// SPDX-License-Identifier: GPL-2.0-only /* * ROHM BU21023/24 Dual touch support resistive touch screen driver * Copyright (C) 2012 ROHM CO.,LTD. */ #include #include #include #include #include #include #include #include #define BU21023_NAME "bu21023_ts" #define BU21023_FIRMWARE_NAME "bu21023.bin" #define MAX_CONTACTS 2 #define AXIS_ADJUST 4 #define AXIS_OFFSET 8 #define FIRMWARE_BLOCK_SIZE 32U #define FIRMWARE_RETRY_MAX 4 #define SAMPLING_DELAY 12 /* msec */ #define CALIBRATION_RETRY_MAX 6 #define ROHM_TS_ABS_X_MIN 40 #define ROHM_TS_ABS_X_MAX 990 #define ROHM_TS_ABS_Y_MIN 160 #define ROHM_TS_ABS_Y_MAX 920 #define ROHM_TS_DISPLACEMENT_MAX 0 /* zero for infinite */ /* * BU21023GUL/BU21023MUV/BU21024FV-M registers map */ #define VADOUT_YP_H 0x00 #define VADOUT_YP_L 0x01 #define VADOUT_XP_H 0x02 #define VADOUT_XP_L 0x03 #define VADOUT_YN_H 0x04 #define VADOUT_YN_L 0x05 #define VADOUT_XN_H 0x06 #define VADOUT_XN_L 0x07 #define PRM1_X_H 0x08 #define PRM1_X_L 0x09 #define PRM1_Y_H 0x0a #define PRM1_Y_L 0x0b #define PRM2_X_H 0x0c #define PRM2_X_L 0x0d #define PRM2_Y_H 0x0e #define PRM2_Y_L 0x0f #define MLT_PRM_MONI_X 0x10 #define MLT_PRM_MONI_Y 0x11 #define DEBUG_MONI_1 0x12 #define DEBUG_MONI_2 0x13 #define VADOUT_ZX_H 0x14 #define VADOUT_ZX_L 0x15 #define VADOUT_ZY_H 0x16 #define VADOUT_ZY_L 0x17 #define Z_PARAM_H 0x18 #define Z_PARAM_L 0x19 /* * Value for VADOUT_*_L */ #define VADOUT_L_MASK 0x01 /* * Value for PRM*_*_L */ #define PRM_L_MASK 0x01 #define POS_X1_H 0x20 #define POS_X1_L 0x21 #define POS_Y1_H 0x22 #define POS_Y1_L 0x23 #define POS_X2_H 0x24 #define POS_X2_L 0x25 #define POS_Y2_H 0x26 #define POS_Y2_L 0x27 /* * Value for POS_*_L */ #define POS_L_MASK 0x01 #define TOUCH 0x28 #define TOUCH_DETECT 0x01 #define TOUCH_GESTURE 0x29 #define SINGLE_TOUCH 0x01 #define DUAL_TOUCH 0x03 #define TOUCH_MASK 0x03 #define CALIBRATION_REQUEST 0x04 #define CALIBRATION_STATUS 0x08 #define CALIBRATION_MASK 0x0c #define GESTURE_SPREAD 0x10 #define GESTURE_PINCH 0x20 #define GESTURE_ROTATE_R 0x40 #define GESTURE_ROTATE_L 0x80 #define INT_STATUS 0x2a #define INT_MASK 0x3d #define INT_CLEAR 0x3e /* * Values for INT_* */ #define COORD_UPDATE 0x01 #define CALIBRATION_DONE 0x02 #define SLEEP_IN 0x04 #define SLEEP_OUT 0x08 #define PROGRAM_LOAD_DONE 0x10 #define ERROR 0x80 #define INT_ALL 0x9f #define ERR_STATUS 0x2b #define ERR_MASK 0x3f /* * Values for ERR_* */ #define ADC_TIMEOUT 0x01 #define CPU_TIMEOUT 0x02 #define CALIBRATION_ERR 0x04 #define PROGRAM_LOAD_ERR 0x10 #define COMMON_SETUP1 0x30 #define PROGRAM_LOAD_HOST 0x02 #define PROGRAM_LOAD_EEPROM 0x03 #define CENSOR_4PORT 0x04 #define CENSOR_8PORT 0x00 /* Not supported by BU21023 */ #define CALIBRATION_TYPE_DEFAULT 0x08 #define CALIBRATION_TYPE_SPECIAL 0x00 #define INT_ACTIVE_HIGH 0x10 #define INT_ACTIVE_LOW 0x00 #define AUTO_CALIBRATION 0x40 #define MANUAL_CALIBRATION 0x00 #define COMMON_SETUP1_DEFAULT 0x4e #define COMMON_SETUP2 0x31 #define MAF_NONE 0x00 #define MAF_1SAMPLE 0x01 #define MAF_3SAMPLES 0x02 #define MAF_5SAMPLES 0x03 #define INV_Y 0x04 #define