/* * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved. * Copyright (C) 2008 - 2011 Bart Van Assche . * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "ib_srpt.h" /* Name of this kernel module. */ #define DRV_NAME "ib_srpt" #define DRV_VERSION "2.0.0" #define DRV_RELDATE "2011-02-14" #define SRPT_ID_STRING "Linux SRP target" #undef pr_fmt #define pr_fmt(fmt) DRV_NAME " " fmt MODULE_AUTHOR("Vu Pham and Bart Van Assche"); MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target " "v" DRV_VERSION " (" DRV_RELDATE ")"); MODULE_LICENSE("Dual BSD/GPL"); /* * Global Variables */ static u64 srpt_service_guid; static DEFINE_SPINLOCK(srpt_dev_lock); /* Protects srpt_dev_list. */ static LIST_HEAD(srpt_dev_list); /* List of srpt_device structures. */ static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE; module_param(srp_max_req_size, int, 0444); MODULE_PARM_DESC(srp_max_req_size, "Maximum size of SRP request messages in bytes."); static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE; module_param(srpt_srq_size, int, 0444); MODULE_PARM_DESC(srpt_srq_size, "Shared receive queue (SRQ) size."); static int srpt_get_u64_x(char *buffer, struct kernel_param *kp) { return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg); } module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid, 0444); MODULE_PARM_DESC(srpt_service_guid, "Using this value for ioc_guid, id_ext, and cm_listen_id" " instead of using the node_guid of the first HCA."); static struct ib_client srpt_client; static struct target_fabric_configfs *srpt_target; static void srpt_release_channel(struct srpt_rdma_ch *ch); static int srpt_queue_status(struct se_cmd *cmd); /** * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE. */ static inline enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir) { switch (dir) { case DMA_TO_DEVICE: return DMA_FROM_DEVICE; case DMA_FROM_DEVICE: return DMA_TO_DEVICE; default: return dir; } } /** * srpt_sdev_name() - Return the name associated with the HCA. * * Examples are ib0, ib1, ... */ static inline const char *srpt_sdev_name(struct srpt_device *sdev) { return sdev->device->name; } static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch) { unsigned long flags; enum rdma_ch_state state; spin_lock_irqsave(&ch->spinlock, flags); state = ch->state; spin_unlock_irqrestore(&ch->spinlock, flags); return state; } static enum rdma_ch_state srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state) { unsigned long flags; enum rdma_ch_state prev; spin_lock_irqsave(&ch->spinlock, flags); prev = ch->state; ch->state = new_state; spin_unlock_irqrestore(&ch->spinlock, flags); return prev; } /** * srpt_test_and_set_ch_state() - Test and set the channel state. * * Returns true if and only if the channel state has been set to the new state. */ static bool srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old, enum rdma_ch_state new) { unsigned long flags; enum rdma_ch_state prev; spin_lock_irqsave(&ch->spinlock, flags); prev = ch->state; if (prev == old) ch->state = new; spin_unlock_irqrestore(&ch->spinlock, flags); return prev == old; } /** * srpt_event_handler() - Asynchronous IB event callback function. * * Callback function called by the InfiniBand core when an asynchronous IB * event occurs. This callback may occur in interrupt context. See also * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand * Architecture Specification. */ static void srpt_event_handler(struct ib_event_handler *handler, struct ib_event *event) { struct srpt_device *sdev; struct srpt_port *sport; sdev = ib_get_client_data(event->device, &srpt_client); if (!sdev || sdev->device != event->device) return; pr_debug("ASYNC event= %d on device= %s\n", event->event, srpt_sdev_name(sdev)); switch (event->event) { case IB_EVENT_PORT_ERR: if (event->element.port_num <= sdev->device->phys_port_cnt) { sport = &sdev->port[event->element.port_num - 1]; sport->lid = 0; sport->sm_lid = 0; } break; case IB_EVENT_PORT_ACTIVE: case IB_EVENT_LID_CHANGE: case IB_EVENT_PKEY_CHANGE: case IB_EVENT_SM_CHANGE: case IB_EVENT_CLIENT_REREGISTER: /* Refresh port data asynchronously. */ if (event->element.port_num <= sdev->device->phys_port_cnt) { sport = &sdev->port[event->element.port_num - 1]; if (!sport->lid && !sport->sm_lid) schedule_work(&sport->work); } break; default: printk(KERN_ERR "received unrecognized IB event %d\n", event->event); break; } } /** * srpt_srq_event() - SRQ event callback function. */ static void srpt_srq_event(struct ib_event *event, void *ctx) { printk(KERN_INFO "SRQ event %d\n", event->event); } /** * srpt_qp_event() - QP event callback function. */ static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch) { pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n", event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch)); switch (event->event) { case IB_EVENT_COMM_EST: ib_cm_notify(ch->cm_id, event->event); break; case IB_EVENT_QP_LAST_WQE_REACHED: if (srpt_test_and_set_ch_state(ch, CH_DRAINING, CH_RELEASING)) srpt_release_channel(ch); else pr_debug("%s: state %d - ignored LAST_WQE.\n", ch->sess_name, srpt_get_ch_state(ch)); break; default: printk(KERN_ERR "received unrecognized IB QP event %d\n", event->event); break; } } /** * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure. * * @slot: one-based slot number. * @value: four-bit value. * * Copies the lowest four bits of value in element slot of the array of four * bit elements called c_list (controller list). The index slot is one-based. */ static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value) { u16 id; u8 tmp; id = (slot - 1) / 2; if (slot & 0x1) { tmp = c_list[id] & 0xf; c_list[id] = (value << 4) | tmp; } else { tmp = c_list[id] & 0xf0; c_list[id] = (value & 0xf) | tmp; } } /** * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram. * * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture * Specification. */ static void srpt_get_class_port_info(struct ib_dm_mad *mad) { struct ib_class_port_info *cif; cif = (struct ib_class_port_info *)mad->data; memset(cif, 0, sizeof *cif); cif->base_version = 1; cif->class_version = 1; cif->resp_time_value = 20; mad->mad_hdr.status = 0; } /** * srpt_get_iou() - Write IOUnitInfo to a management datagram. * * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture * Specification. See also section B.7, table B.6 in the SRP r16a document. */ static void srpt_get_iou(struct ib_dm_mad *mad) { struct ib_dm_iou_info *ioui; u8 slot; int i; ioui = (struct ib_dm_iou_info *)mad->data; ioui->change_id = __constant_cpu_to_be16(1); ioui->max_controllers = 16; /* set present for slot 1 and empty for the rest */ srpt_set_ioc(ioui->controller_list, 1, 1); for (i = 1, slot = 2; i < 16; i++, slot++) srpt_set_ioc(ioui->controller_list, slot, 0); mad->mad_hdr.status = 0; } /** * srpt_get_ioc() - Write IOControllerprofile to a management datagram. * * See also section 16.3.3.4 IOControllerProfile in the InfiniBand * Architecture Specification. See also section B.7, table B.7 in the SRP * r16a document. */ static void srpt_get_ioc(struct srpt_port *sport, u32 slot, struct ib_dm_mad *mad) { struct srpt_device *sdev = sport->sdev; struct ib_dm_ioc_profile *iocp; iocp = (struct ib_dm_ioc_profile *)mad->data; if (!slot || slot > 16) { mad->mad_hdr.status = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); return; } if (slot > 2) { mad->mad_hdr.status = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); return; } memset(iocp, 0, sizeof *iocp); strcpy(iocp->id_string, SRPT_ID_STRING); iocp->guid = cpu_to_be64(srpt_service_guid); iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id); iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver); iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id); iocp->subsys_device_id = 0x0; iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS); iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS); iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL); iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION); iocp->send_queue_depth = cpu_to_be16(sdev->srq_size); iocp->rdma_read_depth = 4; iocp->send_size = cpu_to_be32(srp_max_req_size); iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size, 1U << 24)); iocp->num_svc_entries = 1; iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC | SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC; mad->mad_hdr.status = 0; } /** * srpt_get_svc_entries() - Write ServiceEntries to a management datagram. * * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture * Specification. See also section B.7, table B.8 in the SRP r16a document. */ static void srpt_get_svc_entries(u64 ioc_guid, u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad) { struct ib_dm_svc_entries *svc_entries; WARN_ON(!ioc_guid); if (!slot || slot > 16) { mad->mad_hdr.status = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD); return; } if (slot > 2 || lo > hi || hi > 1) { mad->mad_hdr.status = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC); return; } svc_entries = (struct ib_dm_svc_entries *)mad->data; memset(svc_entries, 0, sizeof *svc_entries); svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid); snprintf(svc_entries->service_entries[0].name, sizeof(svc_entries->service_entries[0].name), "%s%016llx", SRP_SERVICE_NAME_PREFIX, ioc_guid); mad->mad_hdr.status = 0; } /** * srpt_mgmt_method_get() - Process a received management datagram. * @sp: source port through which the MAD has been received. * @rq_mad: received MAD. * @rsp_mad: response MAD. */ static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad, struct ib_dm_mad *rsp_mad) { u16 attr_id; u32 slot; u8 hi, lo; attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id); switch (attr_id) { case DM_ATTR_CLASS_PORT_INFO: srpt_get_class_port_info(rsp_mad); break; case DM_ATTR_IOU_INFO: srpt_get_iou(rsp_mad); break; case DM_ATTR_IOC_PROFILE: slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); srpt_get_ioc(sp, slot, rsp_mad); break; case DM_ATTR_SVC_ENTRIES: slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod); hi = (u8) ((slot >> 8) & 0xff); lo = (u8) (slot & 0xff); slot = (u16) ((slot >> 16) & 0xffff); srpt_get_svc_entries(srpt_service_guid, slot, hi, lo, rsp_mad); break; default: rsp_mad->mad_hdr.status = __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); break; } } /** * srpt_mad_send_handler() - Post MAD-send callback function. */ static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent, struct ib_mad_send_wc *mad_wc) { ib_destroy_ah(mad_wc->send_buf->ah); ib_free_send_mad(mad_wc->send_buf); } /** * srpt_mad_recv_handler() - MAD reception callback function. */ static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent, struct ib_mad_recv_wc *mad_wc) { struct srpt_port *sport = (struct srpt_port *)mad_agent->context; struct ib_ah *ah; struct ib_mad_send_buf *rsp; struct ib_dm_mad *dm_mad; if (!mad_wc || !mad_wc->recv_buf.mad) return; ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc, mad_wc->recv_buf.grh, mad_agent->port_num); if (IS_ERR(ah)) goto err; BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR); rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp, mad_wc->wc->pkey_index, 0, IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA, GFP_KERNEL); if (IS_ERR(rsp)) goto err_rsp; rsp->ah = ah; dm_mad = rsp->mad; memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad); dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP; dm_mad->mad_hdr.status = 0; switch (mad_wc->recv_buf.mad->mad_hdr.method) { case IB_MGMT_METHOD_GET: srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad); break; case IB_MGMT_METHOD_SET: dm_mad->mad_hdr.status = __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR); break; default: dm_mad->mad_hdr.status = __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD); break; } if (!ib_post_send_mad(rsp, NULL)) { ib_free_recv_mad(mad_wc); /* will destroy_ah & free_send_mad in send completion */ return; } ib_free_send_mad(rsp); err_rsp: ib_destroy_ah(ah); err: ib_free_recv_mad(mad_wc); } /** * srpt_refresh_port() - Configure a HCA port. * * Enable InfiniBand management datagram processing, update the cached sm_lid, * lid and gid values, and register a callback function for processing MADs * on the specified port. * * Note: It is safe to call this function more than once for the same port. */ static int srpt_refresh_port(struct srpt_port *sport) { struct ib_mad_reg_req reg_req; struct ib_port_modify port_modify; struct ib_port_attr port_attr; int ret; memset(&port_modify, 0, sizeof port_modify); port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; port_modify.clr_port_cap_mask = 0; ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); if (ret) goto err_mod_port; ret = ib_query_port(sport->sdev->device, sport->port, &port_attr); if (ret) goto err_query_port; sport->sm_lid = port_attr.sm_lid; sport->lid = port_attr.lid; ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid); if (ret) goto err_query_port; if (!sport->mad_agent) { memset(®_req, 0, sizeof reg_req); reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT; reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION; set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask); set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask); sport->mad_agent = ib_register_mad_agent(sport->sdev->device, sport->port, IB_QPT_GSI, ®_req, 0, srpt_mad_send_handler, srpt_mad_recv_handler, sport); if (IS_ERR(sport->mad_agent)) { ret = PTR_ERR(sport->mad_agent); sport->mad_agent = NULL; goto err_query_port; } } return 0; err_query_port: port_modify.set_port_cap_mask = 0; port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP; ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify); err_mod_port: return ret; } /** * srpt_unregister_mad_agent() - Unregister MAD callback functions. * * Note: It is safe to call this function more than once for the same device. */ static void srpt_unregister_mad_agent(struct srpt_device *sdev) { struct ib_port_modify port_modify = { .