/* * cyttsp4_core.c * Cypress TrueTouch(TM) Standard Product V4 Core driver module. * For use with Cypress Txx4xx parts. * Supported parts include: * TMA4XX * TMA1036 * * Copyright (C) 2012 Cypress Semiconductor * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2, and only version 2, as published by the * Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * Contact Cypress Semiconductor at www.cypress.com * */ #include "cyttsp4_core.h" #include #include #include #include #include #include #include /* Timeout in ms. */ #define CY_CORE_REQUEST_EXCLUSIVE_TIMEOUT 500 #define CY_CORE_SLEEP_REQUEST_EXCLUSIVE_TIMEOUT 5000 #define CY_CORE_MODE_CHANGE_TIMEOUT 1000 #define CY_CORE_RESET_AND_WAIT_TIMEOUT 500 #define CY_CORE_WAKEUP_TIMEOUT 500 #define CY_CORE_STARTUP_RETRY_COUNT 3 static const u8 ldr_exit[] = { 0xFF, 0x01, 0x3B, 0x00, 0x00, 0x4F, 0x6D, 0x17 }; static const u8 ldr_err_app[] = { 0x01, 0x02, 0x00, 0x00, 0x55, 0xDD, 0x17 }; static inline size_t merge_bytes(u8 high, u8 low) { return (high << 8) + low; } #ifdef VERBOSE_DEBUG static void cyttsp4_pr_buf(struct device *dev, u8 *pr_buf, u8 *dptr, int size, const char *data_name) { int i, k; const char fmt[] = "%02X "; int max; if (!size) return; max = (CY_MAX_PRBUF_SIZE - 1) - sizeof(CY_PR_TRUNCATED); pr_buf[0] = 0; for (i = k = 0; i < size && k < max; i++, k += 3) scnprintf(pr_buf + k, CY_MAX_PRBUF_SIZE, fmt, dptr[i]); dev_vdbg(dev, "%s: %s[0..%d]=%s%s\n", __func__, data_name, size - 1, pr_buf, size <= max ? "" : CY_PR_TRUNCATED); } #else #define cyttsp4_pr_buf(dev, pr_buf, dptr, size, data_name) do { } while (0) #endif static int cyttsp4_load_status_regs(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; struct device *dev = cd->dev; int rc; rc = cyttsp4_adap_read(cd, CY_REG_BASE, si->si_ofs.mode_size, si->xy_mode); if (rc < 0) dev_err(dev, "%s: fail read mode regs r=%d\n", __func__, rc); else cyttsp4_pr_buf(dev, cd->pr_buf, si->xy_mode, si->si_ofs.mode_size, "xy_mode"); return rc; } static int cyttsp4_handshake(struct cyttsp4 *cd, u8 mode) { u8 cmd = mode ^ CY_HST_TOGGLE; int rc; /* * Mode change issued, handshaking now will cause endless mode change * requests, for sync mode modechange will do same with handshake * */ if (mode & CY_HST_MODE_CHANGE) return 0; rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(cmd), &cmd); if (rc < 0) dev_err(cd->dev, "%s: bus write fail on handshake (ret=%d)\n", __func__, rc); return rc; } static int cyttsp4_hw_soft_reset(struct cyttsp4 *cd) { u8 cmd = CY_HST_RESET; int rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(cmd), &cmd); if (rc < 0) { dev_err(cd->dev, "%s: FAILED to execute SOFT reset\n", __func__); return rc; } return 0; } static int cyttsp4_hw_hard_reset(struct cyttsp4 *cd) { if (cd->cpdata->xres) { cd->cpdata->xres(cd->cpdata, cd->dev); dev_dbg(cd->dev, "%s: execute HARD reset\n", __func__); return 0; } dev_err(cd->dev, "%s: FAILED to execute HARD reset\n", __func__); return -ENOSYS; } static int cyttsp4_hw_reset(struct cyttsp4 *cd) { int rc = cyttsp4_hw_hard_reset(cd); if (rc == -ENOSYS) rc = cyttsp4_hw_soft_reset(cd); return rc; } /* * Gets number of bits for a touch filed as parameter, * sets maximum value for field which is used as bit mask * and returns number of bytes required for that field */ static int cyttsp4_bits_2_bytes(unsigned int nbits, size_t *max) { *max = 1UL << nbits; return (nbits + 7) / 8; } static int cyttsp4_si_data_offsets(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; int rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(si->si_data), &si->si_data); if (rc < 0) { dev_err(cd->dev, "%s: fail read sysinfo data offsets r=%d\n", __func__, rc); return rc; } /* Print sysinfo data offsets */ cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)&si->si_data, sizeof(si->si_data), "sysinfo_data_offsets"); /* convert sysinfo data offset bytes into integers */ si->si_ofs.map_sz = merge_bytes(si->si_data.map_szh, si->si_data.map_szl); si->si_ofs.map_sz = merge_bytes(si->si_data.map_szh, si->si_data.map_szl); si->si_ofs.cydata_ofs = merge_bytes(si->si_data.cydata_ofsh, si->si_data.cydata_ofsl); si->si_ofs.test_ofs = merge_bytes(si->si_data.test_ofsh, si->si_data.test_ofsl); si->si_ofs.pcfg_ofs = merge_bytes(si->si_data.pcfg_ofsh, si->si_data.pcfg_ofsl); si->si_ofs.opcfg_ofs = merge_bytes(si->si_data.opcfg_ofsh, si->si_data.opcfg_ofsl); si->si_ofs.ddata_ofs = merge_bytes(si->si_data.ddata_ofsh, si->si_data.ddata_ofsl); si->si_ofs.mdata_ofs = merge_bytes(si->si_data.mdata_ofsh, si->si_data.mdata_ofsl); return rc; } static int cyttsp4_si_get_cydata(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; int read_offset; int mfgid_sz, calc_mfgid_sz; void *p; int rc; if (si->si_ofs.test_ofs <= si->si_ofs.cydata_ofs) { dev_err(cd->dev, "%s: invalid offset test_ofs: %zu, cydata_ofs: %zu\n", __func__, si->si_ofs.test_ofs, si->si_ofs.cydata_ofs); return -EINVAL; } si->si_ofs.cydata_size = si->si_ofs.test_ofs - si->si_ofs.cydata_ofs; dev_dbg(cd->dev, "%s: cydata size: %zd\n", __func__, si->si_ofs.cydata_size); p = krealloc(si->si_ptrs.cydata, si->si_ofs.cydata_size, GFP_KERNEL); if (p == NULL) { dev_err(cd->dev, "%s: failed to allocate cydata memory\n", __func__); return -ENOMEM; } si->si_ptrs.cydata = p; read_offset = si->si_ofs.cydata_ofs; /* Read the CYDA registers up to MFGID field */ rc = cyttsp4_adap_read(cd, read_offset, offsetof(struct cyttsp4_cydata, mfgid_sz) + sizeof(si->si_ptrs.cydata->mfgid_sz), si->si_ptrs.cydata); if (rc < 0) { dev_err(cd->dev, "%s: fail read cydata r=%d\n", __func__, rc); return rc; } /* Check MFGID size */ mfgid_sz = si->si_ptrs.cydata->mfgid_sz; calc_mfgid_sz = si->si_ofs.cydata_size - sizeof(struct cyttsp4_cydata); if (mfgid_sz != calc_mfgid_sz) { dev_err(cd->dev, "%s: mismatch in MFGID size, reported:%d calculated:%d\n", __func__, mfgid_sz, calc_mfgid_sz); return -EINVAL; } read_offset += offsetof(struct cyttsp4_cydata, mfgid_sz) + sizeof(si->si_ptrs.cydata->mfgid_sz); /* Read the CYDA registers for MFGID field */ rc = cyttsp4_adap_read(cd, read_offset, si->si_ptrs.cydata->mfgid_sz, si->si_ptrs.cydata->mfg_id); if (rc < 0) { dev_err(cd->dev, "%s: fail read cydata r=%d\n", __func__, rc); return rc; } read_offset += si->si_ptrs.cydata->mfgid_sz; /* Read the rest of the CYDA registers */ rc = cyttsp4_adap_read(cd, read_offset, sizeof(struct cyttsp4_cydata) - offsetof(struct cyttsp4_cydata, cyito_idh), &si->si_ptrs.cydata->cyito_idh); if (rc < 0) { dev_err(cd->dev, "%s: fail read cydata r=%d\n", __func__, rc); return rc; } cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.cydata, si->si_ofs.cydata_size, "sysinfo_cydata"); return rc; } static int cyttsp4_si_get_test_data(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; void *p; int rc; if (si->si_ofs.pcfg_ofs <= si->si_ofs.test_ofs) { dev_err(cd->dev, "%s: invalid offset pcfg_ofs: %zu, test_ofs: %zu\n", __func__, si->si_ofs.pcfg_ofs, si->si_ofs.test_ofs); return -EINVAL; } si->si_ofs.test_size = si->si_ofs.pcfg_ofs - si->si_ofs.test_ofs; p = krealloc(si->si_ptrs.test, si->si_ofs.test_size, GFP_KERNEL); if (p == NULL) { dev_err(cd->dev, "%s: failed to allocate test memory\n", __func__); return -ENOMEM; } si->si_ptrs.test = p; rc = cyttsp4_adap_read(cd, si->si_ofs.test_ofs, si->si_ofs.test_size, si->si_ptrs.test); if (rc < 0) { dev_err(cd->dev, "%s: fail read test data r=%d\n", __func__, rc); return rc; } cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.test, si->si_ofs.test_size, "sysinfo_test_data"); if (si->si_ptrs.test->post_codel & CY_POST_CODEL_WDG_RST) dev_info(cd->dev, "%s: %s codel=%02X\n", __func__, "Reset was a WATCHDOG RESET", si->si_ptrs.test->post_codel); if (!