/* * Copyright (c) 2011-2016 Synaptics Incorporated * Copyright (c) 2011 Unixphere * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 as published by * the Free Software Foundation. */ #include #include #include #include #include #include #include "rmi_driver.h" #define RMI_PRODUCT_ID_LENGTH 10 #define RMI_PRODUCT_INFO_LENGTH 2 #define RMI_DATE_CODE_LENGTH 3 #define PRODUCT_ID_OFFSET 0x10 #define PRODUCT_INFO_OFFSET 0x1E /* Force a firmware reset of the sensor */ #define RMI_F01_CMD_DEVICE_RESET 1 /* Various F01_RMI_QueryX bits */ #define RMI_F01_QRY1_CUSTOM_MAP BIT(0) #define RMI_F01_QRY1_NON_COMPLIANT BIT(1) #define RMI_F01_QRY1_HAS_LTS BIT(2) #define RMI_F01_QRY1_HAS_SENSOR_ID BIT(3) #define RMI_F01_QRY1_HAS_CHARGER_INP BIT(4) #define RMI_F01_QRY1_HAS_ADJ_DOZE BIT(5) #define RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF BIT(6) #define RMI_F01_QRY1_HAS_QUERY42 BIT(7) #define RMI_F01_QRY5_YEAR_MASK 0x1f #define RMI_F01_QRY6_MONTH_MASK 0x0f #define RMI_F01_QRY7_DAY_MASK 0x1f #define RMI_F01_QRY2_PRODINFO_MASK 0x7f #define RMI_F01_BASIC_QUERY_LEN 21 /* From Query 00 through 20 */ struct f01_basic_properties { u8 manufacturer_id; bool has_lts; bool has_adjustable_doze; bool has_adjustable_doze_holdoff; char dom[11]; /* YYYY/MM/DD + '\0' */ u8 product_id[RMI_PRODUCT_ID_LENGTH + 1]; u16 productinfo; u32 firmware_id; u32 package_id; }; /* F01 device status bits */ /* Most recent device status event */ #define RMI_F01_STATUS_CODE(status) ((status) & 0x0f) /* The device has lost its configuration for some reason. */ #define RMI_F01_STATUS_UNCONFIGURED(status) (!!((status) & 0x80)) /* The device is in bootloader mode */ #define RMI_F01_STATUS_BOOTLOADER(status) ((status) & 0x40) /* Control register bits */ /* * Sleep mode controls power management on the device and affects all * functions of the device. */ #define RMI_F01_CTRL0_SLEEP_MODE_MASK 0x03 #define RMI_SLEEP_MODE_NORMAL 0x00 #define RMI_SLEEP_MODE_SENSOR_SLEEP 0x01 #define RMI_SLEEP_MODE_RESERVED0 0x02 #define RMI_SLEEP_MODE_RESERVED1 0x03 /* * This bit disables whatever sleep mode may be selected by the sleep_mode * field and forces the device to run at full power without sleeping. */ #define RMI_F01_CTRL0_NOSLEEP_BIT BIT(2) /* * When this bit is set, the touch controller employs a noise-filtering * algorithm designed for use with a connected battery charger. */ #define RMI_F01_CTRL0_CHARGER_BIT BIT(5) /* * Sets the report rate for the device. The effect of this setting is * highly product dependent. Check the spec sheet for your particular * touch sensor. */ #define RMI_F01_CTRL0_REPORTRATE_BIT BIT(6) /* * Written by the host as an indicator that the device has been * successfully configured. */ #define RMI_F01_CTRL0_CONFIGURED_BIT BIT(7) /** * @ctrl0 - see the bit definitions above. * @doze_interval - controls the interval between checks for finger presence * when the touch sensor is in doze mode, in units of 10ms. * @wakeup_threshold - controls the capacitance threshold at which the touch * sensor will decide to wake up from that low power state. * @doze_holdoff - controls how long the touch sensor waits after the last * finger lifts before entering the doze state, in units of 100ms. */ struct f01_device_control { u8 ctrl0; u8 doze_interval; u8 wakeup_threshold; u8 doze_holdoff; }; struct f01_data { struct f01_basic_properties properties; struct f01_device_control device_control; u16 doze_interval_addr; u16 wakeup_threshold_addr; u16 doze_holdoff_addr; bool suspended; bool old_nosleep; unsigned