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP, }; struct srpt_port *sport; int i; for (i = 1; i <= sdev->device->phys_port_cnt; i++) { sport = &sdev->port[i - 1]; WARN_ON(sport->port != i); if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0) printk(KERN_ERR "disabling MAD processing failed.\n"); if (sport->mad_agent) { ib_unregister_mad_agent(sport->mad_agent); sport->mad_agent = NULL; } } } /** * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure. */ static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev, int ioctx_size, int dma_size, enum dma_data_direction dir) { struct srpt_ioctx *ioctx; ioctx = kmalloc(ioctx_size, GFP_KERNEL); if (!ioctx) goto err; ioctx->buf = kmalloc(dma_size, GFP_KERNEL); if (!ioctx->buf) goto err_free_ioctx; ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir); if (ib_dma_mapping_error(sdev->device, ioctx->dma)) goto err_free_buf; return ioctx; err_free_buf: kfree(ioctx->buf); err_free_ioctx: kfree(ioctx); err: return NULL; } /** * srpt_free_ioctx() - Free an SRPT I/O context structure. */ static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx, int dma_size, enum dma_data_direction dir) { if (!ioctx) return; ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir); kfree(ioctx->buf); kfree(ioctx); } /** * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures. * @sdev: Device to allocate the I/O context ring for. * @ring_size: Number of elements in the I/O context ring. * @ioctx_size: I/O context size. * @dma_size: DMA buffer size. * @dir: DMA data direction. */ static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev, int ring_size, int ioctx_size, int dma_size, enum dma_data_direction dir) { struct srpt_ioctx **ring; int i; WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx) && ioctx_size != sizeof(struct srpt_send_ioctx)); ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL); if (!ring) goto out; for (i = 0; i < ring_size; ++i) { ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir); if (!ring[i]) goto err; ring[i]->index = i; } goto out; err: while (--i >= 0) srpt_free_ioctx(sdev, ring[i], dma_size, dir); kfree(ring); ring = NULL; out: return ring; } /** * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures. */ static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring, struct srpt_device *sdev, int ring_size, int dma_size, enum dma_data_direction dir) { int i; for (i = 0; i < ring_size; ++i) srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir); kfree(ioctx_ring); } /** * srpt_get_cmd_state() - Get the state of a SCSI command. */ static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx) { enum srpt_command_state state; unsigned long flags; BUG_ON(!ioctx); spin_lock_irqsave(&ioctx->spinlock, flags); state = ioctx->state; spin_unlock_irqrestore(&ioctx->spinlock, flags); return state; } /** * srpt_set_cmd_state() - Set the state of a SCSI command. * * Does not modify the state of aborted commands. Returns the previous command * state. */ static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx, enum srpt_command_state new) { enum srpt_command_state previous; unsigned long flags; BUG_ON(!ioctx); spin_lock_irqsave(&ioctx->spinlock, flags); previous = ioctx->state; if (previous != SRPT_STATE_DONE) ioctx->state = new; spin_unlock_irqrestore(&ioctx->spinlock, flags); return previous; } /** * srpt_test_and_set_cmd_state() - Test and set the state of a command. * * Returns true if and only if the previous command state was equal to 'old'. */ static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx, enum srpt_command_state old, enum srpt_command_state new) { enum srpt_command_state previous; unsigned long flags; WARN_ON(!ioctx); WARN_ON(old == SRPT_STATE_DONE); WARN_ON(new == SRPT_STATE_NEW); spin_lock_irqsave(&ioctx->spinlock, flags); previous = ioctx->state; if (previous == old) ioctx->state = new; spin_unlock_irqrestore(&ioctx->spinlock, flags); return previous == old; } /** * srpt_post_recv() - Post an IB receive request. */ static int srpt_post_recv(struct srpt_device *sdev, struct srpt_recv_ioctx *ioctx) { struct ib_sge list; struct ib_recv_wr wr, *bad_wr; BUG_ON(!sdev); wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index); list.addr = ioctx->ioctx.dma; list.length = srp_max_req_size; list.lkey = sdev->mr->lkey; wr.next = NULL; wr.sg_list = &list; wr.num_sge = 1; return ib_post_srq_recv(sdev->srq, &wr, &bad_wr); } /** * srpt_post_send() - Post an IB send request. * * Returns zero upon success and a non-zero value upon failure. */ static int srpt_post_send(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx, int len) { struct ib_sge list; struct ib_send_wr wr, *bad_wr; struct srpt_device *sdev = ch->sport->sdev; int ret; atomic_inc(&ch->req_lim); ret = -ENOMEM; if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) { printk(KERN_WARNING "IB send queue full (needed 1)\n"); goto out; } ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len, DMA_TO_DEVICE); list.addr = ioctx->ioctx.dma; list.length = len; list.lkey = sdev->mr->lkey; wr.next = NULL; wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index); wr.sg_list = &list; wr.num_sge = 1; wr.opcode = IB_WR_SEND; wr.send_flags = IB_SEND_SIGNALED; ret = ib_post_send(ch->qp, &wr, &bad_wr); out: if (ret < 0) { atomic_inc(&ch->sq_wr_avail); atomic_dec(&ch->req_lim); } return ret; } /** * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request. * @ioctx: Pointer to the I/O context associated with the request. * @srp_cmd: Pointer to the SRP_CMD request data. * @dir: Pointer to the variable to which the transfer direction will be * written. * @data_len: Pointer to the variable to which the total data length of all * descriptors in the SRP_CMD request will be written. * * This function initializes ioctx->nrbuf and ioctx->r_bufs. * * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors; * -ENOMEM when memory allocation fails and zero upon success. */ static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx, struct srp_cmd *srp_cmd, enum dma_data_direction *dir, u64 *data_len) { struct srp_indirect_buf *idb; struct srp_direct_buf *db; unsigned add_cdb_offset; int ret; /* * The pointer computations below will only be compiled correctly * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check * whether srp_cmd::add_data has been declared as a byte pointer. */ BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0) && !__same_type(srp_cmd->add_data[0], (u8)0)); BUG_ON(!dir); BUG_ON(!data_len); ret = 0; *data_len = 0; /* * The lower four bits of the buffer format field contain the DATA-IN * buffer descriptor format, and the highest four bits contain the * DATA-OUT buffer descriptor format. */ *dir = DMA_NONE; if (srp_cmd->buf_fmt & 0xf) /* DATA-IN: transfer data from target to initiator (read). */ *dir = DMA_FROM_DEVICE; else if (srp_cmd->buf_fmt >> 4) /* DATA-OUT: transfer data from initiator to target (write). */ *dir = DMA_TO_DEVICE; /* * According to the SRP spec, the lower two bits of the 'ADDITIONAL * CDB LENGTH' field are reserved and the size in bytes of this field * is four times the value specified in bits 3..7. Hence the "& ~3". */ add_cdb_offset = srp_cmd->add_cdb_len & ~3; if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) || ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) { ioctx->n_rbuf = 1; ioctx->rbufs = &ioctx->single_rbuf; db = (struct srp_direct_buf *)(srp_cmd->add_data + add_cdb_offset); memcpy(ioctx->rbufs, db, sizeof *db); *data_len = be32_to_cpu(db->len); } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) || ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) { idb = (struct srp_indirect_buf *)(srp_cmd->add_data + add_cdb_offset); ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db; if (ioctx->n_rbuf > (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) { printk(KERN_ERR "received unsupported SRP_CMD request" " type (%u out + %u in != %u / %zu)\n", srp_cmd->data_out_desc_cnt, srp_cmd->data_in_desc_cnt, be32_to_cpu(idb->table_desc.len), sizeof(*db)); ioctx->n_rbuf = 0; ret = -EINVAL; goto out; } if (ioctx->n_rbuf == 1) ioctx->rbufs = &ioctx->single_rbuf; else { ioctx->rbufs = kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC); if (!ioctx->rbufs) { ioctx->n_rbuf = 0; ret = -ENOMEM; goto out; } } db = idb->desc_list; memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db); *data_len = be32_to_cpu(idb->len); } out: return ret; } /** * srpt_init_ch_qp() - Initialize queue pair attributes. * * Initialized the attributes of queue pair 'qp' by allowing local write, * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT. */ static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp) { struct ib_qp_attr *attr; int ret; attr = kzalloc(sizeof *attr, GFP_KERNEL); if (!attr) return -ENOMEM; attr->qp_state = IB_QPS_INIT; attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ | IB_ACCESS_REMOTE_WRITE; attr->port_num = ch->sport->port; attr->pkey_index = 0; ret = ib_modify_qp(qp, attr, IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT | IB_QP_PKEY_INDEX); kfree(attr); return ret; } /** * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR). * @ch: channel of the queue pair. * @qp: queue pair to change the state of. * * Returns zero upon success and a negative value upon failure. * * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. * If this structure ever becomes larger, it might be necessary to allocate * it dynamically instead of on the stack. */ static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int attr_mask; int ret; qp_attr.qp_state = IB_QPS_RTR; ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); if (ret) goto out; qp_attr.max_dest_rd_atomic = 4; ret = ib_modify_qp(qp, &qp_attr, attr_mask); out: return ret; } /** * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS). * @ch: channel of the queue pair. * @qp: queue pair to change the state of. * * Returns zero upon success and a negative value upon failure. * * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system. * If this structure ever becomes larger, it might be necessary to allocate * it dynamically instead of on the stack. */ static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp) { struct ib_qp_attr qp_attr; int attr_mask; int ret; qp_attr.qp_state = IB_QPS_RTS; ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask); if (ret) goto