(si->si_ptrs.test->post_codel & CY_POST_CODEL_CFG_DATA_CRC_FAIL)) dev_info(cd->dev, "%s: %s codel=%02X\n", __func__, "Config Data CRC FAIL", si->si_ptrs.test->post_codel); if (!(si->si_ptrs.test->post_codel & CY_POST_CODEL_PANEL_TEST_FAIL)) dev_info(cd->dev, "%s: %s codel=%02X\n", __func__, "PANEL TEST FAIL", si->si_ptrs.test->post_codel); dev_info(cd->dev, "%s: SCANNING is %s codel=%02X\n", __func__, si->si_ptrs.test->post_codel & 0x08 ? "ENABLED" : "DISABLED", si->si_ptrs.test->post_codel); return rc; } static int cyttsp4_si_get_pcfg_data(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; void *p; int rc; if (si->si_ofs.opcfg_ofs <= si->si_ofs.pcfg_ofs) { dev_err(cd->dev, "%s: invalid offset opcfg_ofs: %zu, pcfg_ofs: %zu\n", __func__, si->si_ofs.opcfg_ofs, si->si_ofs.pcfg_ofs); return -EINVAL; } si->si_ofs.pcfg_size = si->si_ofs.opcfg_ofs - si->si_ofs.pcfg_ofs; p = krealloc(si->si_ptrs.pcfg, si->si_ofs.pcfg_size, GFP_KERNEL); if (p == NULL) { dev_err(cd->dev, "%s: failed to allocate pcfg memory\n", __func__); return -ENOMEM; } si->si_ptrs.pcfg = p; rc = cyttsp4_adap_read(cd, si->si_ofs.pcfg_ofs, si->si_ofs.pcfg_size, si->si_ptrs.pcfg); if (rc < 0) { dev_err(cd->dev, "%s: fail read pcfg data r=%d\n", __func__, rc); return rc; } si->si_ofs.max_x = merge_bytes((si->si_ptrs.pcfg->res_xh & CY_PCFG_RESOLUTION_X_MASK), si->si_ptrs.pcfg->res_xl); si->si_ofs.x_origin = !!(si->si_ptrs.pcfg->res_xh & CY_PCFG_ORIGIN_X_MASK); si->si_ofs.max_y = merge_bytes((si->si_ptrs.pcfg->res_yh & CY_PCFG_RESOLUTION_Y_MASK), si->si_ptrs.pcfg->res_yl); si->si_ofs.y_origin = !!(si->si_ptrs.pcfg->res_yh & CY_PCFG_ORIGIN_Y_MASK); si->si_ofs.max_p = merge_bytes(si->si_ptrs.pcfg->max_zh, si->si_ptrs.pcfg->max_zl); cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.pcfg, si->si_ofs.pcfg_size, "sysinfo_pcfg_data"); return rc; } static int cyttsp4_si_get_opcfg_data(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; struct cyttsp4_tch_abs_params *tch; struct cyttsp4_tch_rec_params *tch_old, *tch_new; enum cyttsp4_tch_abs abs; int i; void *p; int rc; if (si->si_ofs.ddata_ofs <= si->si_ofs.opcfg_ofs) { dev_err(cd->dev, "%s: invalid offset ddata_ofs: %zu, opcfg_ofs: %zu\n", __func__, si->si_ofs.ddata_ofs, si->si_ofs.opcfg_ofs); return -EINVAL; } si->si_ofs.opcfg_size = si->si_ofs.ddata_ofs - si->si_ofs.opcfg_ofs; p = krealloc(si->si_ptrs.opcfg, si->si_ofs.opcfg_size, GFP_KERNEL); if (p == NULL) { dev_err(cd->dev, "%s: failed to allocate opcfg memory\n", __func__); return -ENOMEM; } si->si_ptrs.opcfg = p; rc = cyttsp4_adap_read(cd, si->si_ofs.opcfg_ofs, si->si_ofs.opcfg_size, si->si_ptrs.opcfg); if (rc < 0) { dev_err(cd->dev, "%s: fail read opcfg data r=%d\n", __func__, rc); return rc; } si->si_ofs.cmd_ofs = si->si_ptrs.opcfg->cmd_ofs; si->si_ofs.rep_ofs = si->si_ptrs.opcfg->rep_ofs; si->si_ofs.rep_sz = (si->si_ptrs.opcfg->rep_szh * 256) + si->si_ptrs.opcfg->rep_szl; si->si_ofs.num_btns = si->si_ptrs.opcfg->num_btns; si->si_ofs.num_btn_regs = (si->si_ofs.num_btns + CY_NUM_BTN_PER_REG - 1) / CY_NUM_BTN_PER_REG; si->si_ofs.tt_stat_ofs = si->si_ptrs.opcfg->tt_stat_ofs; si->si_ofs.obj_cfg0 = si->si_ptrs.opcfg->obj_cfg0; si->si_ofs.max_tchs = si->si_ptrs.opcfg->max_tchs & CY_BYTE_OFS_MASK; si->si_ofs.tch_rec_size = si->si_ptrs.opcfg->tch_rec_size & CY_BYTE_OFS_MASK; /* Get the old touch fields */ for (abs = CY_TCH_X; abs < CY_NUM_TCH_FIELDS; abs++) { tch = &si->si_ofs.tch_abs[abs]; tch_old = &si->si_ptrs.opcfg->tch_rec_old[abs]; tch->ofs = tch_old->loc & CY_BYTE_OFS_MASK; tch->size = cyttsp4_bits_2_bytes(tch_old->size, &tch->max); tch->bofs = (tch_old->loc & CY_BOFS_MASK) >> CY_BOFS_SHIFT; } /* button fields */ si->si_ofs.btn_rec_size = si->si_ptrs.opcfg->btn_rec_size; si->si_ofs.btn_diff_ofs = si->si_ptrs.opcfg->btn_diff_ofs; si->si_ofs.btn_diff_size = si->si_ptrs.opcfg->btn_diff_size; if (si->si_ofs.tch_rec_size > CY_TMA1036_TCH_REC_SIZE) { /* Get the extended touch fields */ for (i = 0; i < CY_NUM_EXT_TCH_FIELDS; abs++, i++) { tch = &si->si_ofs.tch_abs[abs]; tch_new = &si->si_ptrs.opcfg->tch_rec_new[i]; tch->ofs = tch_new->loc & CY_BYTE_OFS_MASK; tch->size = cyttsp4_bits_2_bytes(tch_new->size, &tch->max); tch->bofs = (tch_new->loc & CY_BOFS_MASK) >> CY_BOFS_SHIFT; } } for (abs = 0; abs < CY_TCH_NUM_ABS; abs++) { dev_dbg(cd->dev, "%s: tch_rec_%s\n", __func__, cyttsp4_tch_abs_string[abs]); dev_dbg(cd->dev, "%s: ofs =%2zd\n", __func__, si->si_ofs.tch_abs[abs].ofs); dev_dbg(cd->dev, "%s: siz =%2zd\n", __func__, si->si_ofs.tch_abs[abs].size); dev_dbg(cd->dev, "%s: max =%2zd\n", __func__, si->si_ofs.tch_abs[abs].max); dev_dbg(cd->dev, "%s: bofs=%2zd\n", __func__, si->si_ofs.tch_abs[abs].bofs); } si->si_ofs.mode_size = si->si_ofs.tt_stat_ofs + 1; si->si_ofs.data_size = si->si_ofs.max_tchs * si->si_ptrs.opcfg->tch_rec_size; cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.opcfg, si->si_ofs.opcfg_size, "sysinfo_opcfg_data"); return 0; } static int cyttsp4_si_get_ddata(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; void *p; int rc; si->si_ofs.ddata_size = si->si_ofs.mdata_ofs - si->si_ofs.ddata_ofs; p = krealloc(si->si_ptrs.ddata, si->si_ofs.ddata_size, GFP_KERNEL); if (p == NULL) { dev_err(cd->dev, "%s: fail alloc ddata memory\n", __func__); return -ENOMEM; } si->si_ptrs.ddata = p; rc = cyttsp4_adap_read(cd, si->si_ofs.ddata_ofs, si->si_ofs.ddata_size, si->si_ptrs.ddata); if (rc < 0) dev_err(cd->dev, "%s: fail read ddata data r=%d\n", __func__, rc); else cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.ddata, si->si_ofs.ddata_size, "sysinfo_ddata"); return rc; } static int cyttsp4_si_get_mdata(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; void *p; int rc; si->si_ofs.mdata_size = si->si_ofs.map_sz - si->si_ofs.mdata_ofs; p = krealloc(si->si_ptrs.mdata, si->si_ofs.mdata_size, GFP_KERNEL); if (p == NULL) { dev_err(cd->dev, "%s: fail alloc mdata memory\n", __func__); return -ENOMEM; } si->si_ptrs.mdata = p; rc = cyttsp4_adap_read(cd, si->si_ofs.mdata_ofs, si->si_ofs.mdata_size, si->si_ptrs.mdata); if (rc < 0) dev_err(cd->dev, "%s: fail read mdata data r=%d\n", __func__, rc); else cyttsp4_pr_buf(cd->dev, cd->pr_buf, (u8 *)si->si_ptrs.mdata, si->si_ofs.mdata_size, "sysinfo_mdata"); return rc; } static int cyttsp4_si_get_btn_data(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; int btn; int num_defined_keys; u16 *key_table; void *p; int rc = 0; if (si->si_ofs.num_btns) { si->si_ofs.btn_keys_size = si->si_ofs.num_btns * sizeof(struct cyttsp4_btn); p = krealloc(si->btn, si->si_ofs.btn_keys_size, GFP_KERNEL|__GFP_ZERO); if (p == NULL) { dev_err(cd->dev, "%s: %s\n", __func__, "fail alloc btn_keys memory"); return -ENOMEM; } si->btn = p; if (cd->cpdata->sett[CY_IC_GRPNUM_BTN_KEYS] == NULL) num_defined_keys = 0; else if (cd->cpdata->sett[CY_IC_GRPNUM_BTN_KEYS]->data == NULL) num_defined_keys = 0; else num_defined_keys = cd->cpdata->sett [CY_IC_GRPNUM_BTN_KEYS]->size; for (btn = 0; btn < si->si_ofs.num_btns && btn < num_defined_keys; btn++) { key_table = (u16 *)cd->cpdata->sett [CY_IC_GRPNUM_BTN_KEYS]->data; si->btn[btn].key_code = key_table[btn]; si->btn[btn].state = CY_BTN_RELEASED; si->btn[btn].enabled = true; } for (; btn < si->si_ofs.num_btns; btn++) { si->btn[btn].key_code = KEY_RESERVED; si->btn[btn].state = CY_BTN_RELEASED; si->btn[btn].enabled = true; } return rc; } si->si_ofs.btn_keys_size = 0; kfree(si->btn); si->btn = NULL; return rc; } static int cyttsp4_si_get_op_data_ptrs(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; void *p; p = krealloc(si->xy_mode, si->si_ofs.mode_size, GFP_KERNEL|__GFP_ZERO); if (p == NULL) return -ENOMEM; si->xy_mode = p; p = krealloc(si->xy_data, si->si_ofs.data_size, GFP_KERNEL|__GFP_ZERO); if (p == NULL) return -ENOMEM; si->xy_data = p; p = krealloc(si->btn_rec_data, si->si_ofs.btn_rec_size * si->si_ofs.num_btns, GFP_KERNEL|__GFP_ZERO); if (p == NULL) return -ENOMEM; si->btn_rec_data = p; return 0; } static void cyttsp4_si_put_log_data(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; dev_dbg(cd->dev, "%s: cydata_ofs =%4zd siz=%4zd\n", __func__, si->si_ofs.cydata_ofs, si->si_ofs.cydata_size); dev_dbg(cd->dev, "%s: test_ofs =%4zd siz=%4zd\n", __func__, si->si_ofs.test_ofs, si->si_ofs.test_size); dev_dbg(cd->dev, "%s: pcfg_ofs =%4zd siz=%4zd\n", __func__, si->si_ofs.pcfg_ofs, si->si_ofs.pcfg_size); dev_dbg(cd->dev, "%s: opcfg_ofs =%4zd siz=%4zd\n", __func__, si->si_ofs.opcfg_ofs, si->si_ofs.opcfg_size); dev_dbg(cd->dev, "%s: ddata_ofs =%4zd siz=%4zd\n", __func__, si->si_ofs.ddata_ofs, si->si_ofs.ddata_size); dev_dbg(cd->dev, "%s: mdata_ofs =%4zd siz=%4zd\n", __func__, si->si_ofs.mdata_ofs, si->si_ofs.mdata_size); dev_dbg(cd->dev, "%s: cmd_ofs =%4zd\n", __func__, si->si_ofs.cmd_ofs); dev_dbg(cd->dev, "%s: rep_ofs =%4zd\n", __func__, si->si_ofs.rep_ofs); dev_dbg(cd->dev, "%s: rep_sz =%4zd\n", __func__, si->si_ofs.rep_sz); dev_dbg(cd->dev, "%s: num_btns =%4zd\n", __func__, si->si_ofs.num_btns); dev_dbg(cd->dev, "%s: num_btn_regs =%4zd\n", __func__, si->si_ofs.num_btn_regs); dev_dbg(cd->dev, "%s: tt_stat_ofs =%4zd\n", __func__, si->si_ofs.tt_stat_ofs); dev_dbg(cd->dev, "%s: tch_rec_size =%4zd\n", __func__, si->si_ofs.tch_rec_size); dev_dbg(cd->dev, "%s: max_tchs =%4zd\n", __func__, si->si_ofs.max_tchs); dev_dbg(cd->dev, "%s: mode_size =%4zd\n", __func__, si->si_ofs.mode_size); dev_dbg(cd->dev, "%s: data_size =%4zd\n", __func__, si->si_ofs.data_size); dev_dbg(cd->dev, "%s: map_sz =%4zd\n", __func__, si->si_ofs.map_sz); dev_dbg(cd->dev, "%s: btn_rec_size =%2zd\n", __func__, si->si_ofs.btn_rec_size); dev_dbg(cd->dev, "%s: btn_diff_ofs =%2zd\n", __func__, si->si_ofs.btn_diff_ofs); dev_dbg(cd->dev, "%s: btn_diff_size =%2zd\n", __func__, si->si_ofs.btn_diff_size); dev_dbg(cd->dev, "%s: max_x = 0x%04zX (%zd)\n", __func__, si->si_ofs.max_x, si->si_ofs.max_x); dev_dbg(cd->dev, "%s: x_origin = %zd (%s)\n", __func__, si->si_ofs.x_origin, si->si_ofs.x_origin == CY_NORMAL_ORIGIN ? "left corner" : "right corner"); dev_dbg(cd->dev, "%s: max_y = 0x%04zX (%zd)\n", __func__, si->si_ofs.max_y, si->si_ofs.max_y); dev_dbg(cd->dev, "%s: y_origin = %zd (%s)\n", __func__, si->si_ofs.y_origin, si->si_ofs.y_origin == CY_NORMAL_ORIGIN ? "upper corner" : "lower corner"); dev_dbg(cd->dev, "%s: max_p = 0x%04zX (%zd)\n", __func__, si->si_ofs.max_p, si->si_ofs.max_p); dev_dbg(cd->dev, "%s: xy_mode=%p xy_data=%p\n", __func__, si->xy_mode, si->xy_data); } static int cyttsp4_get_sysinfo_regs(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; int rc; rc = cyttsp4_si_data_offsets(cd); if (rc < 0) return rc; rc = cyttsp4_si_get_cydata(cd); if (rc < 0) return rc; rc = cyttsp4_si_get_test_data(cd); if (rc < 0) return rc; rc = cyttsp4_si_get_pcfg_data(cd); if (rc < 0) return rc; rc = cyttsp4_si_get_opcfg_data(cd); if (rc < 0) return rc; rc = cyttsp4_si_get_ddata(cd); if (rc < 0) return rc; rc = cyttsp4_si_get_mdata(cd); if (rc < 0) return rc; rc = cyttsp4_si_get_btn_data(cd); if (rc < 0) return rc; rc = cyttsp4_si_get_op_data_ptrs(cd); if (rc < 0) { dev_err(cd->dev, "%s: failed to get_op_data\n", __func__); return rc; } cyttsp4_si_put_log_data(cd); /* provide flow control handshake */ rc = cyttsp4_handshake(cd, si->si_data.hst_mode); if (rc < 0) dev_err(cd->dev, "%s: handshake fail on sysinfo reg\n", __func__); si->ready = true; return rc; } static void cyttsp4_queue_startup_(struct cyttsp4 *cd) { if (cd->startup_state == STARTUP_NONE) { cd->startup_state = STARTUP_QUEUED; schedule_work(&cd->startup_work); dev_dbg(cd->dev, "%s: cyttsp4_startup queued\n", __func__); } else { dev_dbg(cd->dev, "%s: startup_state = %d\n", __func__, cd->startup_state); } } static void cyttsp4_report_slot_liftoff(struct cyttsp4_mt_data *md, int max_slots) { int t; if (md->num_prv_tch == 0) return; for (t = 0; t < max_slots; t++) { input_mt_slot(md->input, t); input_mt_report_slot_state(md->input, MT_TOOL_FINGER, false); } } static void cyttsp4_lift_all(struct cyttsp4_mt_data *md) { if (!md->si) return; if (md->num_prv_tch != 0) { cyttsp4_report_slot_liftoff(md, md->si->si_ofs.tch_abs[CY_TCH_T].max); input_sync(md->input); md->num_prv_tch = 0; } } static void cyttsp4_get_touch_axis(struct cyttsp4_mt_data *md, int *axis, int size, int max, u8 *xy_data, int bofs) { int nbyte; int next; for (nbyte = 0, *axis = 0, next = 0; nbyte < size; nbyte++) { dev_vdbg(&md->input->dev, "%s: *axis=%02X(%d) size=%d max=%08X