int num_of_irq_regs; }; static int rmi_f01_read_properties(struct rmi_device *rmi_dev, u16 query_base_addr, struct f01_basic_properties *props) { u8 queries[RMI_F01_BASIC_QUERY_LEN]; int ret; int query_offset = query_base_addr; bool has_ds4_queries = false; bool has_query42 = false; bool has_sensor_id = false; bool has_package_id_query = false; bool has_build_id_query = false; u16 prod_info_addr; u8 ds4_query_len; ret = rmi_read_block(rmi_dev, query_offset, queries, RMI_F01_BASIC_QUERY_LEN); if (ret) { dev_err(&rmi_dev->dev, "Failed to read device query registers: %d\n", ret); return ret; } prod_info_addr = query_offset + 17; query_offset += RMI_F01_BASIC_QUERY_LEN; /* Now parse what we got */ props->manufacturer_id = queries[0]; props->has_lts = queries[1] & RMI_F01_QRY1_HAS_LTS; props->has_adjustable_doze = queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE; props->has_adjustable_doze_holdoff = queries[1] & RMI_F01_QRY1_HAS_ADJ_DOZE_HOFF; has_query42 = queries[1] & RMI_F01_QRY1_HAS_QUERY42; has_sensor_id = queries[1] & RMI_F01_QRY1_HAS_SENSOR_ID; snprintf(props->dom, sizeof(props->dom), "20%02d/%02d/%02d", queries[5] & RMI_F01_QRY5_YEAR_MASK, queries[6] & RMI_F01_QRY6_MONTH_MASK, queries[7] & RMI_F01_QRY7_DAY_MASK); memcpy(props->product_id, &queries[11], RMI_PRODUCT_ID_LENGTH); props->product_id[RMI_PRODUCT_ID_LENGTH] = '\0'; props->productinfo = ((queries[2] & RMI_F01_QRY2_PRODINFO_MASK) << 7) | (queries[3] & RMI_F01_QRY2_PRODINFO_MASK); if (has_sensor_id) query_offset++; if (has_query42) { ret = rmi_read(rmi_dev, query_offset, queries); if (ret) { dev_err(&rmi_dev->dev, "Failed to read query 42 register: %d\n", ret); return ret; } has_ds4_queries = !!(queries[0] & BIT(0)); query_offset++; } if (has_ds4_queries) { ret = rmi_read(rmi_dev, query_offset, &ds4_query_len); if (ret) { dev_err(&rmi_dev->dev, "Failed to read DS4 queries length: %d\n", ret); return ret; } query_offset++; if (ds4_query_len > 0) { ret = rmi_read(rmi_dev, query_offset, queries); if (ret) { dev_err(&rmi_dev->dev, "Failed to read DS4 queries: %d\n", ret); return ret; } has_package_id_query = !!(queries[0] & BIT(0)); has_build_id_query = !!(queries[0] & BIT(1)); } if (has_package_id_query) { ret = rmi_read_block(rmi_dev, prod_info_addr, queries, sizeof(__le64)); if (ret) { dev_err(&rmi_dev->dev, "Failed to read package info: %d\n", ret); return ret; } props->package_id = get_unaligned_le64(queries); prod_info_addr++; } if (has_build_id_query) { ret = rmi_read_block(rmi_dev, prod_info_addr, queries, 3); if (ret) { dev_err(&rmi_dev->dev, "Failed to read product info: %d\n", ret); return ret; } props->firmware_id = queries[1] << 8 | queries[0]; props->firmware_id += queries[2] * 65536; } } return 0; } const char *rmi_f01_get_product_ID(struct rmi_function *fn) { struct f01_data *f01 = dev_get_drvdata(&fn->dev); return f01->properties.product_id; } static ssize_t rmi_driver_manufacturer_id_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct rmi_driver_data *data = dev_get_drvdata(dev); struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); return scnprintf(buf, PAGE_SIZE, "%d\n", f01->properties.manufacturer_id); } static DEVICE_ATTR(manufacturer_id, 0444, rmi_driver_manufacturer_id_show, NULL); static ssize_t rmi_driver_dom_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct rmi_driver_data *data = dev_get_drvdata(dev); struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.dom); } static DEVICE_ATTR(date_of_manufacture, 0444, rmi_driver_dom_show, NULL); static