// SPDX-License-Identifier: GPL-2.0 or BSD-3-Clause /* Authors: Bernard Metzler */ /* Copyright (c) 2008-2019, IBM Corporation */ #include #include #include #include #include #include #include #include #include #include "siw.h" #include "siw_verbs.h" #include "siw_mem.h" #define MAX_HDR_INLINE \ (((uint32_t)(sizeof(struct siw_rreq_pkt) - \ sizeof(struct iwarp_send))) & 0xF8) static struct page *siw_get_pblpage(struct siw_mem *mem, u64 addr, int *idx) { struct siw_pbl *pbl = mem->pbl; u64 offset = addr - mem->va; dma_addr_t paddr = siw_pbl_get_buffer(pbl, offset, NULL, idx); if (paddr) return virt_to_page((void *)paddr); return NULL; } /* * Copy short payload at provided destination payload address */ static int siw_try_1seg(struct siw_iwarp_tx *c_tx, void *paddr) { struct siw_wqe *wqe = &c_tx->wqe_active; struct siw_sge *sge = &wqe->sqe.sge[0]; u32 bytes = sge->length; if (bytes > MAX_HDR_INLINE || wqe->sqe.num_sge != 1) return MAX_HDR_INLINE + 1; if (!bytes) return 0; if (tx_flags(wqe) & SIW_WQE_INLINE) { memcpy(paddr, &wqe->sqe.sge[1], bytes); } else { struct siw_mem *mem = wqe->mem[0]; if (!mem->mem_obj) { /* Kernel client using kva */ memcpy(paddr, (const void *)(uintptr_t)sge->laddr, bytes); } else if (c_tx->in_syscall) { if (copy_from_user(paddr, u64_to_user_ptr(sge->laddr), bytes)) return -EFAULT; } else { unsigned int off = sge->laddr & ~PAGE_MASK; struct page *p; char *buffer; int pbl_idx = 0; if (!mem->is_pbl) p = siw_get_upage(mem->umem, sge->laddr); else p = siw_get_pblpage(mem, sge->laddr, &pbl_idx); if (unlikely(!p)) return -EFAULT; buffer = kmap_local_page(p); if (likely(PAGE_SIZE - off >= bytes)) { memcpy(paddr, buffer + off, bytes); } else { unsigned long part = bytes - (PAGE_SIZE - off); memcpy(paddr, buffer + off, part); kunmap_local(buffer); if (!mem->is_pbl) p = siw_get_upage(mem->umem, sge->laddr + part); else p = siw_get_pblpage(mem, sge->laddr + part, &pbl_idx); if (unlikely(!p)) return -EFAULT; buffer = kmap_local_page(p); memcpy(paddr + part, buffer, bytes - part); } kunmap_local(buffer); } } return (int)bytes; } #define PKT_FRAGMENTED 1 #define PKT_COMPLETE 0 /* * siw_qp_prepare_tx() * * Prepare tx state for sending out one fpdu. Builds complete pkt * if no user data or only immediate data are present. * * returns PKT_COMPLETE if complete pkt built, PKT_FRAGMENTED otherwise. */ static int siw_qp_prepare_tx(struct siw_iwarp_tx *c_tx) { struct siw_wqe *wqe = &c_tx->wqe_active; char *crc = NULL; int data = 0; switch (tx_type(wqe)) { case SIW_OP_READ: case SIW_OP_READ_LOCAL_INV: memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_RDMA_READ_REQ].ctrl, sizeof(struct iwarp_ctrl)); c_tx->pkt.rreq.rsvd = 0; c_tx->pkt.rreq.ddp_qn = htonl(RDMAP_UNTAGGED_QN_RDMA_READ); c_tx->pkt.rreq.ddp_msn = htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_RDMA_READ]); c_tx->pkt.rreq.ddp_mo = 0; c_tx->pkt.rreq.sink_stag = htonl(wqe->sqe.sge[0].lkey); c_tx->pkt.rreq.sink_to = cpu_to_be64(wqe->sqe.sge[0].laddr); c_tx->pkt.rreq.source_stag = htonl(wqe->sqe.rkey); c_tx->pkt.rreq.source_to = cpu_to_be64(wqe->sqe.raddr); c_tx->pkt.rreq.read_size = htonl(wqe->sqe.sge[0].length); c_tx->ctrl_len = sizeof(struct iwarp_rdma_rreq); crc = (char *)&c_tx->pkt.rreq_pkt.crc; break; case SIW_OP_SEND: if (tx_flags(wqe) & SIW_WQE_SOLICITED) memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_SEND_SE].ctrl, sizeof(struct iwarp_ctrl)); else memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_SEND].ctrl, sizeof(struct iwarp_ctrl)); c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND; c_tx->pkt.send.ddp_msn = htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]); c_tx->pkt.send.ddp_mo = 0; c_tx->pkt.send_inv.inval_stag = 0; c_tx->ctrl_len = sizeof(struct iwarp_send); crc = (char *)&c_tx->pkt.send_pkt.crc; data = siw_try_1seg(c_tx, crc); break; case SIW_OP_SEND_REMOTE_INV: if (tx_flags(wqe) & SIW_WQE_SOLICITED) memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_SEND_SE_INVAL].ctrl, sizeof(struct iwarp_ctrl)); else memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_SEND_INVAL].ctrl, sizeof(struct iwarp_ctrl)); c_tx->pkt.send.ddp_qn = RDMAP_UNTAGGED_QN_SEND; c_tx->pkt.send.ddp_msn = htonl(++c_tx->ddp_msn[RDMAP_UNTAGGED_QN_SEND]); c_tx->pkt.send.ddp_mo = 0; c_tx->pkt.send_inv.inval_stag = cpu_to_be32(wqe->sqe.rkey); c_tx->ctrl_len = sizeof(struct iwarp_send_inv); crc = (char *)&c_tx->pkt.send_pkt.crc; data = siw_try_1seg(c_tx, crc); break; case SIW_OP_WRITE: memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_RDMA_WRITE].ctrl, sizeof(struct iwarp_ctrl)); c_tx->pkt.rwrite.sink_stag = htonl(wqe->sqe.rkey); c_tx->pkt.rwrite.sink_to = cpu_to_be64(wqe->sqe.raddr); c_tx->ctrl_len = sizeof(struct iwarp_rdma_write); crc = (char *)&c_tx->pkt.write_pkt.crc; data = siw_try_1seg(c_tx, crc); break; case SIW_OP_READ_RESPONSE: memcpy(&c_tx->pkt.ctrl, &iwarp_pktinfo[RDMAP_RDMA_READ_RESP].ctrl, sizeof(struct iwarp_ctrl)); /* NBO */ c_tx->pkt.rresp.sink_stag = cpu_to_be32(wqe->sqe.rkey); c_tx->pkt.rresp.sink_to = cpu_to_be64(wqe->sqe.raddr); c_tx->ctrl_len = sizeof(struct iwarp_rdma_rresp); crc = (char *)&c_tx->pkt.write_pkt.crc; data = siw_try_1seg(c_tx, crc); break; default: siw_dbg_qp(tx_qp(c_tx), "stale wqe type %d\n", tx_type(wqe)); return -EOPNOTSUPP; } if (unlikely(data < 0)) return data; c_tx->ctrl_sent = 0; if (data <= MAX_HDR_INLINE) { if (data) { wqe->processed = data; c_tx->pkt.ctrl.mpa_len = htons(c_tx->ctrl_len + data - MPA_HDR_SIZE); /* Add pad, if needed */ data += -(int)data & 0x3; /* advance CRC location after payload */ crc += data; c_tx->ctrl_len += data; if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED)) c_tx->pkt.c_untagged.ddp_mo = 0; else c_tx->pkt.c_tagged.ddp_to = cpu_to_be64(wqe->sqe.raddr); } *(u32 *)crc = 0; /* * Do complete CRC if enabled and short packet */ if (c_tx->mpa_crc_hd) { crypto_shash_init(c_tx->mpa_crc_hd); if (crypto_shash_update(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt, c_tx->ctrl_len)) return -EINVAL; crypto_shash_final(c_tx->mpa_crc_hd, (u8 *)crc); } c_tx->ctrl_len += MPA_CRC_SIZE; return PKT_COMPLETE; } c_tx->ctrl_len += MPA_CRC_SIZE; c_tx->sge_idx = 0; c_tx->sge_off = 0; c_tx->pbl_idx = 0; /* * Allow direct sending out of user buffer if WR is non signalled * and payload is over threshold. * Per RDMA verbs, the application should not change the send buffer * until the work completed. In iWarp, work completion is only * local delivery to TCP. TCP may reuse the buffer for * retransmission. Changing unsent data also breaks the CRC, * if applied. */ if (c_tx->zcopy_tx && wqe->bytes >= SENDPAGE_THRESH && !(tx_flags(wqe) & SIW_WQE_SIGNALLED)) c_tx->use_sendpage = 1; else c_tx->use_sendpage = 0; return PKT_FRAGMENTED; } /* * Send out one complete control type FPDU, or header of FPDU carrying * data. Used for fixed sized packets like Read.Requests or zero length * SENDs, WRITEs, READ.Responses, or header only. */ static int siw_tx_ctrl(struct siw_iwarp_tx *c_tx, struct socket *s, int flags) { struct msghdr msg = { .msg_flags = flags }; struct kvec iov = { .iov_base = (char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent, .iov_len = c_tx->ctrl_len - c_tx->ctrl_sent }; int rv = kernel_sendmsg(s, &msg, &iov, 1, c_tx->ctrl_len - c_tx->ctrl_sent); if (rv >= 0) { c_tx->ctrl_sent += rv; if (c_tx->ctrl_sent == c_tx->ctrl_len) rv = 0; else rv = -EAGAIN; } return rv; } /* * 0copy TCP transmit interface: Use do_tcp_sendpages. * * Using sendpage to push page by page appears to be less efficient * than using sendmsg, even if data are copied. * * A general performance limitation might be the extra four bytes * trailer checksum segment to be pushed after user data. */ static int siw_tcp_sendpages(struct socket *s, struct page **page, int offset, size_t size) { struct sock *sk = s->sk; int i = 0, rv = 0, sent = 0, flags = MSG_MORE | MSG_DONTWAIT | MSG_SENDPAGE_NOTLAST; while (size) { size_t bytes = min_t(size_t, PAGE_SIZE - offset, size); if (size + offset <= PAGE_SIZE) flags = MSG_MORE | MSG_DONTWAIT; tcp_rate_check_app_limited(sk); try_page_again: lock_sock(sk); rv = do_tcp_sendpages(sk, page[i], offset, bytes, flags); release_sock(sk); if (rv > 0) { size -= rv; sent += rv; if (rv != bytes) { offset += rv; bytes -= rv; goto try_page_again; } offset = 0; } else { if (rv == -EAGAIN || rv == 0) break; return rv; } i++; } return sent; } /* * siw_0copy_tx() * * Pushes list of pages to TCP socket. If pages from multiple * SGE's, all referenced pages of each SGE are pushed in one * shot. */ static int siw_0copy_tx(struct socket *s, struct page **page, struct siw_sge *sge, unsigned int offset, unsigned int size) { int i = 0, sent = 0, rv; int sge_bytes = min(sge->length - offset, size); offset = (sge->laddr + offset) & ~PAGE_MASK; while (sent != size) { rv = siw_tcp_sendpages(s, &page[i], offset, sge_bytes); if (rv >= 0) { sent += rv; if (size == sent || sge_bytes > rv) break; i += PAGE_ALIGN(sge_bytes + offset) >> PAGE_SHIFT; sge++; sge_bytes = min(sge->length, size - sent); offset = sge->laddr & ~PAGE_MASK; } else { sent = rv; break; } } return sent; } #define MAX_TRAILER (MPA_CRC_SIZE + 4) static void siw_unmap_pages(struct kvec *iov, unsigned long kmap_mask, int len) { int i; /* * Work backwards through the array to honor the kmap_local_page() * ordering requirements. */ for (i = (len-1); i >= 0; i--) { if (kmap_mask & BIT(i)) { unsigned long addr = (unsigned long)iov[i].iov_base; kunmap_local((void *)(addr & PAGE_MASK)); } } } /* * siw_tx_hdt() tries to push a complete packet to TCP where all * packet fragments are referenced by the elements of one iovec. * For the data portion, each involved page must be referenced by * one extra element. All sge's data can be non-aligned to page * boundaries. Two more elements are referencing iWARP header * and trailer: * MAX_ARRAY = 64KB/PAGE_SIZE + 1 + (2 * (SIW_MAX_SGE - 1) + HDR + TRL */ #define MAX_ARRAY ((0xffff / PAGE_SIZE) + 1 + (2 * (SIW_MAX_SGE - 1) + 2)) /* * Write out iov referencing hdr, data and trailer of current FPDU. * Update transmit state dependent on write return status */ static int siw_tx_hdt(struct siw_iwarp_tx *c_tx, struct socket *s) { struct siw_wqe *wqe = &c_tx->wqe_active; struct siw_sge *sge = &wqe->sqe.sge[c_tx->sge_idx]; struct kvec iov[MAX_ARRAY]; struct page *page_array[MAX_ARRAY]; struct msghdr msg = { .msg_flags = MSG_DONTWAIT | MSG_EOR }; int seg = 0, do_crc = c_tx->do_crc, is_kva = 0, rv; unsigned int data_len = c_tx->bytes_unsent, hdr_len = 0, trl_len = 0, sge_off = c_tx->sge_off, sge_idx = c_tx->sge_idx, pbl_idx = c_tx->pbl_idx; unsigned long kmap_mask = 0L; if (c_tx->state == SIW_SEND_HDR) { if (c_tx->use_sendpage) { rv = siw_tx_ctrl(c_tx, s, MSG_DONTWAIT | MSG_MORE); if (rv) goto done; c_tx->state = SIW_SEND_DATA; } else { iov[0].iov_base = (char *)&c_tx->pkt.ctrl + c_tx->ctrl_sent; iov[0].iov_len = hdr_len = c_tx->ctrl_len - c_tx->ctrl_sent; seg = 1; } } wqe->processed += data_len; while (data_len) { /* walk the list of SGE's */ unsigned int sge_len = min(sge->length - sge_off, data_len); unsigned int fp_off = (sge->laddr + sge_off) & ~PAGE_MASK; struct siw_mem *mem; if (!