xy_data=%p" " xy_data[%d]=%02X(%d) bofs=%d\n", __func__, *axis, *axis, size, max, xy_data, next, xy_data[next], xy_data[next], bofs); *axis = (*axis * 256) + (xy_data[next] >> bofs); next++; } *axis &= max - 1; dev_vdbg(&md->input->dev, "%s: *axis=%02X(%d) size=%d max=%08X xy_data=%p" " xy_data[%d]=%02X(%d)\n", __func__, *axis, *axis, size, max, xy_data, next, xy_data[next], xy_data[next]); } static void cyttsp4_get_touch(struct cyttsp4_mt_data *md, struct cyttsp4_touch *touch, u8 *xy_data) { struct device *dev = &md->input->dev; struct cyttsp4_sysinfo *si = md->si; enum cyttsp4_tch_abs abs; bool flipped; for (abs = CY_TCH_X; abs < CY_TCH_NUM_ABS; abs++) { cyttsp4_get_touch_axis(md, &touch->abs[abs], si->si_ofs.tch_abs[abs].size, si->si_ofs.tch_abs[abs].max, xy_data + si->si_ofs.tch_abs[abs].ofs, si->si_ofs.tch_abs[abs].bofs); dev_vdbg(dev, "%s: get %s=%04X(%d)\n", __func__, cyttsp4_tch_abs_string[abs], touch->abs[abs], touch->abs[abs]); } if (md->pdata->flags & CY_FLAG_FLIP) { swap(touch->abs[CY_TCH_X], touch->abs[CY_TCH_Y]); flipped = true; } else flipped = false; if (md->pdata->flags & CY_FLAG_INV_X) { if (flipped) touch->abs[CY_TCH_X] = md->si->si_ofs.max_y - touch->abs[CY_TCH_X]; else touch->abs[CY_TCH_X] = md->si->si_ofs.max_x - touch->abs[CY_TCH_X]; } if (md->pdata->flags & CY_FLAG_INV_Y) { if (flipped) touch->abs[CY_TCH_Y] = md->si->si_ofs.max_x - touch->abs[CY_TCH_Y]; else touch->abs[CY_TCH_Y] = md->si->si_ofs.max_y - touch->abs[CY_TCH_Y]; } dev_vdbg(dev, "%s: flip=%s inv-x=%s inv-y=%s x=%04X(%d) y=%04X(%d)\n", __func__, flipped ? "true" : "false", md->pdata->flags & CY_FLAG_INV_X ? "true" : "false", md->pdata->flags & CY_FLAG_INV_Y ? "true" : "false", touch->abs[CY_TCH_X], touch->abs[CY_TCH_X], touch->abs[CY_TCH_Y], touch->abs[CY_TCH_Y]); } static void cyttsp4_final_sync(struct input_dev *input, int max_slots, int *ids) { int t; for (t = 0; t < max_slots; t++) { if (ids[t]) continue; input_mt_slot(input, t); input_mt_report_slot_state(input, MT_TOOL_FINGER, false); } input_sync(input); } static void cyttsp4_get_mt_touches(struct cyttsp4_mt_data *md, int num_cur_tch) { struct device *dev = &md->input->dev; struct cyttsp4_sysinfo *si = md->si; struct cyttsp4_touch tch; int sig; int i, j, t = 0; int ids[max(CY_TMA1036_MAX_TCH, CY_TMA4XX_MAX_TCH)]; memset(ids, 0, si->si_ofs.tch_abs[CY_TCH_T].max * sizeof(int)); for (i = 0; i < num_cur_tch; i++) { cyttsp4_get_touch(md, &tch, si->xy_data + (i * si->si_ofs.tch_rec_size)); if ((tch.abs[CY_TCH_T] < md->pdata->frmwrk->abs [(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MIN_OST]) || (tch.abs[CY_TCH_T] > md->pdata->frmwrk->abs [(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MAX_OST])) { dev_err(dev, "%s: tch=%d -> bad trk_id=%d max_id=%d\n", __func__, i, tch.abs[CY_TCH_T], md->pdata->frmwrk->abs[(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MAX_OST]); continue; } /* use 0 based track id's */ sig = md->pdata->frmwrk->abs [(CY_ABS_ID_OST * CY_NUM_ABS_SET) + 0]; if (sig != CY_IGNORE_VALUE) { t = tch.abs[CY_TCH_T] - md->pdata->frmwrk->abs [(CY_ABS_ID_OST * CY_NUM_ABS_SET) + CY_MIN_OST]; if (tch.abs[CY_TCH_E] == CY_EV_LIFTOFF) { dev_dbg(dev, "%s: t=%d e=%d lift-off\n", __func__, t, tch.abs[CY_TCH_E]); goto cyttsp4_get_mt_touches_pr_tch; } input_mt_slot(md->input, t); input_mt_report_slot_state(md->input, MT_TOOL_FINGER, true); ids[t] = true; } /* all devices: position and pressure fields */ for (j = 0; j <= CY_ABS_W_OST; j++) { sig = md->pdata->frmwrk->abs[((CY_ABS_X_OST + j) * CY_NUM_ABS_SET) + 0]; if (sig != CY_IGNORE_VALUE) input_report_abs(md->input, sig, tch.abs[CY_TCH_X + j]); } if (si->si_ofs.tch_rec_size > CY_TMA1036_TCH_REC_SIZE) { /* * TMA400 size and orientation fields: * if pressure is non-zero and major touch * signal is zero, then set major and minor touch * signals to minimum non-zero value */ if (tch.abs[CY_TCH_P] > 0 && tch.abs[CY_TCH_MAJ] == 0) tch.abs[CY_TCH_MAJ] = tch.abs[CY_TCH_MIN] = 1; /* Get the extended touch fields */ for (j = 0; j < CY_NUM_EXT_TCH_FIELDS; j++) { sig = md->pdata->frmwrk->abs [((CY_ABS_MAJ_OST + j) * CY_NUM_ABS_SET) + 0]; if (sig != CY_IGNORE_VALUE) input_report_abs(md->input, sig, tch.abs[CY_TCH_MAJ + j]); } } cyttsp4_get_mt_touches_pr_tch: if (si->si_ofs.tch_rec_size > CY_TMA1036_TCH_REC_SIZE) dev_dbg(dev, "%s: t=%d x=%d y=%d z=%d M=%d m=%d o=%d e=%d\n", __func__, t, tch.abs[CY_TCH_X], tch.abs[CY_TCH_Y], tch.abs[CY_TCH_P], tch.abs[CY_TCH_MAJ], tch.abs[CY_TCH_MIN], tch.abs[CY_TCH_OR], tch.abs[CY_TCH_E]); else dev_dbg(dev, "%s: t=%d x=%d y=%d z=%d e=%d\n", __func__, t, tch.abs[CY_TCH_X], tch.abs[CY_TCH_Y], tch.abs[CY_TCH_P], tch.abs[CY_TCH_E]); } cyttsp4_final_sync(md->input, si->si_ofs.tch_abs[CY_TCH_T].max, ids); md->num_prv_tch = num_cur_tch; return; } /* read xy_data for all current touches */ static int cyttsp4_xy_worker(struct cyttsp4 *cd) { struct cyttsp4_mt_data *md = &cd->md; struct device *dev = &md->input->dev; struct cyttsp4_sysinfo *si = md->si; u8 num_cur_tch; u8 hst_mode; u8 rep_len; u8 rep_stat; u8 tt_stat; int rc = 0; /* * Get event data from cyttsp4 device. * The event data includes all data * for all active touches. * Event data also includes button data */ /* * Use 2 reads: * 1st read to get mode + button bytes + touch count (core) * 2nd read (optional) to get touch 1 - touch n data */ hst_mode = si->xy_mode[CY_REG_BASE]; rep_len = si->xy_mode[si->si_ofs.rep_ofs]; rep_stat = si->xy_mode[si->si_ofs.rep_ofs + 1]; tt_stat = si->xy_mode[si->si_ofs.tt_stat_ofs]; dev_vdbg(dev, "%s: %s%02X %s%d %s%02X %s%02X\n", __func__, "hst_mode=", hst_mode, "rep_len=", rep_len, "rep_stat=", rep_stat, "tt_stat=", tt_stat); num_cur_tch = GET_NUM_TOUCHES(tt_stat); dev_vdbg(dev, "%s: num_cur_tch=%d\n", __func__, num_cur_tch); if (rep_len == 0 && num_cur_tch > 0) { dev_err(dev, "%s: report length error rep_len=%d num_tch=%d\n", __func__, rep_len, num_cur_tch); goto cyttsp4_xy_worker_exit; } /* read touches */ if (num_cur_tch > 0) { rc = cyttsp4_adap_read(cd, si->si_ofs.tt_stat_ofs + 1, num_cur_tch * si->si_ofs.tch_rec_size, si->xy_data); if (rc < 0) { dev_err(dev, "%s: read fail on touch regs r=%d\n", __func__, rc); goto cyttsp4_xy_worker_exit; } } /* print xy data */ cyttsp4_pr_buf(dev, cd->pr_buf, si->xy_data, num_cur_tch * si->si_ofs.tch_rec_size, "xy_data"); /* check any error conditions */ if (IS_BAD_PKT(rep_stat)) { dev_dbg(dev, "%s: Invalid buffer detected\n", __func__); rc = 0; goto cyttsp4_xy_worker_exit; } if (IS_LARGE_AREA(tt_stat)) dev_dbg(dev, "%s: Large area detected\n", __func__); if (num_cur_tch > si->si_ofs.max_tchs) { dev_err(dev, "%s: too many tch; set to max tch (n=%d c=%zd)\n", __func__, num_cur_tch, si->si_ofs.max_tchs); num_cur_tch = si->si_ofs.max_tchs; } /* extract xy_data