out; qp_attr.max_rd_atomic = 4; ret = ib_modify_qp(qp, &qp_attr, attr_mask); out: return ret; } /** * srpt_ch_qp_err() - Set the channel queue pair state to 'error'. */ static int srpt_ch_qp_err(struct srpt_rdma_ch *ch) { struct ib_qp_attr qp_attr; qp_attr.qp_state = IB_QPS_ERR; return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE); } /** * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list. */ static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx) { struct scatterlist *sg; enum dma_data_direction dir; BUG_ON(!ch); BUG_ON(!ioctx); BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius); while (ioctx->n_rdma) kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge); kfree(ioctx->rdma_ius); ioctx->rdma_ius = NULL; if (ioctx->mapped_sg_count) { sg = ioctx->sg; WARN_ON(!sg); dir = ioctx->cmd.data_direction; BUG_ON(dir == DMA_NONE); ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt, opposite_dma_dir(dir)); ioctx->mapped_sg_count = 0; } } /** * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list. */ static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx) { struct se_cmd *cmd; struct scatterlist *sg, *sg_orig; int sg_cnt; enum dma_data_direction dir; struct rdma_iu *riu; struct srp_direct_buf *db; dma_addr_t dma_addr; struct ib_sge *sge; u64 raddr; u32 rsize; u32 tsize; u32 dma_len; int count, nrdma; int i, j, k; BUG_ON(!ch); BUG_ON(!ioctx); cmd = &ioctx->cmd; dir = cmd->data_direction; BUG_ON(dir == DMA_NONE); ioctx->sg = sg = sg_orig = cmd->t_data_sg; ioctx->sg_cnt = sg_cnt = cmd->t_data_nents; count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt, opposite_dma_dir(dir)); if (unlikely(!count)) return -EAGAIN; ioctx->mapped_sg_count = count; if (ioctx->rdma_ius && ioctx->n_rdma_ius) nrdma = ioctx->n_rdma_ius; else { nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE + ioctx->n_rbuf; ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL); if (!ioctx->rdma_ius) goto free_mem; ioctx->n_rdma_ius = nrdma; } db = ioctx->rbufs; tsize = cmd->data_length; dma_len = sg_dma_len(&sg[0]); riu = ioctx->rdma_ius; /* * For each remote desc - calculate the #ib_sge. * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then * each remote desc rdma_iu is required a rdma wr; * else * we need to allocate extra rdma_iu to carry extra #ib_sge in * another rdma wr */ for (i = 0, j = 0; j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { rsize = be32_to_cpu(db->len); raddr = be64_to_cpu(db->va); riu->raddr = raddr; riu->rkey = be32_to_cpu(db->key); riu->sge_cnt = 0; /* calculate how many sge required for this remote_buf */ while (rsize > 0 && tsize > 0) { if (rsize >= dma_len) { tsize -= dma_len; rsize -= dma_len; raddr += dma_len; if (tsize > 0) { ++j; if (j < count) { sg = sg_next(sg); dma_len = sg_dma_len(sg); } } } else { tsize -= rsize; dma_len -= rsize; rsize = 0; } ++riu->sge_cnt; if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) { ++ioctx->n_rdma; riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, GFP_KERNEL); if (!riu->sge) goto free_mem; ++riu; riu->sge_cnt = 0; riu->raddr = raddr; riu->rkey = be32_to_cpu(db->key); } } ++ioctx->n_rdma; riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge, GFP_KERNEL); if (!riu->sge) goto free_mem; } db = ioctx->rbufs; tsize = cmd->data_length; riu = ioctx->rdma_ius; sg = sg_orig; dma_len = sg_dma_len(&sg[0]); dma_addr = sg_dma_address(&sg[0]); /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */ for (i = 0, j = 0; j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) { rsize = be32_to_cpu(db->len); sge = riu->sge; k = 0; while (rsize > 0 && tsize > 0) { sge->addr = dma_addr; sge->lkey = ch->sport->sdev->mr->lkey; if (rsize >= dma_len) { sge->length = (tsize < dma_len) ? tsize : dma_len; tsize -= dma_len; rsize -= dma_len; if (tsize > 0) { ++j; if (j < count) { sg = sg_next(sg); dma_len = sg_dma_len(sg); dma_addr = sg_dma_address(sg); } } } else { sge->length = (tsize < rsize) ? tsize : rsize; tsize -= rsize; dma_len -= rsize; dma_addr += rsize; rsize = 0; } ++k; if (k == riu->sge_cnt && rsize > 0 && tsize > 0) { ++riu; sge = riu->sge; k = 0; } else if (rsize > 0 && tsize > 0) ++sge; } } return 0; free_mem: srpt_unmap_sg_to_ib_sge(ch, ioctx); return -ENOMEM; } /** * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator. */ static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch) { struct srpt_send_ioctx *ioctx; unsigned long flags; BUG_ON(!ch); ioctx = NULL; spin_lock_irqsave(&ch->spinlock, flags); if (!list_empty(&ch->free_list)) { ioctx = list_first_entry(&ch->free_list, struct srpt_send_ioctx, free_list); list_del(&ioctx->free_list); } spin_unlock_irqrestore(&ch->spinlock, flags); if (!ioctx) return ioctx; BUG_ON(ioctx->ch != ch); kref_init(&ioctx->kref); spin_lock_init(&ioctx->spinlock); ioctx->state = SRPT_STATE_NEW; ioctx->n_rbuf = 0; ioctx->rbufs = NULL; ioctx->n_rdma = 0; ioctx->n_rdma_ius = 0; ioctx->rdma_ius = NULL; ioctx->mapped_sg_count = 0; init_completion(&ioctx->tx_done); ioctx->queue_status_only = false; /* * transport_init_se_cmd() does not initialize all fields, so do it * here. */ memset(&ioctx->cmd, 0, sizeof(ioctx->cmd)); memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data)); return ioctx; } /** * srpt_put_send_ioctx() - Free up resources. */ static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx) { struct srpt_rdma_ch *ch; unsigned long flags; BUG_ON(!ioctx); ch = ioctx->ch; BUG_ON(!ch); WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE); srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); transport_generic_free_cmd(&ioctx->cmd, 0); if (ioctx->n_rbuf > 1) { kfree(ioctx->rbufs); ioctx->rbufs = NULL; ioctx->n_rbuf = 0; } spin_lock_irqsave(&ch->spinlock, flags); list_add(&ioctx->free_list, &ch->free_list); spin_unlock_irqrestore(&ch->spinlock, flags); } static void srpt_put_send_ioctx_kref(struct kref *kref) { srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref)); } /** * srpt_abort_cmd() - Abort a SCSI command. * @ioctx: I/O context associated with the SCSI command. * @context: Preferred execution context. */ static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx) { enum srpt_command_state state; unsigned long flags; BUG_ON(!ioctx); /* * If the command is in a state where the target core is waiting for * the ib_srpt driver, change the state to the next state. Changing * the state of the command from SRPT_STATE_NEED_DATA to * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this * function a second time. */ spin_lock_irqsave(&ioctx->spinlock, flags); state = ioctx->state; switch (state) { case SRPT_STATE_NEED_DATA: ioctx->state = SRPT_STATE_DATA_IN; break; case SRPT_STATE_DATA_IN: case SRPT_STATE_CMD_RSP_SENT: case SRPT_STATE_MGMT_RSP_SENT: ioctx->state = SRPT_STATE_DONE; break; default: break; } spin_unlock_irqrestore(&ioctx->spinlock, flags); if (state == SRPT_STATE_DONE) goto out; pr_debug("Aborting cmd with state %d and tag %lld\n", state, ioctx->tag); switch (state) { case SRPT_STATE_NEW: case SRPT_STATE_DATA_IN: case SRPT_STATE_MGMT: /* * Do nothing - defer abort processing until * srpt_queue_response() is invoked. */ WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false)); break; case SRPT_STATE_NEED_DATA: /* DMA_TO_DEVICE (write) - RDMA read error. */ /* XXX(hch): this is a horrible layering violation.. */ spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); ioctx->cmd.transport_state |= CMD_T_LUN_STOP; ioctx->cmd.transport_state &= ~CMD_T_ACTIVE; spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); complete(&ioctx->cmd.transport_lun_stop_comp); break; case SRPT_STATE_CMD_RSP_SENT: /* * SRP_RSP sending failed or the SRP_RSP send completion has * not been received in time. */ srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx); spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); ioctx->cmd.transport_state |= CMD_T_LUN_STOP; spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); break; case SRPT_STATE_MGMT_RSP_SENT: srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); break; default: WARN_ON("ERROR: unexpected command state"); break; } out: return state; } /** * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion. */ static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id) { struct srpt_send_ioctx *ioctx; enum srpt_command_state state; struct se_cmd *cmd; u32 index; atomic_inc(&ch->sq_wr_avail); index = idx_from_wr_id(wr_id); ioctx = ch->ioctx_ring[index]; state = srpt_get_cmd_state(ioctx); cmd = &ioctx->cmd; WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && state != SRPT_STATE_MGMT_RSP_SENT && state != SRPT_STATE_NEED_DATA && state != SRPT_STATE_DONE); /* If SRP_RSP sending failed, undo the ch->req_lim change. */ if (state == SRPT_STATE_CMD_RSP_SENT || state == SRPT_STATE_MGMT_RSP_SENT) atomic_dec(&ch->req_lim); srpt_abort_cmd(ioctx); } /** * srpt_handle_send_comp() - Process an IB send completion notification. */ static void srpt_handle_send_comp(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx) { enum srpt_command_state state; atomic_inc(&ch->sq_wr_avail); state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT && state != SRPT_STATE_MGMT_RSP_SENT && state != SRPT_STATE_DONE)) pr_debug("state = %d\n", state); if (state != SRPT_STATE_DONE) kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); else printk(KERN_ERR "IB completion has been received too late for" " wr_id = %u.\n", ioctx->ioctx.index); } /** * srpt_handle_rdma_comp() - Process an IB RDMA completion notification. * * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping * the data that has been transferred via IB RDMA had to be postponed until the * check_stop_free() callback. None of this is necessary anymore and needs to * be cleaned up. */ static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx, enum srpt_opcode opcode) { WARN_ON(ioctx->n_rdma <= 0); atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); if (opcode == SRPT_RDMA_READ_LAST) { if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA, SRPT_STATE_DATA_IN)) target_execute_cmd(&ioctx->cmd); else printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, __LINE__, srpt_get_cmd_state(ioctx)); } else if (opcode == SRPT_RDMA_ABORT) { ioctx->rdma_aborted = true; } else { WARN(true, "unexpected opcode %d\n", opcode); } } /** * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion. */ static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx, enum srpt_opcode opcode) { struct se_cmd *cmd; enum srpt_command_state state; unsigned long flags; cmd = &ioctx->cmd; state = srpt_get_cmd_state(ioctx); switch (opcode) { case SRPT_RDMA_READ_LAST: if (ioctx->n_rdma <= 0) { printk(KERN_ERR "Received invalid RDMA read" " error completion with idx %d\n", ioctx->ioctx.index); break; } atomic_add(ioctx->n_rdma, &ch->sq_wr_avail); if (state == SRPT_STATE_NEED_DATA) srpt_abort_cmd(ioctx); else printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__, __LINE__, state); break; case SRPT_RDMA_WRITE_LAST: spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags); ioctx->cmd.transport_state |= CMD_T_LUN_STOP; spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags); break; default: printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__, __LINE__, opcode); break; } } /** * srpt_build_cmd_rsp() - Build an SRP_RSP response. * @ch: RDMA channel through which the request has been received. * @ioctx: I/O context associated with the SRP_CMD request. The response will * be built in the buffer ioctx->buf points at and hence this function will * overwrite the request data. * @tag: tag of the request for which this response is being generated. * @status: value for the STATUS field of the SRP_RSP information unit. * * Returns the size in bytes of the SRP_RSP response. * * An SRP_RSP response contains a SCSI status or service response. See also * section 6.9 in the SRP r16a document for the format of an SRP_RSP * response. See also SPC-2 for more information about sense data. */ static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx, u64 tag, int status) { struct srp_rsp *srp_rsp; const u8 *sense_data; int sense_data_len, max_sense_len; /* * The lowest bit of all SAM-3 status codes is zero (see also * paragraph 5.3 