(tx_flags(wqe) & SIW_WQE_INLINE)) { mem = wqe->mem[sge_idx]; is_kva = mem->mem_obj == NULL ? 1 : 0; } else { is_kva = 1; } if (is_kva && !c_tx->use_sendpage) { /* * tx from kernel virtual address: either inline data * or memory region with assigned kernel buffer */ iov[seg].iov_base = (void *)(uintptr_t)(sge->laddr + sge_off); iov[seg].iov_len = sge_len; if (do_crc) crypto_shash_update(c_tx->mpa_crc_hd, iov[seg].iov_base, sge_len); sge_off += sge_len; data_len -= sge_len; seg++; goto sge_done; } while (sge_len) { size_t plen = min((int)PAGE_SIZE - fp_off, sge_len); void *kaddr; if (!is_kva) { struct page *p; if (mem->is_pbl) p = siw_get_pblpage( mem, sge->laddr + sge_off, &pbl_idx); else p = siw_get_upage(mem->umem, sge->laddr + sge_off); if (unlikely(!p)) { siw_unmap_pages(iov, kmap_mask, seg); wqe->processed -= c_tx->bytes_unsent; rv = -EFAULT; goto done_crc; } page_array[seg] = p; if (!c_tx->use_sendpage) { void *kaddr = kmap_local_page(p); /* Remember for later kunmap() */ kmap_mask |= BIT(seg); iov[seg].iov_base = kaddr + fp_off; iov[seg].iov_len = plen; if (do_crc) crypto_shash_update( c_tx->mpa_crc_hd, iov[seg].iov_base, plen); } else if (do_crc) { kaddr = kmap_local_page(p); crypto_shash_update(c_tx->mpa_crc_hd, kaddr + fp_off, plen); kunmap_local(kaddr); } } else { /* * Cast to an uintptr_t to preserve all 64 bits * in sge->laddr. */ uintptr_t va = (uintptr_t)(sge->laddr + sge_off); /* * virt_to_page() takes a (void *) pointer * so cast to a (void *) meaning it will be 64 * bits on a 64 bit platform and 32 bits on a * 32 bit platform. */ page_array[seg] = virt_to_page((void *)(va & PAGE_MASK)); if (do_crc) crypto_shash_update( c_tx->mpa_crc_hd, (void *)va, plen); } sge_len -= plen; sge_off += plen; data_len -= plen; fp_off = 0; if (++seg > (int)MAX_ARRAY) { siw_dbg_qp(tx_qp(c_tx), "to many fragments\n"); siw_unmap_pages(iov, kmap_mask, seg-1); wqe->processed -= c_tx->bytes_unsent; rv = -EMSGSIZE; goto done_crc; } } sge_done: /* Update SGE variables at end of SGE */ if (sge_off == sge->length && (data_len != 0 || wqe->processed < wqe->bytes)) { sge_idx++; sge++; sge_off = 0; } } /* trailer */ if (likely(c_tx->state != SIW_SEND_TRAILER)) { iov[seg].iov_base = &c_tx->trailer.pad[4 - c_tx->pad]; iov[seg].iov_len = trl_len = MAX_TRAILER - (4 - c_tx->pad); } else { iov[seg].iov_base = &c_tx->trailer.pad[c_tx->ctrl_sent]; iov[seg].iov_len = trl_len = MAX_TRAILER - c_tx->ctrl_sent; } if (c_tx->pad) { *(u32 *)c_tx->trailer.pad = 0; if (do_crc) crypto_shash_update(c_tx->mpa_crc_hd, (u8 *)&c_tx->trailer.crc - c_tx->pad, c_tx->pad); } if (!c_tx->mpa_crc_hd) c_tx->trailer.crc = 0; else if (do_crc) crypto_shash_final(c_tx->mpa_crc_hd, (u8 *)&c_tx->trailer.crc); data_len = c_tx->bytes_unsent; if (c_tx->use_sendpage) { rv = siw_0copy_tx(s, page_array, &wqe->sqe.sge[c_tx->sge_idx], c_tx->sge_off, data_len); if (rv == data_len) { rv = kernel_sendmsg(s, &msg, &iov[seg], 1, trl_len); if (rv > 0) rv += data_len; else rv = data_len; } } else { rv = kernel_sendmsg(s, &msg, iov, seg + 1, hdr_len + data_len + trl_len); siw_unmap_pages(iov, kmap_mask, seg); } if (rv < (int)hdr_len) { /* Not even complete hdr pushed or negative rv */ wqe->processed -= data_len; if (rv >= 0) { c_tx->ctrl_sent += rv; rv = -EAGAIN; } goto done_crc; } rv -= hdr_len; if (rv >= (int)data_len) { /* all user data pushed to TCP or no data to push */ if (data_len > 0 && wqe->processed < wqe->bytes) { /* Save the current state for next tx */ c_tx->sge_idx = sge_idx; c_tx->sge_off = sge_off; c_tx->pbl_idx = pbl_idx; } rv -= data_len; if (rv == trl_len) /* all pushed */ rv = 0; else { c_tx->state = SIW_SEND_TRAILER; c_tx->ctrl_len = MAX_TRAILER; c_tx->ctrl_sent = rv + 4 - c_tx->pad; c_tx->bytes_unsent = 0; rv = -EAGAIN; } } else if (data_len > 0) { /* Maybe some user data pushed to TCP */ c_tx->state = SIW_SEND_DATA; wqe->processed -= data_len - rv; if (rv) { /* * Some bytes out. Recompute tx state based * on old state and bytes pushed */ unsigned int sge_unsent; c_tx->bytes_unsent -= rv; sge = &wqe->sqe.sge[c_tx->sge_idx]; sge_unsent = sge->length - c_tx->sge_off; while (sge_unsent <= rv) { rv -= sge_unsent; c_tx->sge_idx++; c_tx->sge_off = 0; sge++; sge_unsent = sge->length; } c_tx->sge_off += rv; } rv = -EAGAIN; } done_crc: c_tx->do_crc = 0; done: return rv; } static void siw_update_tcpseg(struct siw_iwarp_tx *c_tx, struct socket *s) { struct tcp_sock *tp = tcp_sk(s->sk); if (tp->gso_segs) { if (c_tx->gso_seg_limit == 0) c_tx->tcp_seglen = tp->mss_cache * tp->gso_segs; else c_tx->tcp_seglen = tp->mss_cache * min_t(u16, c_tx->gso_seg_limit, tp->gso_segs); } else { c_tx->tcp_seglen = tp->mss_cache; } /* Loopback may give odd numbers */ c_tx->tcp_seglen &= 0xfffffff8; } /* * siw_prepare_fpdu() * * Prepares transmit context to send out one FPDU if FPDU will contain * user data and user data are not immediate data. * Computes maximum FPDU length to fill up TCP MSS if possible. * * @qp: QP from which to transmit * @wqe: Current WQE causing transmission * * TODO: Take into account real available sendspace on socket * to avoid header misalignment due to send pausing within * fpdu transmission */ static void siw_prepare_fpdu(struct siw_qp *qp, struct siw_wqe *wqe) { struct siw_iwarp_tx *c_tx = &qp->tx_ctx; int data_len; c_tx->ctrl_len = iwarp_pktinfo[__rdmap_get_opcode(&c_tx->pkt.ctrl)].hdr_len; c_tx->ctrl_sent = 0; /* * Update target buffer offset if any */ if (!(c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_TAGGED)) /* Untagged message */ c_tx->pkt.c_untagged.ddp_mo = cpu_to_be32(wqe->processed); else /* Tagged message */ c_tx->pkt.c_tagged.ddp_to = cpu_to_be64(wqe->sqe.raddr + wqe->processed); data_len = wqe->bytes - wqe->processed; if (data_len + c_tx->ctrl_len + MPA_CRC_SIZE > c_tx->tcp_seglen) { /* Trim DDP payload to fit into current TCP segment */ data_len = c_tx->tcp_seglen - (c_tx->ctrl_len + MPA_CRC_SIZE); c_tx->pkt.ctrl.ddp_rdmap_ctrl &= ~DDP_FLAG_LAST; c_tx->pad = 0; } else { c_tx->pkt.ctrl.ddp_rdmap_ctrl |= DDP_FLAG_LAST; c_tx->pad = -data_len & 0x3; } c_tx->bytes_unsent = data_len; c_tx->pkt.ctrl.mpa_len = htons(c_tx->ctrl_len + data_len - MPA_HDR_SIZE); /* * Init MPA CRC computation */ if (c_tx->mpa_crc_hd) { crypto_shash_init(c_tx->mpa_crc_hd); crypto_shash_update(c_tx->mpa_crc_hd, (u8 *)&c_tx->pkt, c_tx->ctrl_len); c_tx->do_crc = 1; } } /* * siw_check_sgl_tx() * * Check permissions for a list of SGE's (SGL). * A successful check will have all memory referenced * for transmission resolved and assigned to the WQE. * * @pd: Protection Domain SGL should belong to * @wqe: WQE to be checked * @perms: requested access permissions * */ static int siw_check_sgl_tx(struct ib_pd *pd, struct siw_wqe *wqe, enum ib_access_flags perms) { struct siw_sge *sge = &wqe->sqe.sge[0]; int i, len, num_sge = wqe->sqe.num_sge; if (unlikely(num_sge > SIW_MAX_SGE)) return -EINVAL; for (i = 0, len = 0; num_sge; num_sge--, i++, sge++) { /* * rdma verbs: do not check stag for a zero length sge */ if (sge->length) { int rv = siw_check_sge(pd, sge, &wqe->mem[i], perms, 0, sge->length); if (unlikely(rv != E_ACCESS_OK)) return rv; } len += sge->length; } return len; } /* * siw_qp_sq_proc_tx() * * Process one WQE which needs transmission on the wire. */ static int siw_qp_sq_proc_tx(struct siw_qp *qp, struct siw_wqe *wqe) { struct siw_iwarp_tx *c_tx = &qp->tx_ctx; struct socket *s = qp->attrs.sk; int rv = 0, burst_len = qp->tx_ctx.burst; enum rdmap_ecode ecode = RDMAP_ECODE_CATASTROPHIC_STREAM; if (unlikely(wqe->wr_status == SIW_WR_IDLE)) return 0; if (!burst_len) burst_len = SQ_USER_MAXBURST; if (wqe->wr_status == SIW_WR_QUEUED) { if (!(wqe->sqe.flags & SIW_WQE_INLINE)) { if (tx_type(wqe) == SIW_OP_READ_RESPONSE) wqe->sqe.num_sge = 1; if (tx_type(wqe) != SIW_OP_READ && tx_type(wqe) != SIW_OP_READ_LOCAL_INV) { /* * Reference memory to be tx'd w/o checking * access for LOCAL_READ permission, since * not defined in RDMA core. */ rv = siw_check_sgl_tx(qp->pd, wqe, 0); if (rv < 0) { if (tx_type(wqe) == SIW_OP_READ_RESPONSE) ecode = siw_rdmap_error(-rv); rv = -EINVAL; goto tx_error; } wqe->bytes = rv; } else { wqe->bytes = 0; } } else { wqe->bytes = wqe->sqe.sge[0].length; if (!rdma_is_kernel_res(&qp->base_qp.res)) { if (wqe->bytes > SIW_MAX_INLINE) { rv = -EINVAL; goto tx_error; } wqe->sqe.sge[0].laddr = (u64)(uintptr_t)&wqe->sqe.sge[1]; } } wqe->wr_status = SIW_WR_INPROGRESS; wqe->processed = 0; siw_update_tcpseg(c_tx, s); rv = siw_qp_prepare_tx(c_tx); if (rv == PKT_FRAGMENTED) { c_tx->state = SIW_SEND_HDR; siw_prepare_fpdu(qp, wqe); } else if (rv == PKT_COMPLETE) { c_tx->state = SIW_SEND_SHORT_FPDU; } else { goto tx_error; } } next_segment: siw_dbg_qp(qp, "wr type %d, state %d, data %u, sent %u, id %llx\n", tx_type(wqe), wqe->wr_status, wqe->bytes, wqe->processed, wqe->sqe.id); if (--burst_len == 0) { rv = -EINPROGRESS; goto tx_done; } if (c_tx->state == SIW_SEND_SHORT_FPDU) { enum siw_opcode tx_type = tx_type(wqe); unsigned int msg_flags; if (siw_sq_empty(qp) || !siw_tcp_nagle || burst_len == 1) /* * End current TCP segment, if SQ runs empty, * or siw_tcp_nagle is not set, or we bail out * soon due to no burst credit left. */ msg_flags = MSG_DONTWAIT; else msg_flags = MSG_DONTWAIT | MSG_MORE; rv = siw_tx_ctrl(c_tx, s, msg_flags); if (!rv && tx_type != SIW_OP_READ && tx_type != SIW_OP_READ_LOCAL_INV) wqe->processed = wqe->bytes; goto tx_done; } else { rv = siw_tx_hdt(c_tx, s); } if (!rv) { /* * One segment sent. Processing completed if last * segment, Do next segment otherwise. */ if (unlikely(c_tx->tx_suspend)) { /* * Verbs, 6.4.: Try stopping sending after a full * DDP segment if the connection goes down * (== peer halfclose) */ rv = -ECONNABORTED; goto tx_done; } if (c_tx->pkt.ctrl.ddp_rdmap_ctrl & DDP_FLAG_LAST) { siw_dbg_qp(qp, "WQE completed\n"); goto tx_done; } c_tx->state = SIW_SEND_HDR; siw_update_tcpseg(c_tx, s); siw_prepare_fpdu(qp, wqe); goto next_segment; } tx_done: qp->tx_ctx.burst = burst_len; return rv; tx_error: if (ecode != RDMAP_ECODE_CATASTROPHIC_STREAM) siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP, RDMAP_ETYPE_REMOTE_PROTECTION, ecode, 1); else siw_init_terminate(qp, TERM_ERROR_LAYER_RDMAP, RDMAP_ETYPE_CATASTROPHIC, RDMAP_ECODE_UNSPECIFIED, 1); return rv; } static int siw_fastreg_mr(struct ib_pd *pd, struct siw_sqe *sqe) { struct ib_mr *base_mr = (struct ib_mr *)(uintptr_t)sqe->base_mr; struct siw_device *sdev = to_siw_dev(pd->device); struct siw_mem *mem; int rv = 0; siw_dbg_pd(pd, "STag 0x%08x\n", sqe->rkey); if (unlikely(!base_mr)) { pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey); return -EINVAL; } if (unlikely(base_mr->rkey >> 8 != sqe->rkey >> 