ssize_t rmi_driver_product_id_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct rmi_driver_data *data = dev_get_drvdata(dev); struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); return scnprintf(buf, PAGE_SIZE, "%s\n", f01->properties.product_id); } static DEVICE_ATTR(product_id, 0444, rmi_driver_product_id_show, NULL); static ssize_t rmi_driver_firmware_id_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct rmi_driver_data *data = dev_get_drvdata(dev); struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); return scnprintf(buf, PAGE_SIZE, "%d\n", f01->properties.firmware_id); } static DEVICE_ATTR(firmware_id, 0444, rmi_driver_firmware_id_show, NULL); static ssize_t rmi_driver_package_id_show(struct device *dev, struct device_attribute *dattr, char *buf) { struct rmi_driver_data *data = dev_get_drvdata(dev); struct f01_data *f01 = dev_get_drvdata(&data->f01_container->dev); u32 package_id = f01->properties.package_id; return scnprintf(buf, PAGE_SIZE, "%04x.%04x\n", package_id & 0xffff, (package_id >> 16) & 0xffff); } static DEVICE_ATTR(package_id, 0444, rmi_driver_package_id_show, NULL); static struct attribute *rmi_f01_attrs[] = { &dev_attr_manufacturer_id.attr, &dev_attr_date_of_manufacture.attr, &dev_attr_product_id.attr, &dev_attr_firmware_id.attr, &dev_attr_package_id.attr, NULL }; static const struct attribute_group rmi_f01_attr_group = { .attrs = rmi_f01_attrs, }; #ifdef CONFIG_OF static int rmi_f01_of_probe(struct device *dev, struct rmi_device_platform_data *pdata) { int retval; u32 val; retval = rmi_of_property_read_u32(dev, (u32 *)&pdata->power_management.nosleep, "syna,nosleep-mode", 1); if (retval) return retval; retval = rmi_of_property_read_u32(dev, &val, "syna,wakeup-threshold", 1); if (retval) return retval; pdata->power_management.wakeup_threshold = val; retval = rmi_of_property_read_u32(dev, &val, "syna,doze-holdoff-ms", 1); if (retval) return retval; pdata->power_management.doze_holdoff = val * 100; retval = rmi_of_property_read_u32(dev, &val, "syna,doze-interval-ms", 1); if (retval) return retval; pdata->power_management.doze_interval = val / 10; return 0; } #else static inline int rmi_f01_of_probe(struct device *dev, struct rmi_device_platform_data *pdata) { return -ENODEV; } #endif static int rmi_f01_probe(struct rmi_function *fn) { struct rmi_device *rmi_dev = fn->rmi_dev; struct rmi_driver_data *driver_data = dev_get_drvdata(&rmi_dev->dev); struct rmi_device_platform_data *pdata = rmi_get_platform_data(rmi_dev); struct f01_data *f01; int error; u16 ctrl_base_addr = fn->fd.control_base_addr; u8 device_status; u8 temp; if (fn->dev.of_node) { error = rmi_f01_of_probe(&fn->dev, pdata); if (error) return error; } f01 = devm_kzalloc(&fn->dev, sizeof(struct f01_data), GFP_KERNEL); if (!f01) return -ENOMEM; f01->num_of_irq_regs = driver_data->num_of_irq_regs; /* * Set the configured bit and (optionally) other important stuff * in the device control register. */ error = rmi_read(rmi_dev, fn->fd.control_base_addr, &f01->device_control.ctrl0); if (error) { dev_err(&fn->dev, "Failed to read F01 control: %d\n", error); return error; } switch (pdata->power_management.nosleep) { case RMI_REG_STATE_DEFAULT: break; case RMI_REG_STATE_OFF: f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT; break; case RMI_REG_STATE_ON: f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT; break; } /* * Sleep mode might be set as a hangover from a system crash or * reboot without power cycle. If so, clear it so the sensor * is certain to function. */ if ((f01->device_control.ctrl0 & RMI_F01_CTRL0_SLEEP_MODE_MASK) != RMI_SLEEP_MODE_NORMAL) { dev_warn(&fn->dev, "WARNING: Non-zero sleep mode found. Clearing...