg_mem(mem, fmt, ...) \ ibdev_dbg(&mem->sdev->base_dev, \ "MEM[0x%08x] %s: " fmt, mem->stag, __func__, ##__VA_ARGS__) #define siw_dbg_cep(cep, fmt, ...) \ ibdev_dbg(&cep->sdev->base_dev, "CEP[0x%pK] %s: " fmt, \ cep, __func__, ##__VA_ARGS__) void siw_cq_flush(struct siw_cq *cq); void siw_sq_flush(struct siw_qp *qp); void siw_rq_flush(struct siw_qp *qp); int siw_reap_cqe(struct siw_cq *cq, struct ib_wc *wc); #endif