8)) { pr_warn("siw: fastreg: STag 0x%08x: bad MR\n", sqe->rkey); return -EINVAL; } mem = siw_mem_id2obj(sdev, sqe->rkey >> 8); if (unlikely(!mem)) { pr_warn("siw: fastreg: STag 0x%08x unknown\n", sqe->rkey); return -EINVAL; } if (unlikely(mem->pd != pd)) { pr_warn("siw: fastreg: PD mismatch\n"); rv = -EINVAL; goto out; } if (unlikely(mem->stag_valid)) { pr_warn("siw: fastreg: STag 0x%08x already valid\n", sqe->rkey); rv = -EINVAL; goto out; } /* Refresh STag since user may have changed key part */ mem->stag = sqe->rkey; mem->perms = sqe->access; siw_dbg_mem(mem, "STag 0x%08x now valid\n", sqe->rkey); mem->va = base_mr->iova; mem->stag_valid = 1; out: siw_mem_put(mem); return rv; } static int siw_qp_sq_proc_local(struct siw_qp *qp, struct siw_wqe *wqe) { int rv; switch (tx_type(wqe)) { case SIW_OP_REG_MR: rv = siw_fastreg_mr(qp->pd, &wqe->sqe); break; case SIW_OP_INVAL_STAG: rv = siw_invalidate_stag(qp->pd, wqe->sqe.rkey); break; default: rv = -EINVAL; } return rv; } /* * siw_qp_sq_process() * * Core TX path routine for RDMAP/DDP/MPA using a TCP kernel socket. * Sends RDMAP payload for the current SQ WR @wqe of @qp in one or more * MPA FPDUs, each containing a DDP segment. * * SQ processing may occur in user context as a result of posting * new WQE's or from siw_sq_work_handler() context. Processing in * user context is limited to non-kernel verbs users. * * SQ processing may get paused anytime, possibly in the middle of a WR * or FPDU, if insufficient send space is available. SQ processing * gets resumed from siw_sq_work_handler(), if send space becomes * available again. * * Must be called with the QP state read-locked. * * Note: * An outbound RREQ can be satisfied by the corresponding RRESP * _before_ it gets assigned to the ORQ. This happens regularly * in RDMA READ via loopback case. Since both outbound RREQ and * inbound RRESP can be handled by the same CPU, locking the ORQ * is dead-lock prone and thus not an option. With that, the * RREQ gets assigned to the ORQ _before_ being sent - see * siw_activate_tx() - and pulled back in case of send failure. */ int siw_qp_sq_process(struct siw_qp *qp) { struct siw_wqe *wqe = tx_wqe(qp); enum siw_opcode tx_type; unsigned long flags; int rv = 0; siw_dbg_qp(qp, "enter for type %d\n", tx_type(wqe)); next_wqe: /* * Stop QP processing if SQ state changed */ if (unlikely(qp->tx_ctx.tx_suspend)) { siw_dbg_qp(qp, "tx suspended\n"); goto done; } tx_type = tx_type(wqe); if (tx_type <= SIW_OP_READ_RESPONSE) rv = siw_qp_sq_proc_tx(qp, wqe); else rv = siw_qp_sq_proc_local(qp, wqe); if (!rv) { /* * WQE processing done */ switch (tx_type) { case SIW_OP_SEND: case SIW_OP_SEND_REMOTE_INV: case SIW_OP_WRITE: siw_wqe_put_mem(wqe, tx_type); fallthrough; case SIW_OP_INVAL_STAG: case SIW_OP_REG_MR: if (tx_flags(wqe) & SIW_WQE_SIGNALLED) siw_sqe_complete(qp, &wqe->sqe, wqe->bytes, SIW_WC_SUCCESS); break; case SIW_OP_READ: case SIW_OP_READ_LOCAL_INV: /* * already enqueued to ORQ queue */ break; case SIW_OP_READ_RESPONSE: siw_wqe_put_mem(wqe, tx_type); break; default: WARN(1, "undefined WQE type %d\n", tx_type); rv = -EINVAL; goto done; } spin_lock_irqsave(&qp->sq_lock, flags); wqe->wr_status = SIW_WR_IDLE; rv = siw_activate_tx(qp); spin_unlock_irqrestore(&qp->sq_lock, flags); if (rv <= 0) goto done; goto next_wqe; } else if (rv == -EAGAIN) { siw_dbg_qp(qp, "sq paused: hd/tr %d of %d, data %d\n", qp->tx_ctx.ctrl_sent, qp->tx_ctx.ctrl_len, qp->tx_ctx.bytes_unsent); rv = 0; goto done; } else if (rv == -EINPROGRESS) { rv = siw_sq_start(qp); goto done; } else { /* * WQE processing failed. * Verbs 8.3.2: * o It turns any WQE into a signalled