\n"); f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK; } f01->device_control.ctrl0 |= RMI_F01_CTRL0_CONFIGURED_BIT; error = rmi_write(rmi_dev, fn->fd.control_base_addr, f01->device_control.ctrl0); if (error) { dev_err(&fn->dev, "Failed to write F01 control: %d\n", error); return error; } /* Dummy read in order to clear irqs */ error = rmi_read(rmi_dev, fn->fd.data_base_addr + 1, &temp); if (error < 0) { dev_err(&fn->dev, "Failed to read Interrupt Status.\n"); return error; } error = rmi_f01_read_properties(rmi_dev, fn->fd.query_base_addr, &f01->properties); if (error < 0) { dev_err(&fn->dev, "Failed to read F01 properties.\n"); return error; } dev_info(&fn->dev, "found RMI device, manufacturer: %s, product: %s, fw id: %d\n", f01->properties.manufacturer_id == 1 ? "Synaptics" : "unknown", f01->properties.product_id, f01->properties.firmware_id); /* Advance to interrupt control registers, then skip over them. */ ctrl_base_addr++; ctrl_base_addr += f01->num_of_irq_regs; /* read control register */ if (f01->properties.has_adjustable_doze) { f01->doze_interval_addr = ctrl_base_addr; ctrl_base_addr++; if (pdata->power_management.doze_interval) { f01->device_control.doze_interval = pdata->power_management.doze_interval; error = rmi_write(rmi_dev, f01->doze_interval_addr, f01->device_control.doze_interval); if (error) { dev_err(&fn->dev, "Failed to configure F01 doze interval register: %d\n", error); return error; } } else { error = rmi_read(rmi_dev, f01->doze_interval_addr, &f01->device_control.doze_interval); if (error) { dev_err(&fn->dev, "Failed to read F01 doze interval register: %d\n", error); return error; } } f01->wakeup_threshold_addr = ctrl_base_addr; ctrl_base_addr++; if (pdata->power_management.wakeup_threshold) { f01->device_control.wakeup_threshold = pdata->power_management.wakeup_threshold; error = rmi_write(rmi_dev, f01->wakeup_threshold_addr, f01->device_control.wakeup_threshold); if (error) { dev_err(&fn->dev, "Failed to configure F01 wakeup threshold register: %d\n", error); return error; } } else { error = rmi_read(rmi_dev, f01->wakeup_threshold_addr, &f01->device_control.wakeup_threshold); if (error < 0) { dev_err(&fn->dev, "Failed to read F01 wakeup threshold register: %d\n", error); return error; } } } if (f01->properties.has_lts) ctrl_base_addr++; if (f01->properties.has_adjustable_doze_holdoff) { f01->doze_holdoff_addr = ctrl_base_addr; ctrl_base_addr++; if (pdata->power_management.doze_holdoff) { f01->device_control.doze_holdoff = pdata->power_management.doze_holdoff; error = rmi_write(rmi_dev, f01->doze_holdoff_addr, f01->device_control.doze_holdoff); if (error) { dev_err(&fn->dev, "Failed to configure F01 doze holdoff register: %d\n", error); return error; } } else { error = rmi_read(rmi_dev, f01->doze_holdoff_addr, &f01->device_control.doze_holdoff); if (error) { dev_err(&fn->dev, "Failed to read F01 doze holdoff register: %d\n", error); return error; } } } error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status); if (error < 0) { dev_err(&fn->dev, "Failed to read device status: %d\n", error); return error; } if (RMI_F01_STATUS_UNCONFIGURED(device_status)) { dev_err(&fn->dev, "Device was reset during configuration process, status: %#02x!