for all currently reported touches */ dev_vdbg(dev, "%s: extract data num_cur_tch=%d\n", __func__, num_cur_tch); if (num_cur_tch) cyttsp4_get_mt_touches(md, num_cur_tch); else cyttsp4_lift_all(md); rc = 0; cyttsp4_xy_worker_exit: return rc; } static int cyttsp4_mt_attention(struct cyttsp4 *cd) { struct device *dev = cd->dev; struct cyttsp4_mt_data *md = &cd->md; int rc = 0; if (!md->si) return 0; mutex_lock(&md->report_lock); if (!md->is_suspended) { /* core handles handshake */ rc = cyttsp4_xy_worker(cd); } else { dev_vdbg(dev, "%s: Ignoring report while suspended\n", __func__); } mutex_unlock(&md->report_lock); if (rc < 0) dev_err(dev, "%s: xy_worker error r=%d\n", __func__, rc); return rc; } static irqreturn_t cyttsp4_irq(int irq, void *handle) { struct cyttsp4 *cd = handle; struct device *dev = cd->dev; enum cyttsp4_mode cur_mode; u8 cmd_ofs = cd->sysinfo.si_ofs.cmd_ofs; u8 mode[3]; int rc; /* * Check whether this IRQ should be ignored (external) * This should be the very first thing to check since * ignore_irq may be set for a very short period of time */ if (atomic_read(&cd->ignore_irq)) { dev_vdbg(dev, "%s: Ignoring IRQ\n", __func__); return IRQ_HANDLED; } dev_dbg(dev, "%s int:0x%x\n", __func__, cd->int_status); mutex_lock(&cd->system_lock); /* Just to debug */ if (cd->sleep_state == SS_SLEEP_ON || cd->sleep_state == SS_SLEEPING) dev_vdbg(dev, "%s: Received IRQ while in sleep\n", __func__); rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), mode); if (rc) { dev_err(cd->dev, "%s: Fail read adapter r=%d\n", __func__, rc); goto cyttsp4_irq_exit; } dev_vdbg(dev, "%s mode[0-2]:0x%X 0x%X 0x%X\n", __func__, mode[0], mode[1], mode[2]); if (IS_BOOTLOADER(mode[0], mode[1])) { cur_mode = CY_MODE_BOOTLOADER; dev_vdbg(dev, "%s: bl running\n", __func__); if (cd->mode == CY_MODE_BOOTLOADER) { /* Signal bootloader heartbeat heard */ wake_up(&cd->wait_q); goto cyttsp4_irq_exit; } /* switch to bootloader */ dev_dbg(dev, "%s: restart switch to bl m=%d -> m=%d\n", __func__, cd->mode, cur_mode); /* catch operation->bl glitch */ if (cd->mode != CY_MODE_UNKNOWN) { /* Incase startup_state do not let startup_() */ cd->mode = CY_MODE_UNKNOWN; cyttsp4_queue_startup_(cd); goto cyttsp4_irq_exit; } /* * do not wake thread on this switch since * it is possible to get an early heartbeat * prior to performing the reset */ cd->mode = cur_mode; goto cyttsp4_irq_exit; } switch (mode[0] & CY_HST_MODE) { case CY_HST_OPERATE: cur_mode = CY_MODE_OPERATIONAL; dev_vdbg(dev, "%s: operational\n", __func__); break; case CY_HST_CAT: cur_mode = CY_MODE_CAT; dev_vdbg(dev, "%s: CaT\n", __func__); break; case CY_HST_SYSINFO: cur_mode = CY_MODE_SYSINFO; dev_vdbg(dev, "%s: sysinfo\n", __func__); break; default: cur_mode = CY_MODE_UNKNOWN; dev_err(dev, "%s: unknown HST mode 0x%02X\n", __func__, mode[0]); break; } /* Check whether this IRQ should be ignored (internal) */ if (cd->int_status & CY_INT_IGNORE) { dev_vdbg(dev, "%s: Ignoring IRQ\n", __func__); goto cyttsp4_irq_exit; } /* Check for wake up interrupt */ if (cd->int_status & CY_INT_AWAKE) { cd->int_status &= ~CY_INT_AWAKE; wake_up(&cd->wait_q); dev_vdbg(dev, "%s: Received wake up interrupt\n", __func__); goto cyttsp4_irq_handshake; } /* Expecting mode change interrupt */ if ((cd->int_status & CY_INT_MODE_CHANGE) && (mode[0] & CY_HST_MODE_CHANGE) == 0) { cd->int_status &= ~CY_INT_MODE_CHANGE; dev_dbg(dev, "%s: finish mode switch m=%d -> m=%d\n", __func__, cd->mode, cur_mode); cd->mode = cur_mode; wake_up(&cd->wait_q); goto cyttsp4_irq_handshake; } /* compare current core mode to current device mode */ dev_vdbg(dev, "%s: cd->mode=%d cur_mode=%d\n", __func__, cd->mode, cur_mode); if ((mode[0] & CY_HST_MODE_CHANGE) == 0 && cd->mode != cur_mode) { /* Unexpected mode change occurred */ dev_err(dev, "%s %d->%d 0x%x\n", __func__, cd->mode, cur_mode, cd->int_status); dev_dbg(dev, "%s: Unexpected mode change, startup\n", __func__); cyttsp4_queue_startup_(cd); goto cyttsp4_irq_exit; } /* Expecting command complete interrupt */ dev_vdbg(dev, "%s: command byte:0x%x\n", __func__, mode[cmd_ofs]); if ((cd->int_status & CY_INT_EXEC_CMD) && mode[cmd_ofs] & CY_CMD_COMPLETE) { cd->int_status &= ~CY_INT_EXEC_CMD; dev_vdbg(dev, "%s: Received command complete interrupt\n", __func__); wake_up(&cd->wait_q); /* * It is possible to receive a single interrupt for * command complete and touch/button status report. * Continue processing for a possible status report. */ } /* This should be status report, read status regs */ if (cd->mode == CY_MODE_OPERATIONAL) { dev_vdbg(dev, "%s: Read status registers\n", __func__); rc = cyttsp4_load_status_regs(cd); if (rc < 0) dev_err(dev, "%s: fail read mode regs r=%d\n", __func__, rc); } cyttsp4_mt_attention(cd); cyttsp4_irq_handshake: /* handshake the event */ dev_vdbg(dev, "%s: Handshake mode=0x%02X r=%d\n", __func__, mode[0], rc); rc = cyttsp4_handshake(cd, mode[0]); if (rc < 0) dev_err(dev, "%s: Fail handshake mode=0x%02X r=%d\n", __func__, mode[0], rc); /* * a non-zero udelay period is required for using * IRQF_TRIGGER_LOW in order to delay until the * device completes isr deassert */ udelay(cd->cpdata->level_irq_udelay); cyttsp4_irq_exit: mutex_unlock(&cd->system_lock); return IRQ_HANDLED; } static void cyttsp4_start_wd_timer(struct cyttsp4 *cd) { if (!CY_WATCHDOG_TIMEOUT) return; mod_timer(&cd->watchdog_timer, jiffies + msecs_to_jiffies(CY_WATCHDOG_TIMEOUT)); } static void cyttsp4_stop_wd_timer(struct cyttsp4 *cd) { if (!CY_WATCHDOG_TIMEOUT) return; /* * Ensure we wait until the watchdog timer * running on a different CPU finishes */ del_timer_sync(&cd->watchdog_timer); cancel_work_sync(&cd->watchdog_work); del_timer_sync(&cd->watchdog_timer); } static void cyttsp4_watchdog_timer(struct timer_list *t) { struct cyttsp4 *cd = from_timer(cd, t, watchdog_timer); dev_vdbg(cd->dev, "%s: Watchdog timer triggered\n", __func__); schedule_work(&cd->watchdog_work); return; } static int cyttsp4_request_exclusive(struct cyttsp4 *cd, void *ownptr, int timeout_ms) { int t = msecs_to_jiffies(timeout_ms); bool with_timeout = (timeout_ms != 0); mutex_lock(&cd->system_lock); if (!cd->exclusive_dev && cd->exclusive_waits == 0) { cd->exclusive_dev = ownptr; goto exit; } cd->exclusive_waits++; wait: mutex_unlock(&cd->system_lock); if (with_timeout) { t = wait_event_timeout(cd->wait_q, !cd->exclusive_dev, t); if (IS_TMO(t)) { dev_err(cd->dev, "%s: tmo waiting exclusive access\n", __func__); mutex_lock(&cd->system_lock); cd->exclusive_waits--; mutex_unlock(&cd->system_lock); return -ETIME; } } else { wait_event(cd->wait_q, !cd->exclusive_dev); } mutex_lock(&cd->system_lock); if (cd->exclusive_dev) goto wait; cd->exclusive_dev = ownptr; cd->exclusive_waits--; exit: mutex_unlock(&cd->system_lock); return 0; } /* * returns error if was not owned */ static int cyttsp4_release_exclusive(struct cyttsp4 *cd, void *ownptr) { mutex_lock(&cd->system_lock); if (cd->exclusive_dev != ownptr) { mutex_unlock(&cd->system_lock); return -EINVAL; } dev_vdbg(cd->dev, "%s: exclusive_dev %p freed\n", __func__, cd->exclusive_dev); cd->exclusive_dev = NULL; wake_up(&cd->wait_q); mutex_unlock(&cd->system_lock); return 0; } static int cyttsp4_wait_bl_heartbeat(struct cyttsp4 *cd) { long t; int rc = 0; /* wait heartbeat */ dev_vdbg(cd->dev, "%s: wait heartbeat...