WQE. * o Local catastrophic error must be surfaced * o QP must be moved into Terminate state: done by code * doing socket state change processing * * o TODO: Termination message must be sent. * o TODO: Implement more precise work completion errors, * see enum ib_wc_status in ib_verbs.h */ siw_dbg_qp(qp, "wqe type %d processing failed: %d\n", tx_type(wqe), rv); spin_lock_irqsave(&qp->sq_lock, flags); /* * RREQ may have already been completed by inbound RRESP! */ if ((tx_type == SIW_OP_READ || tx_type == SIW_OP_READ_LOCAL_INV) && qp->attrs.orq_size) { /* Cleanup pending entry in ORQ */ qp->orq_put--; qp->orq[qp->orq_put % qp->attrs.orq_size].flags = 0; } spin_unlock_irqrestore(&qp->sq_lock, flags); /* * immediately suspends further TX processing */ if (!qp->tx_ctx.tx_suspend) siw_qp_cm_drop(qp, 0); switch (tx_type) { case SIW_OP_SEND: case SIW_OP_SEND_REMOTE_INV: case SIW_OP_SEND_WITH_IMM: case SIW_OP_WRITE: case SIW_OP_READ: case SIW_OP_READ_LOCAL_INV: siw_wqe_put_mem(wqe, tx_type); fallthrough; case SIW_OP_INVAL_STAG: case SIW_OP_REG_MR: siw_sqe_complete(qp, &wqe->sqe, wqe->bytes, SIW_WC_LOC_QP_OP_ERR); siw_qp_event(qp, IB_EVENT_QP_FATAL); break; case SIW_OP_READ_RESPONSE: siw_dbg_qp(qp, "proc. read.response failed: %d\n", rv); siw_qp_event(qp, IB_EVENT_QP_REQ_ERR); siw_wqe_put_mem(wqe, SIW_OP_READ_RESPONSE); break; default: WARN(1, "undefined WQE type %d\n", tx_type); rv = -EINVAL; } wqe->wr_status = SIW_WR_IDLE; } done: return rv; } static void siw_sq_resume(struct siw_qp *qp) { if (down_read_trylock(&qp->state_lock)) { if (likely(qp->attrs.state == SIW_QP_STATE_RTS && !qp->tx_ctx.tx_suspend)) { int rv = siw_qp_sq_process(qp); up_read(&qp->state_lock); if (unlikely(rv < 0)) { siw_dbg_qp(qp, "SQ task failed: err %d\n", rv); if (!qp->tx_ctx.tx_suspend) siw_qp_cm_drop(qp, 0); } } else { up_read(&qp->state_lock); } } else { siw_dbg_qp(qp, "Resume SQ while QP locked\n"); } siw_qp_put(qp); } struct tx_task_t { struct llist_head active; wait_queue_head_t waiting; }; static DEFINE_PER_CPU(struct tx_task_t, siw_tx_task_g); void siw_stop_tx_thread(int nr_cpu) { kthread_stop(siw_tx_thread[nr_cpu]); wake_up(&per_cpu(siw_tx_task_g, nr_cpu).waiting); } int siw_run_sq(void *data) { const int nr_cpu = (unsigned int)(long)data; struct llist_node *active; struct siw_qp *qp; struct tx_task_t *tx_task = &per_cpu(siw_tx_task_g, nr_cpu); init_llist_head(&tx_task->active); init_waitqueue_head(&tx_task->waiting); while (1) { struct llist_node *fifo_list = NULL; wait_event_interruptible(tx_task->waiting, !llist_empty(&tx_task->active) || kthread_should_stop()); if (kthread_should_stop()) break; active = llist_del_all(&tx_task->active); /* * llist_del_all returns a list with newest entry first. * Re-order list for fairness among QP's. */ while (active) { struct llist_node *tmp = active; active = llist_next(active); tmp->next = fifo_list; fifo_list = tmp; } while (fifo_list) { qp = container_of(fifo_list, struct siw_qp, tx_list); fifo_list = llist_next(fifo_list); qp->tx_list.next = NULL; siw_sq_resume(qp); } } active = llist_del_all(&tx_task->active); if (active) { llist_for_each_entry(qp, active, tx_list) { qp->tx_list.next = NULL; siw_sq_resume(qp); } } return 0; } int siw_sq_start(struct siw_qp *qp) { if (tx_wqe(qp)->wr_status == SIW_WR_IDLE) return 0; if (unlikely(!cpu_online(qp->tx_cpu))) { siw_put_tx_cpu(qp->tx_cpu); qp->tx_cpu = siw_get_tx_cpu(qp->sdev); if (qp->tx_cpu < 0) { pr_warn("siw: no tx cpu available\n"); return -EIO; } } siw_qp_get(qp); llist_add(&qp->tx_list, &per_cpu(siw_tx_task_g, qp->tx_cpu).active); wake_up(&per_cpu(siw_tx_task_g, qp->tx_cpu).waiting); return 0; }