\n", RMI_F01_STATUS_CODE(device_status)); return -EINVAL; } dev_set_drvdata(&fn->dev, f01); error = devm_device_add_group(&fn->rmi_dev->dev, &rmi_f01_attr_group); if (error) dev_warn(&fn->dev, "Failed to create attribute group: %d\n", error); return 0; } static int rmi_f01_config(struct rmi_function *fn) { struct f01_data *f01 = dev_get_drvdata(&fn->dev); int error; error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr, f01->device_control.ctrl0); if (error) { dev_err(&fn->dev, "Failed to write device_control register: %d\n", error); return error; } if (f01->properties.has_adjustable_doze) { error = rmi_write(fn->rmi_dev, f01->doze_interval_addr, f01->device_control.doze_interval); if (error) { dev_err(&fn->dev, "Failed to write doze interval: %d\n", error); return error; } error = rmi_write_block(fn->rmi_dev, f01->wakeup_threshold_addr, &f01->device_control.wakeup_threshold, sizeof(u8)); if (error) { dev_err(&fn->dev, "Failed to write wakeup threshold: %d\n", error); return error; } } if (f01->properties.has_adjustable_doze_holdoff) { error = rmi_write(fn->rmi_dev, f01->doze_holdoff_addr, f01->device_control.doze_holdoff); if (error) { dev_err(&fn->dev, "Failed to write doze holdoff: %d\n", error); return error; } } return 0; } static int rmi_f01_suspend(struct rmi_function *fn) { struct f01_data *f01 = dev_get_drvdata(&fn->dev); int error; f01->old_nosleep = f01->device_control.ctrl0 & RMI_F01_CTRL0_NOSLEEP_BIT; f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_NOSLEEP_BIT; f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK; if (device_may_wakeup(fn->rmi_dev->xport->dev)) f01->device_control.ctrl0 |= RMI_SLEEP_MODE_RESERVED1; else f01->device_control.ctrl0 |= RMI_SLEEP_MODE_SENSOR_SLEEP; error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr, f01->device_control.ctrl0); if (error) { dev_err(&fn->dev, "Failed to write sleep mode: %d.\n", error); if (f01->old_nosleep) f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT; f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK; f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL; return error; } return 0; } static int rmi_f01_resume(struct rmi_function *fn) { struct f01_data *f01 = dev_get_drvdata(&fn->dev); int error; if (f01->old_nosleep) f01->device_control.ctrl0 |= RMI_F01_CTRL0_NOSLEEP_BIT; f01->device_control.ctrl0 &= ~RMI_F01_CTRL0_SLEEP_MODE_MASK; f01->device_control.ctrl0 |= RMI_SLEEP_MODE_NORMAL; error = rmi_write(fn->rmi_dev, fn->fd.control_base_addr, f01->device_control.ctrl0); if (error) { dev_err(&fn->dev, "Failed to restore normal operation: %d.\n", error); return error; } return 0; } static int rmi_f01_attention(struct rmi_function *fn, unsigned long *irq_bits) { struct rmi_device *rmi_dev = fn->rmi_dev; int error; u8 device_status; error = rmi_read(rmi_dev, fn->fd.data_base_addr, &device_status); if (error) { dev_err(&fn->dev, "Failed to read device status: %d.\n", error); return error; } if (RMI_F01_STATUS_BOOTLOADER(device_status)) dev_warn(&fn->dev, "Device in bootloader mode, please update firmware\n"); if (RMI_F01_STATUS_UNCONFIGURED(device_status)) { dev_warn(&fn->dev, "Device reset detected.\n"); error = rmi_dev->driver->reset_handler(rmi_dev); if (error) { dev_err(&fn->dev, "Device reset failed: %d\n", error); return error; } } return 0; } struct rmi_function_handler rmi_f01_handler = { .driver = { .name = "rmi4_f01", /* * Do not allow user unbinding F01 as it is critical * function. */ .suppress_bind_attrs = true, }, .func = 0x01, .probe = rmi_f01_probe, .config = rmi_f01_config, .attention = rmi_f01_attention, .suspend = rmi_f01_suspend, .resume = rmi_f01_resume, };