in SAM-3). */ WARN_ON(status & 1); srp_rsp = ioctx->ioctx.buf; BUG_ON(!srp_rsp); sense_data = ioctx->sense_data; sense_data_len = ioctx->cmd.scsi_sense_length; WARN_ON(sense_data_len > sizeof(ioctx->sense_data)); memset(srp_rsp, 0, sizeof *srp_rsp); srp_rsp->opcode = SRP_RSP; srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); srp_rsp->tag = tag; srp_rsp->status = status; if (sense_data_len) { BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp)); max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp); if (sense_data_len > max_sense_len) { printk(KERN_WARNING "truncated sense data from %d to %d" " bytes\n", sense_data_len, max_sense_len); sense_data_len = max_sense_len; } srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID; srp_rsp->sense_data_len = cpu_to_be32(sense_data_len); memcpy(srp_rsp + 1, sense_data, sense_data_len); } return sizeof(*srp_rsp) + sense_data_len; } /** * srpt_build_tskmgmt_rsp() - Build a task management response. * @ch: RDMA channel through which the request has been received. * @ioctx: I/O context in which the SRP_RSP response will be built. * @rsp_code: RSP_CODE that will be stored in the response. * @tag: Tag of the request for which this response is being generated. * * Returns the size in bytes of the SRP_RSP response. * * An SRP_RSP response contains a SCSI status or service response. See also * section 6.9 in the SRP r16a document for the format of an SRP_RSP * response. */ static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx, u8 rsp_code, u64 tag) { struct srp_rsp *srp_rsp; int resp_data_len; int resp_len; resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4; resp_len = sizeof(*srp_rsp) + resp_data_len; srp_rsp = ioctx->ioctx.buf; BUG_ON(!srp_rsp); memset(srp_rsp, 0, sizeof *srp_rsp); srp_rsp->opcode = SRP_RSP; srp_rsp->req_lim_delta = __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0)); srp_rsp->tag = tag; if (rsp_code != SRP_TSK_MGMT_SUCCESS) { srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID; srp_rsp->resp_data_len = cpu_to_be32(resp_data_len); srp_rsp->data[3] = rsp_code; } return resp_len; } #define NO_SUCH_LUN ((uint64_t)-1LL) /* * SCSI LUN addressing method. See also SAM-2 and the section about * eight byte LUNs. */ enum scsi_lun_addr_method { SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0, SCSI_LUN_ADDR_METHOD_FLAT = 1, SCSI_LUN_ADDR_METHOD_LUN = 2, SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3, }; /* * srpt_unpack_lun() - Convert from network LUN to linear LUN. * * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte * order (big endian) to a linear LUN. Supports three LUN addressing methods: * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40). */ static uint64_t srpt_unpack_lun(const uint8_t *lun, int len) { uint64_t res = NO_SUCH_LUN; int addressing_method; if (unlikely(len < 2)) { printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or " "more", len); goto out; } switch (len) { case 8: if ((*((__be64 *)lun) & __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0) goto out_err; break; case 4: if (*((__be16 *)&lun[2]) != 0) goto out_err; break; case 6: if (*((__be32 *)&lun[2]) != 0) goto out_err; break; case 2: break; default: goto out_err; } addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */ switch (addressing_method) { case SCSI_LUN_ADDR_METHOD_PERIPHERAL: case SCSI_LUN_ADDR_METHOD_FLAT: case SCSI_LUN_ADDR_METHOD_LUN: res = *(lun + 1) | (((*lun) & 0x3f) << 8); break; case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN: default: printk(KERN_ERR "Unimplemented LUN addressing method %u", addressing_method); break; } out: return res; out_err: printk(KERN_ERR "Support for multi-level LUNs has not yet been" " implemented"); goto out; } static int srpt_check_stop_free(struct se_cmd *cmd) { struct srpt_send_ioctx *ioctx; ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); } /** * srpt_handle_cmd() - Process SRP_CMD. */ static int srpt_handle_cmd(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx, struct srpt_send_ioctx *send_ioctx) { struct se_cmd *cmd; struct srp_cmd *srp_cmd; uint64_t unpacked_lun; u64 data_len; enum dma_data_direction dir; int ret; BUG_ON(!send_ioctx); srp_cmd = recv_ioctx->ioctx.buf; kref_get(&send_ioctx->kref); cmd = &send_ioctx->cmd; send_ioctx->tag = srp_cmd->tag; switch (srp_cmd->task_attr) { case SRP_CMD_SIMPLE_Q: cmd->sam_task_attr = MSG_SIMPLE_TAG; break; case SRP_CMD_ORDERED_Q: default: cmd->sam_task_attr = MSG_ORDERED_TAG; break; case SRP_CMD_HEAD_OF_Q: cmd->sam_task_attr = MSG_HEAD_TAG; break; case SRP_CMD_ACA: cmd->sam_task_attr = MSG_ACA_TAG; break; } ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len); if (ret) { printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n", srp_cmd->tag); cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD; kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref); goto send_sense; } cmd->data_length = data_len; cmd->data_direction = dir; unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun, sizeof(srp_cmd->lun)); if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0) { kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref); goto send_sense; } ret = target_setup_cmd_from_cdb(cmd, srp_cmd->cdb); if (ret < 0) { kref_put(&send_ioctx->kref, srpt_put_send_ioctx_kref); if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT) { srpt_queue_status(cmd); return 0; } else goto send_sense; } transport_handle_cdb_direct(cmd); return 0; send_sense: transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason, 0); return -1; } /** * srpt_rx_mgmt_fn_tag() - Process a task management function by tag. * @ch: RDMA channel of the task management request. * @fn: Task management function to perform. * @req_tag: Tag of the SRP task management request. * @mgmt_ioctx: I/O context of the task management request. * * Returns zero if the target core will process the task management * request asynchronously. * * Note: It is assumed that the initiator serializes tag-based task management * requests. */ static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag) { struct srpt_device *sdev; struct srpt_rdma_ch *ch; struct srpt_send_ioctx *target; int ret, i; ret = -EINVAL; ch = ioctx->ch; BUG_ON(!ch); BUG_ON(!ch->sport); sdev = ch->sport->sdev; BUG_ON(!sdev); spin_lock_irq(&sdev->spinlock); for (i = 0; i < ch->rq_size; ++i) { target = ch->ioctx_ring[i]; if (target->cmd.se_lun == ioctx->cmd.se_lun && target->tag == tag && srpt_get_cmd_state(target) != SRPT_STATE_DONE) { ret = 0; /* now let the target core abort &target->cmd; */ break; } } spin_unlock_irq(&sdev->spinlock); return ret; } static int srp_tmr_to_tcm(int fn) { switch (fn) { case SRP_TSK_ABORT_TASK: return TMR_ABORT_TASK; case SRP_TSK_ABORT_TASK_SET: return TMR_ABORT_TASK_SET; case SRP_TSK_CLEAR_TASK_SET: return TMR_CLEAR_TASK_SET; case SRP_TSK_LUN_RESET: return TMR_LUN_RESET; case SRP_TSK_CLEAR_ACA: return TMR_CLEAR_ACA; default: return -1; } } /** * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit. * * Returns 0 if and only if the request will be processed by the target core. * * For more information about SRP_TSK_MGMT information units, see also section * 6.7 in the SRP r16a document. */ static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx, struct srpt_send_ioctx *send_ioctx) { struct srp_tsk_mgmt *srp_tsk; struct se_cmd *cmd; uint64_t unpacked_lun; int tcm_tmr; int res; BUG_ON(!send_ioctx); srp_tsk = recv_ioctx->ioctx.buf; cmd = &send_ioctx->cmd; pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld" " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func, srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess); srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT); send_ioctx->tag = srp_tsk->tag; tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func); if (tcm_tmr < 0) { send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; send_ioctx->cmd.se_tmr_req->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED; goto process_tmr; } res = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL); if (res < 0) { send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED; goto process_tmr; } unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun, sizeof(srp_tsk->lun)); res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun); if (res) { pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun); send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION; send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST; goto process_tmr; } if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag); process_tmr: kref_get(&send_ioctx->kref); if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION)) transport_generic_handle_tmr(&send_ioctx->cmd); else transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason, 0); } /** * srpt_handle_new_iu() - Process a newly received information unit. * @ch: RDMA channel through which the information unit has been received. * @ioctx: SRPT I/O context associated with the information unit. */ static void srpt_handle_new_iu(struct srpt_rdma_ch *ch, struct srpt_recv_ioctx *recv_ioctx, struct srpt_send_ioctx *send_ioctx) { struct srp_cmd *srp_cmd; enum rdma_ch_state ch_state; BUG_ON(!ch); BUG_ON(!recv_ioctx); ib_dma_sync_single_for_cpu(ch->sport->sdev->device, recv_ioctx->ioctx.dma, srp_max_req_size, DMA_FROM_DEVICE); ch_state = srpt_get_ch_state(ch); if (unlikely(ch_state == CH_CONNECTING)) { list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); goto out; } if (unlikely(ch_state != CH_LIVE)) goto out; srp_cmd = recv_ioctx->ioctx.buf; if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) { if (!send_ioctx) send_ioctx = srpt_get_send_ioctx(ch); if (unlikely(!send_ioctx)) { list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list); goto out; } } transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess, 0, DMA_NONE, MSG_SIMPLE_TAG, send_ioctx->sense_data); switch (srp_cmd->opcode) { case SRP_CMD: srpt_handle_cmd(ch, recv_ioctx, send_ioctx); break; case SRP_TSK_MGMT: srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx); break; case SRP_I_LOGOUT: printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n"); break; case SRP_CRED_RSP: pr_debug("received SRP_CRED_RSP\n"); break; case SRP_AER_RSP: pr_debug("received SRP_AER_RSP\n"); break; case SRP_RSP: printk(KERN_ERR "Received SRP_RSP\n"); break; default: printk(KERN_ERR "received IU with unknown opcode 0x%x\n", srp_cmd->opcode); break; } srpt_post_recv(ch->sport->sdev, recv_ioctx); out: return; } static void srpt_process_rcv_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch, struct ib_wc *wc) { struct srpt_device *sdev = ch->sport->sdev; struct srpt_recv_ioctx *ioctx; u32 index; index = idx_from_wr_id(wc->wr_id); if (wc->status == IB_WC_SUCCESS) { int req_lim; req_lim = atomic_dec_return(&ch->req_lim); if (unlikely(req_lim < 0)) printk(KERN_ERR "req_lim = %d < 0\n", req_lim); ioctx = sdev->ioctx_ring[index]; srpt_handle_new_iu(ch, ioctx, NULL); } else { printk(KERN_INFO "receiving failed for idx %u with status %d\n", index, wc->status); } } /** * srpt_process_send_completion() - Process an IB send completion. * * Note: Although this has not yet been observed during tests, at least in * theory it is possible that the srpt_get_send_ioctx() call invoked by * srpt_handle_new_iu() fails. This is possible because the req_lim_delta * value in each response is set to one, and it is possible that this response * makes the initiator send a new request before the send completion for that * response has been processed. This could e.g. happen if the call to * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or * if IB retransmission causes generation of the send completion to be * delayed. Incoming information units for which srpt_get_send_ioctx() fails * are queued on cmd_wait_list. The code below processes these delayed * requests one at a time. */ static void srpt_process_send_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch, struct ib_wc *wc) { struct srpt_send_ioctx *send_ioctx; uint32_t index; enum srpt_opcode opcode; index = idx_from_wr_id(wc->wr_id); opcode = opcode_from_wr_id(wc->wr_id); send_ioctx = ch->ioctx_ring[index]; if (wc->status == IB_WC_SUCCESS) { if (opcode == SRPT_SEND) srpt_handle_send_comp(ch, send_ioctx); else { WARN_ON(opcode != SRPT_RDMA_ABORT && wc->opcode != IB_WC_RDMA_READ); srpt_handle_rdma_comp(ch, send_ioctx, opcode); } } else { if (opcode == SRPT_SEND) { printk(KERN_INFO "sending response for idx %u failed" " with status %d\n", index, wc->status); srpt_handle_send_err_comp(ch, wc->wr_id); } else if (opcode != SRPT_RDMA_MID) { printk(KERN_INFO "RDMA t %d for idx %u failed with" " status %d", opcode, index, wc->status); srpt_handle_rdma_err_comp(ch, send_ioctx, opcode); } } while (unlikely(opcode == SRPT_SEND && !list_empty(&ch->cmd_wait_list) && srpt_get_ch_state(ch) == CH_LIVE && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) { struct srpt_recv_ioctx *recv_ioctx; recv_ioctx = list_first_entry(&ch->cmd_wait_list, struct srpt_recv_ioctx, wait_list); list_del(&recv_ioctx->wait_list); srpt_handle_new_iu(ch, recv_ioctx, send_ioctx); } } static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch) { struct ib_wc *const wc = ch->wc; int i, n; WARN_ON(cq != ch->cq); ib_req_notify_cq(cq, IB_CQ_NEXT_COMP); while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) { for (i = 0; i < n; i++) { if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV) srpt_process_rcv_completion(cq, ch, &wc[i]); else srpt_process_send_completion(cq, ch, &wc[i]); } } } /** * srpt_completion() - IB completion queue callback function. * * Notes: * - It is guaranteed that a completion handler will never be invoked * concurrently on two different CPUs for the same completion queue. See also * Documentation/infiniband/core_locking.txt and the implementation of * handle_edge_irq() in kernel/irq/chip.c. * - When threaded IRQs are enabled, completion handlers are invoked in thread * context instead of interrupt context. */ static void srpt_completion(struct ib_cq *cq, void *ctx) { struct srpt_rdma_ch *ch = ctx; wake_up_interruptible(&ch->wait_queue); } static int srpt_compl_thread(void *arg) { struct srpt_rdma_ch *ch; /* Hibernation / freezing of the SRPT kernel thread is not supported. */ current->flags |= PF_NOFREEZE; ch = arg; BUG_ON(!ch); printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n", ch->sess_name, ch->thread->comm, current->pid); while (!kthread_should_stop()) { wait_event_interruptible(ch->wait_queue, (srpt_process_completion(ch->cq, ch), kthread_should_stop())); } printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n", ch->sess_name, ch->thread->comm, current->pid); return 0; } /** * srpt_create_ch_ib() - Create receive and send completion queues. */ static int srpt_create_ch_ib(struct srpt_rdma_ch *ch) { struct ib_qp_init_attr *qp_init; struct srpt_port *sport = ch->sport; struct srpt_device *sdev = sport->sdev; u32 srp_sq_size = sport->port_attrib.srp_sq_size; int ret; WARN_ON(ch->rq_size < 1); ret = -ENOMEM; qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL); if (!qp_init) goto out; ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch, ch->rq_size + srp_sq_size, 0); if (IS_ERR(ch->cq)) { ret = PTR_ERR(ch->cq); printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n", ch->rq_size + srp_sq_size, ret); goto out; } qp_init->qp_context = (void *)ch; qp_init->event_handler = (void(*)(struct ib_event *, void*))srpt_qp_event; qp_init->send_cq = ch->cq; qp_init->recv_cq = ch->cq; qp_init->srq = sdev->srq; qp_init->sq_sig_type = IB_SIGNAL_REQ_WR; qp_init->qp_type = IB_QPT_RC; qp_init->cap.max_send_wr = srp_sq_size; qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE; ch->qp = ib_create_qp(sdev->pd, qp_init); if (IS_ERR(ch->qp)) { ret = PTR_ERR(ch->qp); printk(KERN_ERR "failed to create_qp ret= %d\n", ret); goto err_destroy_cq; } atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr); pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n", __func__, ch->cq->cqe, qp_init->cap.max_send_sge, qp_init->cap.max_send_wr, ch->cm_id); ret = srpt_init_ch_qp(ch, ch->qp); if (ret) goto err_destroy_qp; init_waitqueue_head(&ch->wait_queue); pr_debug("creating thread for session %s\n", ch->sess_name); ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl"); if (IS_ERR(ch->thread)) { printk(KERN_ERR "failed to create kernel thread %ld\n", PTR_ERR(ch->thread)); ch->thread = NULL; goto err_destroy_qp; } out: kfree(qp_init); return ret; err_destroy_qp: ib_destroy_qp(ch->qp); err_destroy_cq: ib_destroy_cq(ch->cq); goto out; } static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch) { if (ch->thread) kthread_stop(ch->thread); ib_destroy_qp(ch->qp); ib_destroy_cq(ch->cq); } /** * __srpt_close_ch() - Close an RDMA channel by setting the QP error state. * * Reset the QP and make sure all resources associated with the channel will * be deallocated at an appropriate time. * * Note: The caller must hold ch->sport->sdev->spinlock. */ static void __srpt_close_ch(struct srpt_rdma_ch *ch) { struct srpt_device *sdev; enum rdma_ch_state prev_state; unsigned long flags; sdev = ch->sport->sdev; spin_lock_irqsave(&ch->spinlock, flags); prev_state = ch->state; switch (prev_state) { case CH_CONNECTING: case CH_LIVE: ch->state = CH_DISCONNECTING; break; default: break; } spin_unlock_irqrestore(&ch->spinlock, flags); switch (prev_state) { case CH_CONNECTING: ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0, NULL, 0); /* fall through */ case CH_LIVE: if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0) printk(KERN_ERR "sending CM DREQ failed.\n"); break; case CH_DISCONNECTING: break; case CH_DRAINING: case CH_RELEASING: break; } } /** * srpt_close_ch() - Close an RDMA channel. */ static void srpt_close_ch(struct srpt_rdma_ch *ch) { struct srpt_device *sdev; sdev = ch->sport->sdev; spin_lock_irq(&sdev->spinlock); __srpt_close_ch(ch); spin_unlock_irq(&sdev->spinlock); } /** * srpt_drain_channel() - Drain a channel by resetting the IB queue pair. * @cm_id: Pointer to the CM ID of the channel to be drained. * * Note: Must be called from inside srpt_cm_handler to avoid a race between * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one() * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one() * waits until all target sessions for the associated IB device have been * unregistered and target session registration involves a call to * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until * this function has finished). */ static void srpt_drain_channel(struct ib_cm_id *cm_id) { struct srpt_device *sdev; struct srpt_rdma_ch *ch; int ret; bool do_reset = false; WARN_ON_ONCE(irqs_disabled()); sdev = cm_id->context; BUG_ON(!sdev); spin_lock_irq(&sdev->spinlock); list_for_each_entry(ch, &sdev->rch_list, list) { if (ch->cm_id == cm_id) { do_reset = srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_DRAINING) || srpt_test_and_set_ch_state(ch, CH_LIVE, CH_DRAINING) || srpt_test_and_set_ch_state(ch, CH_DISCONNECTING, CH_DRAINING); break; } } spin_unlock_irq(&sdev->spinlock); if (do_reset) { ret = srpt_ch_qp_err(ch); if (ret < 0) printk(KERN_ERR "Setting queue pair in error state" " failed: %d\n", ret); } } /** * srpt_find_channel() - Look up an RDMA channel. * @cm_id: Pointer to the CM ID of the channel to be looked up. * * Return NULL if no matching RDMA channel has been found. */ static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev, struct ib_cm_id *cm_id) { struct srpt_rdma_ch *ch; bool found; WARN_ON_ONCE(irqs_disabled()); BUG_ON(!sdev); found = false; spin_lock_irq(&sdev->spinlock); list_for_each_entry(ch, &sdev->rch_list, list) { if (ch->cm_id == cm_id) { found = true; break; } } spin_unlock_irq(&sdev->spinlock); return found ? ch : NULL; } /** * srpt_release_channel() - Release channel resources. * * Schedules the actual release because: * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would * trigger a deadlock. * - It is not safe to call TCM transport_* functions from interrupt context. */ static void srpt_release_channel(struct srpt_rdma_ch *ch) { schedule_work(&ch->release_work); } static void srpt_release_channel_work(struct work_struct *w) { struct srpt_rdma_ch *ch; struct srpt_device *sdev; ch = container_of(w, struct srpt_rdma_ch, release_work); pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess, ch->release_done); sdev = ch->sport->sdev; BUG_ON(!sdev); transport_deregister_session_configfs(ch->sess); transport_deregister_session(ch->sess); ch->sess = NULL; srpt_destroy_ch_ib(ch); srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, ch->sport->sdev, ch->rq_size, ch->rsp_size, DMA_TO_DEVICE); spin_lock_irq(&sdev->spinlock); list_del(&ch->list); spin_unlock_irq(&sdev->spinlock); ib_destroy_cm_id(ch->cm_id); if (ch->release_done) complete(ch->release_done); wake_up(&sdev->ch_releaseQ); kfree(ch); } static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport, u8 i_port_id[16]) { struct srpt_node_acl *nacl; list_for_each_entry(nacl, &sport->port_acl_list, list) if (memcmp(nacl->i_port_id, i_port_id, sizeof(nacl->i_port_id)) == 0) return nacl; return NULL; } static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport, u8 i_port_id[16]) { struct srpt_node_acl *nacl; spin_lock_irq(&sport->port_acl_lock); nacl = __srpt_lookup_acl(sport, i_port_id); spin_unlock_irq(&sport->port_acl_lock); return nacl; } /** * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED. * * Ownership of the cm_id is transferred to the target session if this * functions returns zero. Otherwise the caller remains the owner of cm_id. */ static int srpt_cm_req_recv(struct ib_cm_id *cm_id, struct ib_cm_req_event_param *param, void *private_data) { struct srpt_device *sdev = cm_id->context; struct srpt_port *sport = &sdev->port[param->port - 1]; struct srp_login_req *req; struct srp_login_rsp *rsp; struct srp_login_rej *rej; struct ib_cm_rep_param *rep_param; struct srpt_rdma_ch *ch, *tmp_ch; struct srpt_node_acl *nacl; u32 it_iu_len; int i; int ret = 0; WARN_ON_ONCE(irqs_disabled()); if (WARN_ON(!sdev || !private_data)) return -EINVAL; req = (struct srp_login_req *)private_data; it_iu_len = be32_to_cpu(req->req_it_iu_len); printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx," " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d" " (guid=0x%llx:0x%llx)\n", be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]), be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]), be64_to_cpu(*(__be64 *)&req->target_port_id[0]), be64_to_cpu(*(__be64 *)&req->target_port_id[8]), it_iu_len, param->port, be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]), be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8])); rsp = kzalloc(sizeof *rsp, GFP_KERNEL); rej = kzalloc(sizeof *rej, GFP_KERNEL); rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL); if (!rsp || !rej || !rep_param) { ret = -ENOMEM; goto out; } if (it_iu_len > srp_max_req_size || it_iu_len < 64) { rej->reason = __constant_cpu_to_be32( SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE); ret = -EINVAL; printk(KERN_ERR "rejected SRP_LOGIN_REQ because its" " length (%d bytes) is out of range (%d .. %d)\n", it_iu_len, 64, srp_max_req_size); goto reject; } if (!sport->enabled) { rej->reason = __constant_cpu_to_be32( SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); ret = -EINVAL; printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port" " has not yet been enabled\n"); goto reject; } if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) { rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN; spin_lock_irq(&sdev->spinlock); list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) { if (!memcmp(ch->i_port_id, req->initiator_port_id, 16) && !memcmp(ch->t_port_id, req->target_port_id, 16) && param->port == ch->sport->port && param->listen_id == ch->sport->sdev->cm_id && ch->cm_id) { enum rdma_ch_state ch_state; ch_state = srpt_get_ch_state(ch); if (ch_state != CH_CONNECTING && ch_state != CH_LIVE) continue; /* found an existing channel */ pr_debug("Found existing channel %s" " cm_id= %p state= %d\n", ch->sess_name, ch->cm_id, ch_state); __srpt_close_ch(ch); rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_TERMINATED; } } spin_unlock_irq(&sdev->spinlock); } else rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED; if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid) || *(__be64 *)(req->target_port_id + 8) != cpu_to_be64(srpt_service_guid)) { rej->reason = __constant_cpu_to_be32( SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL); ret = -ENOMEM; printk(KERN_ERR "rejected SRP_LOGIN_REQ because it" " has an invalid target port identifier.