\n", __func__); t = wait_event_timeout(cd->wait_q, cd->mode == CY_MODE_BOOTLOADER, msecs_to_jiffies(CY_CORE_RESET_AND_WAIT_TIMEOUT)); if (IS_TMO(t)) { dev_err(cd->dev, "%s: tmo waiting bl heartbeat cd->mode=%d\n", __func__, cd->mode); rc = -ETIME; } return rc; } static int cyttsp4_wait_sysinfo_mode(struct cyttsp4 *cd) { long t; dev_vdbg(cd->dev, "%s: wait sysinfo...\n", __func__); t = wait_event_timeout(cd->wait_q, cd->mode == CY_MODE_SYSINFO, msecs_to_jiffies(CY_CORE_MODE_CHANGE_TIMEOUT)); if (IS_TMO(t)) { dev_err(cd->dev, "%s: tmo waiting exit bl cd->mode=%d\n", __func__, cd->mode); mutex_lock(&cd->system_lock); cd->int_status &= ~CY_INT_MODE_CHANGE; mutex_unlock(&cd->system_lock); return -ETIME; } return 0; } static int cyttsp4_reset_and_wait(struct cyttsp4 *cd) { int rc; /* reset hardware */ mutex_lock(&cd->system_lock); dev_dbg(cd->dev, "%s: reset hw...\n", __func__); rc = cyttsp4_hw_reset(cd); cd->mode = CY_MODE_UNKNOWN; mutex_unlock(&cd->system_lock); if (rc < 0) { dev_err(cd->dev, "%s:Fail hw reset r=%d\n", __func__, rc); return rc; } return cyttsp4_wait_bl_heartbeat(cd); } /* * returns err if refused or timeout; block until mode change complete * bit is set (mode change interrupt) */ static int cyttsp4_set_mode(struct cyttsp4 *cd, int new_mode) { u8 new_dev_mode; u8 mode; long t; int rc; switch (new_mode) { case CY_MODE_OPERATIONAL: new_dev_mode = CY_HST_OPERATE; break; case CY_MODE_SYSINFO: new_dev_mode = CY_HST_SYSINFO; break; case CY_MODE_CAT: new_dev_mode = CY_HST_CAT; break; default: dev_err(cd->dev, "%s: invalid mode: %02X(%d)\n", __func__, new_mode, new_mode); return -EINVAL; } /* change mode */ dev_dbg(cd->dev, "%s: %s=%p new_dev_mode=%02X new_mode=%d\n", __func__, "have exclusive", cd->exclusive_dev, new_dev_mode, new_mode); mutex_lock(&cd->system_lock); rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), &mode); if (rc < 0) { mutex_unlock(&cd->system_lock); dev_err(cd->dev, "%s: Fail read mode r=%d\n", __func__, rc); goto exit; } /* Clear device mode bits and set to new mode */ mode &= ~CY_HST_MODE; mode |= new_dev_mode | CY_HST_MODE_CHANGE; cd->int_status |= CY_INT_MODE_CHANGE; rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(mode), &mode); mutex_unlock(&cd->system_lock); if (rc < 0) { dev_err(cd->dev, "%s: Fail write mode change r=%d\n", __func__, rc); goto exit; } /* wait for mode change done interrupt */ t = wait_event_timeout(cd->wait_q, (cd->int_status & CY_INT_MODE_CHANGE) == 0, msecs_to_jiffies(CY_CORE_MODE_CHANGE_TIMEOUT)); dev_dbg(cd->dev, "%s: back from wait t=%ld cd->mode=%d\n", __func__, t, cd->mode); if (IS_TMO(t)) { dev_err(cd->dev, "%s: %s\n", __func__, "tmo waiting mode change"); mutex_lock(&cd->system_lock); cd->int_status &= ~CY_INT_MODE_CHANGE; mutex_unlock(&cd->system_lock); rc = -EINVAL; } exit: return rc; } static void cyttsp4_watchdog_work(struct work_struct *work) { struct cyttsp4 *cd = container_of(work, struct cyttsp4, watchdog_work); u8 *mode; int retval; mutex_lock(&cd->system_lock); retval = cyttsp4_load_status_regs(cd); if (retval < 0) { dev_err(cd->dev, "%s: failed to access device in watchdog timer r=%d\n", __func__, retval); cyttsp4_queue_startup_(cd); goto cyttsp4_timer_watchdog_exit_error; } mode = &cd->sysinfo.xy_mode[CY_REG_BASE]; if (IS_BOOTLOADER(mode[0], mode[1])) { dev_err(cd->dev, "%s: device found in bootloader mode when operational mode\n", __func__); cyttsp4_queue_startup_(cd); goto cyttsp4_timer_watchdog_exit_error; } cyttsp4_start_wd_timer(cd); cyttsp4_timer_watchdog_exit_error: mutex_unlock(&cd->system_lock); return; } static int cyttsp4_core_sleep_(struct cyttsp4 *cd) { enum cyttsp4_sleep_state ss = SS_SLEEP_ON; enum cyttsp4_int_state int_status = CY_INT_IGNORE; int rc = 0; u8 mode[2]; /* Already in sleep mode? */ mutex_lock(&cd->system_lock); if (cd->sleep_state == SS_SLEEP_ON) { mutex_unlock(&cd->system_lock); return 0; } cd->sleep_state = SS_SLEEPING; mutex_unlock(&cd->system_lock); cyttsp4_stop_wd_timer(cd); /* Wait until currently running IRQ handler exits and disable IRQ */ disable_irq(cd->irq); dev_vdbg(cd->dev, "%s: write DEEP SLEEP...\n", __func__); mutex_lock(&cd->system_lock); rc = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), &mode); if (rc) { mutex_unlock(&cd->system_lock); dev_err(cd->dev, "%s: Fail read adapter r=%d\n", __func__, rc); goto error; } if (IS_BOOTLOADER(mode[0], mode[1])) { mutex_unlock(&cd->system_lock); dev_err(cd->dev, "%s: Device in BOOTLOADER mode.\n", __func__); rc = -EINVAL; goto error; } mode[0] |= CY_HST_SLEEP; rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(mode[0]), &mode[0]); mutex_unlock(&cd->system_lock); if (rc) { dev_err(cd->dev, "%s: Fail write adapter r=%d\n", __func__, rc); goto error; } dev_vdbg(cd->dev, "%s: write DEEP SLEEP succeeded\n", __func__); if (cd->cpdata->power) { dev_dbg(cd->dev, "%s: Power down HW\n", __func__); rc = cd->cpdata->power(cd->cpdata, 0, cd->dev, &cd->ignore_irq); } else { dev_dbg(cd->dev, "%s: No power function\n", __func__); rc = 0; } if (rc < 0) { dev_err(cd->dev, "%s: HW Power down fails r=%d\n", __func__, rc); goto error; } /* Give time to FW to sleep */ msleep(50); goto exit; error: ss = SS_SLEEP_OFF; int_status = CY_INT_NONE; cyttsp4_start_wd_timer(cd); exit: mutex_lock(&cd->system_lock); cd->sleep_state = ss; cd->int_status |= int_status; mutex_unlock(&cd->system_lock); enable_irq(cd->irq); return rc; } static int cyttsp4_startup_(struct cyttsp4 *cd) { int retry = CY_CORE_STARTUP_RETRY_COUNT; int rc; cyttsp4_stop_wd_timer(cd); reset: if (retry != CY_CORE_STARTUP_RETRY_COUNT) dev_dbg(cd->dev, "%s: Retry %d\n", __func__, CY_CORE_STARTUP_RETRY_COUNT - retry); /* reset hardware and wait for heartbeat */ rc = cyttsp4_reset_and_wait(cd); if (rc < 0) { dev_err(cd->dev, "%s: Error on h/w reset r=%d\n", __func__, rc); if (retry--) goto reset; goto exit; } /* exit bl into sysinfo mode */ dev_vdbg(cd->dev, "%s: write exit ldr...