\n"); goto reject; } ch = kzalloc(sizeof *ch, GFP_KERNEL); if (!ch) { rej->reason = __constant_cpu_to_be32( SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n"); ret = -ENOMEM; goto reject; } INIT_WORK(&ch->release_work, srpt_release_channel_work); memcpy(ch->i_port_id, req->initiator_port_id, 16); memcpy(ch->t_port_id, req->target_port_id, 16); ch->sport = &sdev->port[param->port - 1]; ch->cm_id = cm_id; /* * Avoid QUEUE_FULL conditions by limiting the number of buffers used * for the SRP protocol to the command queue size. */ ch->rq_size = SRPT_RQ_SIZE; spin_lock_init(&ch->spinlock); ch->state = CH_CONNECTING; INIT_LIST_HEAD(&ch->cmd_wait_list); ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size; ch->ioctx_ring = (struct srpt_send_ioctx **) srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size, sizeof(*ch->ioctx_ring[0]), ch->rsp_size, DMA_TO_DEVICE); if (!ch->ioctx_ring) goto free_ch; INIT_LIST_HEAD(&ch->free_list); for (i = 0; i < ch->rq_size; i++) { ch->ioctx_ring[i]->ch = ch; list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list); } ret = srpt_create_ch_ib(ch); if (ret) { rej->reason = __constant_cpu_to_be32( SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating" " a new RDMA channel failed.\n"); goto free_ring; } ret = srpt_ch_qp_rtr(ch, ch->qp); if (ret) { rej->reason = __constant_cpu_to_be32( SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling" " RTR failed (error code = %d)\n", ret); goto destroy_ib; } /* * Use the initator port identifier as the session name. */ snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx", be64_to_cpu(*(__be64 *)ch->i_port_id), be64_to_cpu(*(__be64 *)(ch->i_port_id + 8))); pr_debug("registering session %s\n", ch->sess_name); nacl = srpt_lookup_acl(sport, ch->i_port_id); if (!nacl) { printk(KERN_INFO "Rejected login because no ACL has been" " configured yet for initiator %s.\n", ch->sess_name); rej->reason = __constant_cpu_to_be32( SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED); goto destroy_ib; } ch->sess = transport_init_session(); if (IS_ERR(ch->sess)) { rej->reason = __constant_cpu_to_be32( SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES); pr_debug("Failed to create session\n"); goto deregister_session; } ch->sess->se_node_acl = &nacl->nacl; transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch); pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess, ch->sess_name, ch->cm_id); /* create srp_login_response */ rsp->opcode = SRP_LOGIN_RSP; rsp->tag = req->tag; rsp->max_it_iu_len = req->req_it_iu_len; rsp->max_ti_iu_len = req->req_it_iu_len; ch->max_ti_iu_len = it_iu_len; rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT | SRP_BUF_FORMAT_INDIRECT); rsp->req_lim_delta = cpu_to_be32(ch->rq_size); atomic_set(&ch->req_lim, ch->rq_size); atomic_set(&ch->req_lim_delta, 0); /* create cm reply */ rep_param->qp_num = ch->qp->qp_num; rep_param->private_data = (void *)rsp; rep_param->private_data_len = sizeof *rsp; rep_param->rnr_retry_count = 7; rep_param->flow_control = 1; rep_param->failover_accepted = 0; rep_param->srq = 1; rep_param->responder_resources = 4; rep_param->initiator_depth = 4; ret = ib_send_cm_rep(cm_id, rep_param); if (ret) { printk(KERN_ERR "sending SRP_LOGIN_REQ response failed" " (error code = %d)\n", ret); goto release_channel; } spin_lock_irq(&sdev->spinlock); list_add_tail(&ch->list, &sdev->rch_list); spin_unlock_irq(&sdev->spinlock); goto out; release_channel: srpt_set_ch_state(ch, CH_RELEASING); transport_deregister_session_configfs(ch->sess); deregister_session: transport_deregister_session(ch->sess); ch->sess = NULL; destroy_ib: srpt_destroy_ch_ib(ch); free_ring: srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring, ch->sport->sdev, ch->rq_size, ch->rsp_size, DMA_TO_DEVICE); free_ch: kfree(ch); reject: rej->opcode = SRP_LOGIN_REJ; rej->tag = req->tag; rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT | SRP_BUF_FORMAT_INDIRECT); ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0, (void *)rej, sizeof *rej); out: kfree(rep_param); kfree(rsp); kfree(rej); return ret; } static void srpt_cm_rej_recv(struct ib_cm_id *cm_id) { printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id); srpt_drain_channel(cm_id); } /** * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event. * * An IB_CM_RTU_RECEIVED message indicates that the connection is established * and that the recipient may begin transmitting (RTU = ready to use). */ static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id) { struct srpt_rdma_ch *ch; int ret; ch = srpt_find_channel(cm_id->context, cm_id); BUG_ON(!ch); if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) { struct srpt_recv_ioctx *ioctx, *ioctx_tmp; ret = srpt_ch_qp_rts(ch, ch->qp); list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list, wait_list) { list_del(&ioctx->wait_list); srpt_handle_new_iu(ch, ioctx, NULL); } if (ret) srpt_close_ch(ch); } } static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id) { printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id); srpt_drain_channel(cm_id); } static void srpt_cm_rep_error(struct ib_cm_id *cm_id) { printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id); srpt_drain_channel(cm_id); } /** * srpt_cm_dreq_recv() - Process reception of a DREQ message. */ static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id) { struct srpt_rdma_ch *ch; unsigned long flags; bool send_drep = false; ch = srpt_find_channel(cm_id->context, cm_id); BUG_ON(!ch); pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch)); spin_lock_irqsave(&ch->spinlock, flags); switch (ch->state) { case CH_CONNECTING: case CH_LIVE: send_drep = true; ch->state = CH_DISCONNECTING; break; case CH_DISCONNECTING: case CH_DRAINING: case CH_RELEASING: WARN(true, "unexpected channel state %d\n", ch->state); break; } spin_unlock_irqrestore(&ch->spinlock, flags); if (send_drep) { if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0) printk(KERN_ERR "Sending IB DREP failed.\n"); printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n", ch->sess_name); } } /** * srpt_cm_drep_recv() - Process reception of a DREP message. */ static void srpt_cm_drep_recv(struct ib_cm_id *cm_id) { printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n", cm_id); srpt_drain_channel(cm_id); } /** * srpt_cm_handler() - IB connection manager callback function. * * A non-zero return value will cause the caller destroy the CM ID. * * Note: srpt_cm_handler() must only return a non-zero value when transferring * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning * a non-zero value in any other case will trigger a race with the * ib_destroy_cm_id() call in srpt_release_channel(). */ static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event) { int ret; ret = 0; switch (event->event) { case IB_CM_REQ_RECEIVED: ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd, event->private_data); break; case IB_CM_REJ_RECEIVED: srpt_cm_rej_recv(cm_id); break; case IB_CM_RTU_RECEIVED: case IB_CM_USER_ESTABLISHED: srpt_cm_rtu_recv(cm_id); break; case IB_CM_DREQ_RECEIVED: srpt_cm_dreq_recv(cm_id); break; case IB_CM_DREP_RECEIVED: srpt_cm_drep_recv(cm_id); break; case IB_CM_TIMEWAIT_EXIT: srpt_cm_timewait_exit(cm_id); break; case IB_CM_REP_ERROR: srpt_cm_rep_error(cm_id); break; case IB_CM_DREQ_ERROR: printk(KERN_INFO "Received IB DREQ ERROR event.\n"); break; case IB_CM_MRA_RECEIVED: printk(KERN_INFO "Received IB MRA event\n"); break; default: printk(KERN_ERR "received unrecognized IB CM event %d\n", event->event); break; } return ret; } /** * srpt_perform_rdmas() - Perform IB RDMA. * * Returns zero upon success or a negative number upon failure. */ static int srpt_perform_rdmas(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx) { struct ib_send_wr wr; struct ib_send_wr *bad_wr; struct rdma_iu *riu; int i; int ret; int sq_wr_avail; enum dma_data_direction dir; const int n_rdma = ioctx->n_rdma; dir = ioctx->cmd.data_direction; if (dir == DMA_TO_DEVICE) { /* write */ ret = -ENOMEM; sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail); if (sq_wr_avail < 0) { printk(KERN_WARNING "IB send queue full (needed %d)\n", n_rdma); goto out; } } ioctx->rdma_aborted = false; ret = 0; riu = ioctx->rdma_ius; memset(&wr, 0, sizeof wr); for (i = 0; i < n_rdma; ++i, ++riu) { if (dir == DMA_FROM_DEVICE) { wr.opcode = IB_WR_RDMA_WRITE; wr.wr_id = encode_wr_id(i == n_rdma - 1 ? SRPT_RDMA_WRITE_LAST : SRPT_RDMA_MID, ioctx->ioctx.index); } else { wr.opcode = IB_WR_RDMA_READ; wr.wr_id = encode_wr_id(i == n_rdma - 1 ? SRPT_RDMA_READ_LAST : SRPT_RDMA_MID, ioctx->ioctx.index); } wr.next = NULL; wr.wr.rdma.remote_addr = riu->raddr; wr.wr.rdma.rkey = riu->rkey; wr.num_sge = riu->sge_cnt; wr.sg_list = riu->sge; /* only get completion event for the last rdma write */ if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE) wr.send_flags = IB_SEND_SIGNALED; ret = ib_post_send(ch->qp, &wr, &bad_wr); if (ret) break; } if (ret) printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d", __func__, __LINE__, ret, i, n_rdma); if (ret && i > 0) { wr.num_sge = 0; wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index); wr.send_flags = IB_SEND_SIGNALED; while (ch->state == CH_LIVE && ib_post_send(ch->qp, &wr, &bad_wr) != 0) { printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]", ioctx->ioctx.index); msleep(1000); } while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) { printk(KERN_INFO "Waiting until RDMA abort finished [%d]", ioctx->ioctx.index); msleep(1000); } } out: if (unlikely(dir == DMA_TO_DEVICE && ret < 0)) atomic_add(n_rdma, &ch->sq_wr_avail); return ret; } /** * srpt_xfer_data() - Start data transfer from initiator to target. */ static int srpt_xfer_data(struct srpt_rdma_ch *ch, struct srpt_send_ioctx *ioctx) { int ret; ret = srpt_map_sg_to_ib_sge(ch, ioctx); if (ret) { printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret); goto out; } ret = srpt_perform_rdmas(ch, ioctx); if (ret) { if (ret == -EAGAIN || ret == -ENOMEM) printk(KERN_INFO "%s[%d] queue full -- ret=%d\n", __func__, __LINE__, ret); else printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n", __func__, __LINE__, ret); goto out_unmap; } out: return ret; out_unmap: srpt_unmap_sg_to_ib_sge(ch, ioctx); goto out; } static int srpt_write_pending_status(struct se_cmd *se_cmd) { struct srpt_send_ioctx *ioctx; ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA; } /* * srpt_write_pending() - Start data transfer from initiator to target (write). */ static int srpt_write_pending(struct se_cmd *se_cmd) { struct srpt_rdma_ch *ch; struct srpt_send_ioctx *ioctx; enum srpt_command_state new_state; enum rdma_ch_state ch_state; int ret; ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA); WARN_ON(new_state == SRPT_STATE_DONE); ch = ioctx->ch; BUG_ON(!ch); ch_state = srpt_get_ch_state(ch); switch (ch_state) { case CH_CONNECTING: WARN(true, "unexpected channel state %d\n", ch_state); ret = -EINVAL; goto out; case CH_LIVE: break; case CH_DISCONNECTING: case CH_DRAINING: case CH_RELEASING: pr_debug("cmd with tag %lld: channel disconnecting\n", ioctx->tag); srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN); ret = -EINVAL; goto out; } ret = srpt_xfer_data(ch, ioctx); out: return ret; } static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status) { switch (tcm_mgmt_status) { case TMR_FUNCTION_COMPLETE: return SRP_TSK_MGMT_SUCCESS; case TMR_FUNCTION_REJECTED: return SRP_TSK_MGMT_FUNC_NOT_SUPP; } return SRP_TSK_MGMT_FAILED; } /** * srpt_queue_response() - Transmits the response to a SCSI command. * * Callback function called by the TCM core. Must not block since it can be * invoked on the context of the IB completion handler. */ static int srpt_queue_response(struct se_cmd *cmd) { struct srpt_rdma_ch *ch; struct srpt_send_ioctx *ioctx; enum srpt_command_state state; unsigned long flags; int ret; enum dma_data_direction dir; int