\n", __func__); mutex_lock(&cd->system_lock); cd->int_status &= ~CY_INT_IGNORE; cd->int_status |= CY_INT_MODE_CHANGE; rc = cyttsp4_adap_write(cd, CY_REG_BASE, sizeof(ldr_exit), (u8 *)ldr_exit); mutex_unlock(&cd->system_lock); if (rc < 0) { dev_err(cd->dev, "%s: Fail write r=%d\n", __func__, rc); if (retry--) goto reset; goto exit; } rc = cyttsp4_wait_sysinfo_mode(cd); if (rc < 0) { u8 buf[sizeof(ldr_err_app)]; int rc1; /* Check for invalid/corrupted touch application */ rc1 = cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(ldr_err_app), buf); if (rc1) { dev_err(cd->dev, "%s: Fail read r=%d\n", __func__, rc1); } else if (!memcmp(buf, ldr_err_app, sizeof(ldr_err_app))) { dev_err(cd->dev, "%s: Error launching touch application\n", __func__); mutex_lock(&cd->system_lock); cd->invalid_touch_app = true; mutex_unlock(&cd->system_lock); goto exit_no_wd; } if (retry--) goto reset; goto exit; } mutex_lock(&cd->system_lock); cd->invalid_touch_app = false; mutex_unlock(&cd->system_lock); /* read sysinfo data */ dev_vdbg(cd->dev, "%s: get sysinfo regs..\n", __func__); rc = cyttsp4_get_sysinfo_regs(cd); if (rc < 0) { dev_err(cd->dev, "%s: failed to get sysinfo regs rc=%d\n", __func__, rc); if (retry--) goto reset; goto exit; } rc = cyttsp4_set_mode(cd, CY_MODE_OPERATIONAL); if (rc < 0) { dev_err(cd->dev, "%s: failed to set mode to operational rc=%d\n", __func__, rc); if (retry--) goto reset; goto exit; } cyttsp4_lift_all(&cd->md); /* restore to sleep if was suspended */ mutex_lock(&cd->system_lock); if (cd->sleep_state == SS_SLEEP_ON) { cd->sleep_state = SS_SLEEP_OFF; mutex_unlock(&cd->system_lock); cyttsp4_core_sleep_(cd); goto exit_no_wd; } mutex_unlock(&cd->system_lock); exit: cyttsp4_start_wd_timer(cd); exit_no_wd: return rc; } static int cyttsp4_startup(struct cyttsp4 *cd) { int rc; mutex_lock(&cd->system_lock); cd->startup_state = STARTUP_RUNNING; mutex_unlock(&cd->system_lock); rc = cyttsp4_request_exclusive(cd, cd->dev, CY_CORE_REQUEST_EXCLUSIVE_TIMEOUT); if (rc < 0) { dev_err(cd->dev, "%s: fail get exclusive ex=%p own=%p\n", __func__, cd->exclusive_dev, cd->dev); goto exit; } rc = cyttsp4_startup_(cd); if (cyttsp4_release_exclusive(cd, cd->dev) < 0) /* Don't return fail code, mode is already changed. */ dev_err(cd->dev, "%s: fail to release exclusive\n", __func__); else dev_vdbg(cd->dev, "%s: pass release exclusive\n", __func__); exit: mutex_lock(&cd->system_lock); cd->startup_state = STARTUP_NONE; mutex_unlock(&cd->system_lock); /* Wake the waiters for end of startup */ wake_up(&cd->wait_q); return rc; } static void cyttsp4_startup_work_function(struct work_struct *work) { struct cyttsp4 *cd = container_of(work, struct cyttsp4, startup_work); int rc; rc = cyttsp4_startup(cd); if (rc < 0) dev_err(cd->dev, "%s: Fail queued startup r=%d\n", __func__, rc); } static void cyttsp4_free_si_ptrs(struct cyttsp4 *cd) { struct cyttsp4_sysinfo *si = &cd->sysinfo; if (!si) return; kfree(si->si_ptrs.cydata); kfree(si->si_ptrs.test); kfree(si->si_ptrs.pcfg); kfree(si->si_ptrs.opcfg); kfree(si->si_ptrs.ddata); kfree(si->si_ptrs.mdata); kfree(si->btn); kfree(si->xy_mode); kfree(si->xy_data); kfree(si->btn_rec_data); } #ifdef CONFIG_PM static int cyttsp4_core_sleep(struct cyttsp4 *cd) { int rc; rc = cyttsp4_request_exclusive(cd, cd->dev, CY_CORE_SLEEP_REQUEST_EXCLUSIVE_TIMEOUT); if (rc < 0) { dev_err(cd->dev, "%s: fail get exclusive ex=%p own=%p\n", __func__, cd->exclusive_dev, cd->dev); return 0; } rc = cyttsp4_core_sleep_(cd); if (cyttsp4_release_exclusive(cd, cd->dev) < 0) dev_err(cd->dev, "%s: fail to release exclusive\n", __func__); else dev_vdbg(cd->dev, "%s: pass release exclusive\n", __func__); return rc; } static int cyttsp4_core_wake_(struct cyttsp4 *cd) { struct device *dev = cd->dev; int rc; u8 mode; int t; /* Already woken? */ mutex_lock(&cd->system_lock); if (cd->sleep_state == SS_SLEEP_OFF) { mutex_unlock(&cd->system_lock); return 0; } cd->int_status &= ~CY_INT_IGNORE; cd->int_status |= CY_INT_AWAKE; cd->sleep_state = SS_WAKING; if (cd->cpdata->power) { dev_dbg(dev, "%s: Power up HW\n", __func__); rc = cd->cpdata->power(cd->cpdata, 1, dev, &cd->ignore_irq); } else { dev_dbg(dev, "%s: No power function\n", __func__); rc = -ENOSYS; } if (rc < 0) { dev_err(dev, "%s: HW Power up fails r=%d\n", __func__, rc); /* Initiate a read transaction to wake up */ cyttsp4_adap_read(cd, CY_REG_BASE, sizeof(mode), &mode); } else dev_vdbg(cd->dev, "%s: HW power up succeeds\n", __func__); mutex_unlock(&cd->system_lock); t = wait_event_timeout(cd->wait_q, (cd->int_status & CY_INT_AWAKE) == 0, msecs_to_jiffies(CY_CORE_WAKEUP_TIMEOUT)); if (IS_TMO(t)) { dev_err(dev, "%s: TMO waiting for wakeup\n", __func__); mutex_lock(&cd->system_lock); cd->int_status &= ~CY_INT_AWAKE; /* Try starting up */ cyttsp4_queue_startup_(cd); mutex_unlock(&cd->system_lock); } mutex_lock(&cd->system_lock); cd->sleep_state = SS_SLEEP_OFF; mutex_unlock(&cd->system_lock); cyttsp4_start_wd_timer(cd); return 0; } static int cyttsp4_core_wake(struct cyttsp4 *cd) { int rc; rc = cyttsp4_request_exclusive(cd, cd->dev, CY_CORE_REQUEST_EXCLUSIVE_TIMEOUT); if (rc < 0) { dev_err(cd->dev, "%s: fail get exclusive ex=%p own=%p\n", __func__, cd->exclusive_dev, cd->dev); return 0; } rc = cyttsp4_core_wake_(cd); if (cyttsp4_release_exclusive(cd, cd->dev) < 0) dev_err(cd->dev, "%s: fail to release exclusive\n", __func__); else dev_vdbg(cd->dev, "%s: pass release exclusive\n", __func__); return rc; } static int cyttsp4_core_suspend(struct device *dev) { struct cyttsp4 *cd = dev_get_drvdata(dev); struct cyttsp4_mt_data *md = &cd->md; int rc; md->is_suspended = true; rc = cyttsp4_core_sleep(cd); if (rc < 0) { dev_err(dev, "%s: Error on sleep\n", __func__); return -EAGAIN; } return 0; } static int cyttsp4_core_resume(struct device *dev) { struct cyttsp4 *cd = dev_get_drvdata(dev); struct cyttsp4_mt_data *md = &cd->md; int rc; md->is_suspended = false; rc = cyttsp4_core_wake(cd); if (rc < 0) { dev_err(dev, "%s: Error on wake\n", __func__); return -EAGAIN; } return 0; } #endif const struct dev_pm_ops cyttsp4_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(cyttsp4_core_suspend, cyttsp4_core_resume) SET_RUNTIME_PM_OPS(cyttsp4_core_suspend, cyttsp4_core_resume, NULL) }; EXPORT_SYMBOL_GPL(cyttsp4_pm_ops); static int cyttsp4_mt_open(struct input_dev *input) { pm_runtime_get(input->dev.parent); return 0; } static void cyttsp4_mt_close(struct input_dev *input) { struct cyttsp4_mt_data *md = input_get_drvdata(input); mutex_lock(&md->report_lock); if (!md->is_suspended) pm_runtime_put(input->dev.parent); mutex_unlock(&md->report_lock); } static int cyttsp4_setup_input_device(struct cyttsp4 *cd) { struct device *dev = cd->dev; struct cyttsp4_mt_data *md = &cd->md; int signal = CY_IGNORE_VALUE; int max_x, max_y, max_p, min, max; int max_x_tmp, max_y_tmp; int i; int