resp_len; u8 srp_tm_status; ret = 0; ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); ch = ioctx->ch; BUG_ON(!ch); spin_lock_irqsave(&ioctx->spinlock, flags); state = ioctx->state; switch (state) { case SRPT_STATE_NEW: case SRPT_STATE_DATA_IN: ioctx->state = SRPT_STATE_CMD_RSP_SENT; break; case SRPT_STATE_MGMT: ioctx->state = SRPT_STATE_MGMT_RSP_SENT; break; default: WARN(true, "ch %p; cmd %d: unexpected command state %d\n", ch, ioctx->ioctx.index, ioctx->state); break; } spin_unlock_irqrestore(&ioctx->spinlock, flags); if (unlikely(transport_check_aborted_status(&ioctx->cmd, false) || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) { atomic_inc(&ch->req_lim_delta); srpt_abort_cmd(ioctx); goto out; } dir = ioctx->cmd.data_direction; /* For read commands, transfer the data to the initiator. */ if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length && !ioctx->queue_status_only) { ret = srpt_xfer_data(ch, ioctx); if (ret) { printk(KERN_ERR "xfer_data failed for tag %llu\n", ioctx->tag); goto out; } } if (state != SRPT_STATE_MGMT) resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag, cmd->scsi_status); else { srp_tm_status = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response); resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status, ioctx->tag); } ret = srpt_post_send(ch, ioctx, resp_len); if (ret) { printk(KERN_ERR "sending cmd response failed for tag %llu\n", ioctx->tag); srpt_unmap_sg_to_ib_sge(ch, ioctx); srpt_set_cmd_state(ioctx, SRPT_STATE_DONE); kref_put(&ioctx->kref, srpt_put_send_ioctx_kref); } out: return ret; } static int srpt_queue_status(struct se_cmd *cmd) { struct srpt_send_ioctx *ioctx; ioctx = container_of(cmd, struct srpt_send_ioctx, cmd); BUG_ON(ioctx->sense_data != cmd->sense_buffer); if (cmd->se_cmd_flags & (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE)) WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION); ioctx->queue_status_only = true; return srpt_queue_response(cmd); } static void srpt_refresh_port_work(struct work_struct *work) { struct srpt_port *sport = container_of(work, struct srpt_port, work); srpt_refresh_port(sport); } static int srpt_ch_list_empty(struct srpt_device *sdev) { int res; spin_lock_irq(&sdev->spinlock); res = list_empty(&sdev->rch_list); spin_unlock_irq(&sdev->spinlock); return res; } /** * srpt_release_sdev() - Free the channel resources associated with a target. */ static int srpt_release_sdev(struct srpt_device *sdev) { struct srpt_rdma_ch *ch, *tmp_ch; int res; WARN_ON_ONCE(irqs_disabled()); BUG_ON(!sdev); spin_lock_irq(&sdev->spinlock); list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) __srpt_close_ch(ch); spin_unlock_irq(&sdev->spinlock); res = wait_event_interruptible(sdev->ch_releaseQ, srpt_ch_list_empty(sdev)); if (res) printk(KERN_ERR "%s: interrupted.\n", __func__); return 0; } static struct srpt_port *__srpt_lookup_port(const char *name) { struct ib_device *dev; struct srpt_device *sdev; struct srpt_port *sport; int i; list_for_each_entry(sdev, &srpt_dev_list, list) { dev = sdev->device; if (!dev) continue; for (i = 0; i < dev->phys_port_cnt; i++) { sport = &sdev->port[i]; if (!strcmp(sport->port_guid, name)) return sport; } } return NULL; } static struct srpt_port *srpt_lookup_port(const char *name) { struct srpt_port *sport; spin_lock(&srpt_dev_lock); sport = __srpt_lookup_port(name); spin_unlock(&srpt_dev_lock); return sport; } /** * srpt_add_one() - Infiniband device addition callback function. */ static void srpt_add_one(struct ib_device *device) { struct srpt_device *sdev; struct srpt_port *sport; struct ib_srq_init_attr srq_attr; int i; pr_debug("device = %p, device->dma_ops = %p\n", device, device->dma_ops); sdev = kzalloc(sizeof *sdev, GFP_KERNEL); if (!sdev) goto err; sdev->device = device; INIT_LIST_HEAD(&sdev->rch_list); init_waitqueue_head(&sdev->ch_releaseQ); spin_lock_init(&sdev->spinlock); if (ib_query_device(device, &sdev->dev_attr)) goto free_dev; sdev->pd = ib_alloc_pd(device); if (IS_ERR(sdev->pd)) goto free_dev; sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE); if (IS_ERR(sdev->mr)) goto err_pd; sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr); srq_attr.event_handler = srpt_srq_event; srq_attr.srq_context = (void *)sdev; srq_attr.attr.max_wr = sdev->srq_size; srq_attr.attr.max_sge = 1; srq_attr.attr.srq_limit = 0; srq_attr.srq_type = IB_SRQT_BASIC; sdev->srq = ib_create_srq(sdev->pd, &srq_attr); if (IS_ERR(sdev->srq)) goto err_mr; pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n", __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr, device->name); if (!srpt_service_guid) srpt_service_guid = be64_to_cpu(device->node_guid); sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev); if (IS_ERR(sdev->cm_id)) goto err_srq; /* print out target login information */ pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx," "pkey=ffff,service_id=%016llx\n", srpt_service_guid, srpt_service_guid, srpt_service_guid); /* * We do not have a consistent service_id (ie. also id_ext of target_id) * to identify this target. We currently use the guid of the first HCA * in the system as service_id; therefore, the target_id will change * if this HCA is gone bad and replaced by different HCA */ if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL)) goto err_cm; INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device, srpt_event_handler); if (ib_register_event_handler(&sdev->event_handler)) goto err_cm; sdev->ioctx_ring = (struct srpt_recv_ioctx **) srpt_alloc_ioctx_ring(sdev, sdev->srq_size, sizeof(*sdev->ioctx_ring[0]), srp_max_req_size, DMA_FROM_DEVICE); if (!sdev->ioctx_ring) goto err_event; for (i = 0; i < sdev->srq_size; ++i) srpt_post_recv(sdev, sdev->ioctx_ring[i]); WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port)); for (i = 1; i <= sdev->device->phys_port_cnt; i++) { sport = &sdev->port[i - 1]; sport->sdev = sdev; sport->port = i; sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE; sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE; sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE; INIT_WORK(&sport->work, srpt_refresh_port_work); INIT_LIST_HEAD(&sport->port_acl_list); spin_lock_init(&sport->port_acl_lock); if (srpt_refresh_port(sport)) { printk(KERN_ERR "MAD registration failed for %s-%d.\n", srpt_sdev_name(sdev), i); goto err_ring; } snprintf(sport->port_guid, sizeof(sport->port_guid), "0x%016llx%016llx", be64_to_cpu(sport->gid.global.subnet_prefix), be64_to_cpu(sport->gid.global.interface_id)); } spin_lock(&srpt_dev_lock); list_add_tail(&sdev->list, &srpt_dev_list); spin_unlock(&srpt_dev_lock); out: ib_set_client_data(device, &srpt_client, sdev); pr_debug("added %s.\n", device->name); return; err_ring: srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); err_event: ib_unregister_event_handler(&sdev->event_handler); err_cm: ib_destroy_cm_id(sdev->cm_id); err_srq: ib_destroy_srq(sdev->srq); err_mr: ib_dereg_mr(sdev->mr); err_pd: ib_dealloc_pd(sdev->pd); free_dev: kfree(sdev); err: sdev = NULL; printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name); goto out; } /** * srpt_remove_one() - InfiniBand device removal callback function. */ static void srpt_remove_one(struct ib_device *device) { struct srpt_device *sdev; int i; sdev = ib_get_client_data(device, &srpt_client); if (!sdev) { printk(KERN_INFO "%s(%s): nothing to do.\n", __func__, device->name); return; } srpt_unregister_mad_agent(sdev); ib_unregister_event_handler(&sdev->event_handler); /* Cancel any work queued by the just unregistered IB event handler. */ for (i = 0; i < sdev->device->phys_port_cnt; i++) cancel_work_sync(&sdev->port[i].work); ib_destroy_cm_id(sdev->cm_id); /* * Unregistering a target must happen after destroying sdev->cm_id * such that no new SRP_LOGIN_REQ information units can arrive while * destroying the target. */ spin_lock(&srpt_dev_lock); list_del(&sdev->list); spin_unlock(&srpt_dev_lock); srpt_release_sdev(sdev); ib_destroy_srq(sdev->srq); ib_dereg_mr(sdev->mr); ib_dealloc_pd(sdev->pd); srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev, sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE); sdev->ioctx_ring = NULL; kfree(sdev); } static struct ib_client srpt_client = { .name = DRV_NAME, .add = srpt_add_one, .remove = srpt_remove_one }; static int srpt_check_true(struct se_portal_group *se_tpg) { return 1; } static int srpt_check_false(struct se_portal_group *se_tpg) { return 0; } static char *srpt_get_fabric_name(void) { return "srpt"; } static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg) { return SCSI_TRANSPORTID_PROTOCOLID_SRP; } static char *srpt_get_fabric_wwn(struct se_portal_group *tpg) { struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); return sport->port_guid; } static u16 srpt_get_tag(struct se_portal_group *tpg) { return 1; } static u32 srpt_get_default_depth(struct se_portal_group *se_tpg) { return 1; } static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg, struct se_node_acl *se_nacl, struct t10_pr_registration *pr_reg, int *format_code, unsigned char *buf) { struct srpt_node_acl *nacl; struct spc_rdma_transport_id *tr_id; nacl = container_of(se_nacl, struct srpt_node_acl, nacl); tr_id = (void *)buf; tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP; memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id)); return sizeof(*tr_id); } static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg, struct se_node_acl *se_nacl, struct t10_pr_registration *pr_reg, int *format_code) { *format_code = 0; return sizeof(struct spc_rdma_transport_id); } static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg, const char *buf, u32 *out_tid_len, char **port_nexus_ptr) { struct spc_rdma_transport_id *tr_id; *port_nexus_ptr = NULL; *out_tid_len = sizeof(struct spc_rdma_transport_id); tr_id = (void *)buf; return (char *)tr_id->i_port_id; } static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg) { struct srpt_node_acl *nacl; nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL); if (!nacl) { printk(KERN_ERR "Unable to allocate struct srpt_node_acl\n"); return NULL; } return &nacl->nacl; } static void srpt_release_fabric_acl(struct se_portal_group *se_tpg, struct se_node_acl *se_nacl) { struct srpt_node_acl *nacl; nacl = container_of(se_nacl, struct srpt_node_acl, nacl); kfree(nacl); } static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg) { return 1; } static void srpt_release_cmd(struct se_cmd *se_cmd) { } /** * srpt_shutdown_session() - Whether or not a session may be shut down. */ static int srpt_shutdown_session(struct se_session *se_sess) { return true; } /** * srpt_close_session() - Forcibly close a session. * * Callback function invoked by the TCM core to clean up sessions associated * with a node ACL when the user invokes * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id */ static void srpt_close_session(struct se_session *se_sess) { DECLARE_COMPLETION_ONSTACK(release_done); struct srpt_rdma_ch *ch; struct srpt_device *sdev; int res; ch = se_sess->fabric_sess_ptr; WARN_ON(ch->sess != se_sess); pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch)); sdev = ch->sport->sdev; spin_lock_irq(&sdev->spinlock); BUG_ON(ch->release_done); ch->release_done = &release_done; __srpt_close_ch(ch); spin_unlock_irq(&sdev->spinlock); res = wait_for_completion_timeout(&release_done, 60 * HZ); WARN_ON(res <= 0); } /** * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB). * * A quote from RFC 4455 (SCSI-MIB) about this MIB object: * This object represents an arbitrary integer used to uniquely identify a * particular attached remote initiator port to a particular SCSI target port * within a particular SCSI target device within a particular SCSI instance. */ static u32 srpt_sess_get_index(struct se_session *se_sess) { return 0; } static void srpt_set_default_node_attrs(struct se_node_acl *nacl) { } static u32 srpt_get_task_tag(struct se_cmd *se_cmd) { struct srpt_send_ioctx *ioctx; ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); return ioctx->tag; } /* Note: only used from inside debug printk's by the TCM core. */ static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd) { struct srpt_send_ioctx *ioctx; ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd); return srpt_get_cmd_state(ioctx); } static u16 srpt_set_fabric_sense_len(struct se_cmd *cmd, u32 sense_length) { return 0; } static u16 srpt_get_fabric_sense_len(void) { return 0; } /** * srpt_parse_i_port_id() - Parse an initiator port ID. * @name: ASCII representation of a 128-bit initiator port ID. * @i_port_id: Binary 128-bit port ID. */ static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name) { const char *p; unsigned len, count, leading_zero_bytes; int ret, rc; p = name; if (strnicmp(p, "0x", 2) == 0) p += 2; ret = -EINVAL; len = strlen(p); if (len % 2) goto out; count = min(len / 2, 16U); leading_zero_bytes = 16 - count; memset(i_port_id, 0, leading_zero_bytes); rc = hex2bin(i_port_id + leading_zero_bytes, p, count); if (rc < 0) pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc); ret = 0; out: return ret; } /* * configfs callback function invoked for * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id */ static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg, struct config_group *group, const char *name) { struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); struct se_node_acl *se_nacl, *se_nacl_new; struct srpt_node_acl *nacl; int ret = 0; u32 nexus_depth = 1; u8 i_port_id[16]; if (srpt_parse_i_port_id(i_port_id, name) < 0) { printk(KERN_ERR "invalid initiator port ID %s\n", name); ret = -EINVAL; goto err; } se_nacl_new = srpt_alloc_fabric_acl(tpg); if (!se_nacl_new) { ret = -ENOMEM; goto err; } /* * nacl_new may be released by core_tpg_add_initiator_node_acl() * when converting a node ACL from demo mode to explict */ se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name, nexus_depth); if (IS_ERR(se_nacl)) { ret = PTR_ERR(se_nacl); goto err; } /* Locate our struct srpt_node_acl and set sdev and i_port_id. */ nacl = container_of(se_nacl, struct srpt_node_acl, nacl); memcpy(&nacl->i_port_id[0], &i_port_id[0], 16); nacl->sport = sport; spin_lock_irq(&sport->port_acl_lock); list_add_tail(&nacl->list, &sport->port_acl_list); spin_unlock_irq(&sport->port_acl_lock); return se_nacl; err: return ERR_PTR(ret); } /* * configfs callback function invoked for * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id */ static void srpt_drop_nodeacl(struct se_node_acl *se_nacl) { struct srpt_node_acl *nacl; struct srpt_device *sdev; struct srpt_port *sport; nacl = container_of(se_nacl, struct srpt_node_acl, nacl); sport = nacl->sport; sdev = sport->sdev; spin_lock_irq(&sport->port_acl_lock); list_del(&nacl->list); spin_unlock_irq(&sport->port_acl_lock); core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1); srpt_release_fabric_acl(NULL, se_nacl); } static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size( struct se_portal_group *se_tpg, char *page) { struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size); } static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size( struct se_portal_group *se_tpg, const char *page, size_t count) { struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); unsigned long val; int ret; ret = strict_strtoul(page, 0, &val); if (ret < 0) { pr_err("strict_strtoul() failed with ret: %d\n", ret); return -EINVAL; } if (val > MAX_SRPT_RDMA_SIZE) { pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val, MAX_SRPT_RDMA_SIZE); return -EINVAL; } if (val < DEFAULT_MAX_RDMA_SIZE) { pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n", val, DEFAULT_MAX_RDMA_SIZE); return -EINVAL; } sport->port_attrib.srp_max_rdma_size = val; return count; } TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR); static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size( struct se_portal_group *se_tpg, char *page) { struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size); } static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size( struct se_portal_group *se_tpg, const char *page, size_t count) { struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); unsigned long val; int ret; ret = strict_strtoul(page, 0, &val); if (ret < 0) { pr_err("strict_strtoul() failed with ret: %d\n", ret); return -EINVAL; } if (val > MAX_SRPT_RSP_SIZE) { pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val, MAX_SRPT_RSP_SIZE); return -EINVAL; } if (val < MIN_MAX_RSP_SIZE) { pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val, MIN_MAX_RSP_SIZE); return -EINVAL; } sport->port_attrib.srp_max_rsp_size = val; return count; } TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR); static ssize_t srpt_tpg_attrib_show_srp_sq_size( struct se_portal_group *se_tpg, char *page) { struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size); } static ssize_t srpt_tpg_attrib_store_srp_sq_size( struct se_portal_group *se_tpg, const char *page, size_t count) { struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); unsigned long val; int ret; ret = strict_strtoul(page, 0, &val); if (ret < 0) { pr_err("strict_strtoul() failed with ret: %d\n", ret); return -EINVAL; } if (val > MAX_SRPT_SRQ_SIZE) { pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val, MAX_SRPT_SRQ_SIZE); return -EINVAL; } if (val < MIN_SRPT_SRQ_SIZE) { pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val, MIN_SRPT_SRQ_SIZE); return -EINVAL; } sport->port_attrib.srp_sq_size = val; return count; } TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR); static struct configfs_attribute *srpt_tpg_attrib_attrs[] = { &srpt_tpg_attrib_srp_max_rdma_size.attr, &srpt_tpg_attrib_srp_max_rsp_size.attr, &srpt_tpg_attrib_srp_sq_size.attr, NULL, }; static ssize_t srpt_tpg_show_enable( struct se_portal_group *se_tpg, char *page) { struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0); } static ssize_t srpt_tpg_store_enable( struct se_portal_group *se_tpg, const char *page, size_t count) { struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1); unsigned long tmp; int ret; ret = strict_strtoul(page, 0, &tmp); if (ret < 0) { printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n"); return -EINVAL; } if ((tmp != 0) && (tmp != 1)) { printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp); return -EINVAL; } if (tmp == 1) sport->enabled = true; else sport->enabled = false; return count; } TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR); static struct configfs_attribute *srpt_tpg_attrs[] = { &srpt_tpg_enable.attr, NULL, }; /** * configfs callback invoked for * mkdir /sys/kernel/config/target/$driver/$port/$tpg */ static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn, struct config_group *group, const char *name) { struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); int res; /* Initialize sport->port_wwn and sport->port_tpg_1 */ res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn, &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL); if (res) return ERR_PTR(res); return &sport->port_tpg_1; } /** * configfs callback invoked for * rmdir /sys/kernel/config/target/$driver/$port/$tpg */ static void srpt_drop_tpg(struct se_portal_group *tpg) { struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1); sport->enabled = false; core_tpg_deregister(&sport->port_tpg_1); } /** * configfs callback invoked for * mkdir /sys/kernel/config/target/$driver/$port */ static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf, struct config_group *group, const char *name) { struct srpt_port *sport; int ret; sport = srpt_lookup_port(name); pr_debug("make_tport(%s)\n", name); ret = -EINVAL; if (!sport) goto err; return &sport->port_wwn; err: return ERR_PTR(ret); } /** * configfs callback invoked for * rmdir /sys/kernel/config/target/$driver/$port */ static void srpt_drop_tport(struct se_wwn *wwn) { struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn); pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item)); } static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf, char *buf) { return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION); } TF_WWN_ATTR_RO(srpt, version); static struct configfs_attribute *srpt_wwn_attrs[] = { &srpt_wwn_version.attr, NULL, }; static struct target_core_fabric_ops srpt_template = { .get_fabric_name = srpt_get_fabric_name, .get_fabric_proto_ident = srpt_get_fabric_proto_ident, .tpg_get_wwn = srpt_get_fabric_wwn, .tpg_get_tag = srpt_get_tag, .tpg_get_default_depth = srpt_get_default_depth, .tpg_get_pr_transport_id = srpt_get_pr_transport_id, .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len, .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id, .tpg_check_demo_mode = srpt_check_false, .tpg_check_demo_mode_cache = srpt_check_true, .tpg_check_demo_mode_write_protect = srpt_check_true, .tpg_check_prod_mode_write_protect = srpt_check_false, .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl, .tpg_release_fabric_acl = srpt_release_fabric_acl, .tpg_get_inst_index = srpt_tpg_get_inst_index, .release_cmd = srpt_release_cmd, .check_stop_free = srpt_check_stop_free, .shutdown_session = srpt_shutdown_session, .close_session = srpt_close_session, .sess_get_index = srpt_sess_get_index, .sess_get_initiator_sid = NULL, .write_pending = srpt_write_pending, .write_pending_status = srpt_write_pending_status, .set_default_node_attributes = srpt_set_default_node_attrs, .get_task_tag = srpt_get_task_tag, .get_cmd_state = srpt_get_tcm_cmd_state, .queue_data_in = srpt_queue_response, .queue_status = srpt_queue_status, .queue_tm_rsp = srpt_queue_response, .get_fabric_sense_len = srpt_get_fabric_sense_len, .set_fabric_sense_len = srpt_set_fabric_sense_len, /* * Setup function pointers for generic logic in * target_core_fabric_configfs.c */ .fabric_make_wwn = srpt_make_tport, .fabric_drop_wwn = srpt_drop_tport, .fabric_make_tpg = srpt_make_tpg, .fabric_drop_tpg = srpt_drop_tpg, .fabric_post_link = NULL, .fabric_pre_unlink = NULL, .fabric_make_np = NULL, .fabric_drop_np = NULL, .fabric_make_nodeacl = srpt_make_nodeacl, .fabric_drop_nodeacl = srpt_drop_nodeacl, }; /** * srpt_init_module() - Kernel module initialization. * * Note: Since ib_register_client() registers callback functions, and since at * least one of these callback functions (srpt_add_one()) calls target core * functions, this driver must be registered with the target core before * ib_register_client() is called. */ static int __init srpt_init_module(void) { int ret; ret = -EINVAL; if (srp_max_req_size < MIN_MAX_REQ_SIZE) { printk(KERN_ERR "invalid value %d for kernel module parameter" " srp_max_req_size -- must be at least %d.\n", srp_max_req_size, MIN_MAX_REQ_SIZE); goto out; } if (srpt_srq_size < MIN_SRPT_SRQ_SIZE || srpt_srq_size > MAX_SRPT_SRQ_SIZE) { printk(KERN_ERR "invalid value %d for kernel module parameter" " srpt_srq_size -- must be in the range [%d..%d].\n", srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE); goto out; } srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt"); if (IS_ERR(srpt_target)) { printk(KERN_ERR "couldn't register\n"); ret = PTR_ERR(srpt_target); goto out; } srpt_target->tf_ops = srpt_template; /* * Set up default attribute lists. */ srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs; srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs; srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs; srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL; srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL; srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL; srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL; srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL; srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL; ret = target_fabric_configfs_register(srpt_target); if (ret < 0) { printk(KERN_ERR "couldn't register\n"); goto out_free_target; } ret = ib_register_client(&srpt_client); if (ret) { printk(KERN_ERR "couldn't register IB client\n"); goto out_unregister_target; } return 0; out_unregister_target: target_fabric_configfs_deregister(srpt_target); srpt_target = NULL; out_free_target: if (srpt_target) target_fabric_configfs_free(srpt_target); out: return ret; } static void __exit srpt_cleanup_module(void) { ib_unregister_client(&srpt_client); target_fabric_configfs_deregister(srpt_target); srpt_target = NULL; } module_init(srpt_init_module); module_exit(srpt_cleanup_module);