rc; dev_vdbg(dev, "%s: Initialize event signals\n", __func__); __set_bit(EV_ABS, md->input->evbit); __set_bit(EV_REL, md->input->evbit); __set_bit(EV_KEY, md->input->evbit); max_x_tmp = md->si->si_ofs.max_x; max_y_tmp = md->si->si_ofs.max_y; /* get maximum values from the sysinfo data */ if (md->pdata->flags & CY_FLAG_FLIP) { max_x = max_y_tmp - 1; max_y = max_x_tmp - 1; } else { max_x = max_x_tmp - 1; max_y = max_y_tmp - 1; } max_p = md->si->si_ofs.max_p; /* set event signal capabilities */ for (i = 0; i < (md->pdata->frmwrk->size / CY_NUM_ABS_SET); i++) { signal = md->pdata->frmwrk->abs [(i * CY_NUM_ABS_SET) + CY_SIGNAL_OST]; if (signal != CY_IGNORE_VALUE) { __set_bit(signal, md->input->absbit); min = md->pdata->frmwrk->abs [(i * CY_NUM_ABS_SET) + CY_MIN_OST]; max = md->pdata->frmwrk->abs [(i * CY_NUM_ABS_SET) + CY_MAX_OST]; if (i == CY_ABS_ID_OST) { /* shift track ids down to start at 0 */ max = max - min; min = min - min; } else if (i == CY_ABS_X_OST) max = max_x; else if (i == CY_ABS_Y_OST) max = max_y; else if (i == CY_ABS_P_OST) max = max_p; input_set_abs_params(md->input, signal, min, max, md->pdata->frmwrk->abs [(i * CY_NUM_ABS_SET) + CY_FUZZ_OST], md->pdata->frmwrk->abs [(i * CY_NUM_ABS_SET) + CY_FLAT_OST]); dev_dbg(dev, "%s: register signal=%02X min=%d max=%d\n", __func__, signal, min, max); if ((i == CY_ABS_ID_OST) && (md->si->si_ofs.tch_rec_size < CY_TMA4XX_TCH_REC_SIZE)) break; } } input_mt_init_slots(md->input, md->si->si_ofs.tch_abs[CY_TCH_T].max, INPUT_MT_DIRECT); rc = input_register_device(md->input); if (rc < 0) dev_err(dev, "%s: Error, failed register input device r=%d\n", __func__, rc); return rc; } static int cyttsp4_mt_probe(struct cyttsp4 *cd) { struct device *dev = cd->dev; struct cyttsp4_mt_data *md = &cd->md; struct cyttsp4_mt_platform_data *pdata = cd->pdata->mt_pdata; int rc = 0; mutex_init(&md->report_lock); md->pdata = pdata; /* Create the input device and register it. */ dev_vdbg(dev, "%s: Create the input device and register it\n", __func__); md->input = input_allocate_device(); if (md->input == NULL) { dev_err(dev, "%s: Error, failed to allocate input device\n", __func__); rc = -ENOSYS; goto error_alloc_failed; } md->input->name = pdata->inp_dev_name; scnprintf(md->phys, sizeof(md->phys)-1, "%s", dev_name(dev)); md->input->phys = md->phys; md->input->id.bustype = cd->bus_ops->bustype; md->input->dev.parent = dev; md->input->open = cyttsp4_mt_open; md->input->close = cyttsp4_mt_close; input_set_drvdata(md->input, md); /* get sysinfo */ md->si = &cd->sysinfo; if (!md->si) { dev_err(dev, "%s: Fail get sysinfo pointer from core p=%p\n", __func__, md->si); goto error_get_sysinfo; } rc = cyttsp4_setup_input_device(cd); if (rc) goto error_init_input; return 0; error_init_input: input_free_device(md->input); error_get_sysinfo: input_set_drvdata(md->input, NULL); error_alloc_failed: dev_err(dev, "%s failed.\n", __func__); return rc; } struct cyttsp4 *cyttsp4_probe(const struct cyttsp4_bus_ops *ops, struct device *dev, u16 irq, size_t xfer_buf_size) { struct cyttsp4 *cd; struct cyttsp4_platform_data *pdata = dev_get_platdata(dev); unsigned long irq_flags; int rc = 0; if (!pdata || !pdata->core_pdata || !pdata->mt_pdata) { dev_err(dev, "%s: Missing platform data\n", __func__); rc = -ENODEV; goto error_no_pdata; } cd = kzalloc(sizeof(*cd), GFP_KERNEL); if (!cd) { dev_err(dev, "%s: Error, kzalloc\n", __func__); rc = -ENOMEM; goto error_alloc_data; } cd->xfer_buf = kzalloc(xfer_buf_size, GFP_KERNEL); if (!cd->xfer_buf) { dev_err(dev, "%s: Error, kzalloc\n", __func__); rc = -ENOMEM; goto error_free_cd; } /* Initialize device info */ cd->dev = dev; cd->pdata = pdata; cd->cpdata = pdata->core_pdata; cd->bus_ops = ops; /* Initialize mutexes and spinlocks */ mutex_init(&cd->system_lock); mutex_init(&cd->adap_lock); /* Initialize wait queue */ init_waitqueue_head(&cd->wait_q); /* Initialize works */ INIT_WORK(&cd->startup_work, cyttsp4_startup_work_function); INIT_WORK(&cd->watchdog_work, cyttsp4_watchdog_work); /* Initialize IRQ */ cd->irq = gpio_to_irq(cd->cpdata->irq_gpio); if (cd->irq < 0) { rc = -EINVAL; goto error_free_xfer; } dev_set_drvdata(dev, cd); /* Call platform init function */ if (cd->cpdata->init) { dev_dbg(cd->dev, "%s: Init HW\n", __func__); rc = cd->cpdata->init(cd->cpdata, 1, cd->dev); } else { dev_dbg(cd->dev, "%s: No HW INIT function\n", __func__); rc = 0; } if (rc < 0) dev_err(cd->dev, "%s: HW Init fail r=%d\n", __func__, rc); dev_dbg(dev, "%s: initialize threaded irq=%d\n", __func__, cd->irq); if (cd->cpdata->level_irq_udelay > 0) /* use level triggered interrupts */ irq_flags = IRQF_TRIGGER_LOW | IRQF_ONESHOT; else /* use edge triggered interrupts */ irq_flags = IRQF_TRIGGER_FALLING | IRQF_ONESHOT; rc = request_threaded_irq(cd->irq, NULL, cyttsp4_irq, irq_flags, dev_name(dev), cd); if (rc < 0) { dev_err(dev, "%s: Error, could not request irq\n", __func__); goto error_request_irq; } /* Setup watchdog timer */ timer_setup(&cd->watchdog_timer, cyttsp4_watchdog_timer, 0); /* * call startup directly to ensure that the device * is tested before leaving the probe */ rc = cyttsp4_startup(cd); /* Do not fail probe if startup fails but the device is detected */ if (rc < 0 && cd->mode == CY_MODE_UNKNOWN) { dev_err(cd->dev, "%s: Fail initial startup r=%d\n", __func__, rc); goto error_startup; } rc = cyttsp4_mt_probe(cd); if (rc < 0) { dev_err(dev, "%s: Error, fail mt probe\n", __func__); goto error_startup; } pm_runtime_enable(dev); return cd; error_startup: cancel_work_sync(&cd->startup_work); cyttsp4_stop_wd_timer(cd); pm_runtime_disable(dev); cyttsp4_free_si_ptrs(cd); free_irq(cd->irq, cd); error_request_irq: if (cd->cpdata->init) cd->cpdata->init(cd->cpdata, 0, dev); error_free_xfer: kfree(cd->xfer_buf); error_free_cd: kfree(cd); error_alloc_data: error_no_pdata: dev_err(dev, "%s failed.\n", __func__); return ERR_PTR(rc); } EXPORT_SYMBOL_GPL(cyttsp4_probe); static void cyttsp4_mt_release(struct cyttsp4_mt_data *md) { input_unregister_device(md->input); input_set_drvdata(md->input, NULL); } int cyttsp4_remove(struct cyttsp4 *cd) { struct device *dev = cd->dev; cyttsp4_mt_release(&cd->md); /* * Suspend the device before freeing the startup_work and stopping * the watchdog since sleep function restarts watchdog on failure */ pm_runtime_suspend(dev); pm_runtime_disable(dev); cancel_work_sync(&cd->startup_work); cyttsp4_stop_wd_timer(cd); free_irq(cd->irq, cd); if (cd->cpdata->init) cd->cpdata->init(cd->cpdata, 0, dev); cyttsp4_free_si_ptrs(cd); kfree(cd); return 0; } EXPORT_SYMBOL_GPL(cyttsp4_remove); MODULE_LICENSE("GPL"); MODULE_DESCRIPTION("Cypress TrueTouch(R) Standard touchscreen core driver"); MODULE_AUTHOR("Cypress");