INV_X 0x08 #define SWAP_XY 0x10 #define COMMON_SETUP3 0x32 #define EN_SLEEP 0x01 #define EN_MULTI 0x02 #define EN_GESTURE 0x04 #define EN_INTVL 0x08 #define SEL_STEP 0x10 #define SEL_MULTI 0x20 #define SEL_TBL_DEFAULT 0x40 #define INTERVAL_TIME 0x33 #define INTERVAL_TIME_DEFAULT 0x10 #define STEP_X 0x34 #define STEP_X_DEFAULT 0x41 #define STEP_Y 0x35 #define STEP_Y_DEFAULT 0x8d #define OFFSET_X 0x38 #define OFFSET_X_DEFAULT 0x0c #define OFFSET_Y 0x39 #define OFFSET_Y_DEFAULT 0x0c #define THRESHOLD_TOUCH 0x3a #define THRESHOLD_TOUCH_DEFAULT 0xa0 #define THRESHOLD_GESTURE 0x3b #define THRESHOLD_GESTURE_DEFAULT 0x17 #define SYSTEM 0x40 #define ANALOG_POWER_ON 0x01 #define ANALOG_POWER_OFF 0x00 #define CPU_POWER_ON 0x02 #define CPU_POWER_OFF 0x00 #define FORCE_CALIBRATION 0x42 #define FORCE_CALIBRATION_ON 0x01 #define FORCE_CALIBRATION_OFF 0x00 #define CPU_FREQ 0x50 /* 10 / (reg + 1) MHz */ #define CPU_FREQ_10MHZ 0x00 #define CPU_FREQ_5MHZ 0x01 #define CPU_FREQ_1MHZ 0x09 #define EEPROM_ADDR 0x51 #define CALIBRATION_ADJUST 0x52 #define CALIBRATION_ADJUST_DEFAULT 0x00 #define THRESHOLD_SLEEP_IN 0x53 #define EVR_XY 0x56 #define EVR_XY_DEFAULT 0x10 #define PRM_SWOFF_TIME 0x57 #define PRM_SWOFF_TIME_DEFAULT 0x04 #define PROGRAM_VERSION 0x5f #define ADC_CTRL 0x60 #define ADC_DIV_MASK 0x1f /* The minimum value is 4 */ #define ADC_DIV_DEFAULT 0x08 #define ADC_WAIT 0x61 #define ADC_WAIT_DEFAULT 0x0a #define SWCONT 0x62 #define SWCONT_DEFAULT 0x0f #define EVR_X 0x63 #define EVR_X_DEFAULT 0x86 #define EVR_Y 0x64 #define EVR_Y_DEFAULT 0x64 #define TEST1 0x65 #define DUALTOUCH_STABILIZE_ON 0x01 #define DUALTOUCH_STABILIZE_OFF 0x00 #define DUALTOUCH_REG_ON 0x20 #define DUALTOUCH_REG_OFF 0x00 #define CALIBRATION_REG1 0x68 #define CALIBRATION_REG1_DEFAULT 0xd9 #define CALIBRATION_REG2 0x69 #define CALIBRATION_REG2_DEFAULT 0x36 #define CALIBRATION_REG3 0x6a #define CALIBRATION_REG3_DEFAULT 0x32 #define EX_ADDR_H 0x70 #define EX_ADDR_L 0x71 #define EX_WDAT 0x72 #define EX_RDAT 0x73 #define EX_CHK_SUM1 0x74 #define EX_CHK_SUM2 0x75 #define EX_CHK_SUM3 0x76 struct rohm_ts_data { struct i2c_client *client; struct input_dev *input; bool initialized; unsigned int contact_count[MAX_CONTACTS + 1]; int finger_count; u8 setup2; }; /* * rohm_i2c_burst_read - execute combined I2C message for ROHM BU21023/24 * @client: Handle to ROHM BU21023/24 * @start: Where to start read address from ROHM BU21023/24 * @buf: Where to store read data from ROHM BU21023/24 * @len: How many bytes to read * * Returns negative errno, else zero on success. * * Note * In BU21023/24 burst read, stop condition is needed after "address write". * Therefore, transmission is performed in 2 steps. */ static int rohm_i2c_burst_read(struct i2c_client *client, u8 start, void *buf, size_t len) { struct i2c_adapter *adap = client->adapter; struct i2c_msg msg[2]; int i, ret = 0; msg[0].addr = client->addr; msg[0].flags = 0; msg[0].len = 1; msg[0].buf = &start; msg[1].addr = client->addr; msg[1].flags = I2C_M_RD; msg[1].len = len; msg[1].buf = buf; i2c_lock_bus(adap, I2C_LOCK_SEGMENT); for (i = 0; i < 2; i++) { if (__i2c_transfer(adap, &msg[i], 1) < 0) { ret = -EIO; break; } } i2c_unlock_bus(adap, I2C_LOCK_SEGMENT); return ret; } static int rohm_ts_manual_calibration(struct rohm_ts_data *ts) { struct i2c_client *client = ts->client; struct device *dev = &client->dev; u8 buf[33]; /* for PRM1_X_H(0x08)-TOUCH(0x28) */ int retry; bool success = false; bool first_time = true; bool calibration_done; u8 reg1, reg2, reg3; s32 reg1_orig, reg2_orig, reg3_orig; s32 val; int calib_x = 0, calib_y = 0; int reg_x, reg_y; int err_x, err_y; int error, error2; int i; reg1_orig = i2c_smbus_read_byte_data(client, CALIBRATION_REG1); if (reg1_orig < 0) return reg1_orig; reg2_orig = i2c_smbus_read_byte_data(client, CALIBRATION_REG2); if (reg2_orig < 0) return reg2_orig; reg3_orig = i2c_smbus_read_byte_data(client, CALIBRATION_REG3); if (reg3_orig < 0) return reg3_orig; error = i2c_smbus_write_byte_data(client, INT_MASK, COORD_UPDATE | SLEEP_IN | SLEEP_OUT | PROGRAM_LOAD_DONE); if (error) goto out; error = i2c_smbus_write_byte_data(client, TEST1, DUALTOUCH_STABILIZE_ON); if (error) goto out; for (retry = 0; retry < CALIBRATION_RETRY_MAX; retry++) { /* wait 2 sampling for update */ mdelay(2 * SAMPLING_DELAY); #define READ_CALIB_BUF(reg) buf[((reg) - PRM1_X_H)] error = rohm_i2c_burst_read(client, PRM1_X_H, buf, sizeof(buf)); if (error) goto out; if (READ_CALIB_BUF(TOUCH) & TOUCH_DETECT) continue; if (first_time) { /* generate calibration parameter */ calib_x = ((int)READ_CALIB_BUF(PRM1_X_H) << 2 | READ_CALIB_BUF(PRM1_X_L)) - AXIS_OFFSET; calib_y = ((int)READ_CALIB_BUF(PRM1_Y_H) << 2 | READ_CALIB_BUF(PRM1_Y_L)) - AXIS_OFFSET; error = i2c_smbus_write_byte_data(client, TEST1, DUALTOUCH_STABILIZE_ON | DUALTOUCH_REG_ON); if (error) goto out; first_time = false; } else { /* generate adjustment parameter */ err_x = (int)READ_CALIB_BUF(PRM1_X_H) << 2 | READ_CALIB_BUF(PRM1_X_L); err_y = (int)READ_CALIB_BUF(PRM1_Y_H) << 2 | READ_CALIB_BUF(PRM1_Y_L); /* X axis ajust */ if (err_x <= 4) calib_x -= AXIS_ADJUST; else if (err_x >= 60) calib_x += AXIS_ADJUST; /* Y axis ajust */ if (err_y <= 4) calib_y -= AXIS_ADJUST; else if (err_y >= 60) calib_y += AXIS_ADJUST; } /* generate calibration setting value */ reg_x = calib_x + ((calib_x & 0x200) << 1); reg_y = calib_y + ((calib_y & 0x200) << 1); /* convert for register format */ reg1 = reg_x >> 3; reg2 = (reg_y & 0x7) << 4 | (reg_x & 0x7); reg3 = reg_y >> 3; error = i2c_smbus_write_byte_data(client, CALIBRATION_REG1, reg1); if (error) goto out; error = i2c_smbus_write_byte_data(client, CALIBRATION_REG2, reg2); if (error) goto out; error = i2c_smbus_write_byte_data(client, CALIBRATION_REG3, reg3); if (error) goto out; /* * force calibration sequcence */ error = i2c_smbus_write_byte_data(client, FORCE_CALIBRATION, FORCE_CALIBRATION_OFF); if (error) goto out; error = i2c_smbus_write_byte_data(client, FORCE_CALIBRATION, FORCE_CALIBRATION_ON); if (error) goto out; /* clear all interrupts */ error = i2c_smbus_write_byte_data(client, INT_CLEAR, 0xff); if (error) goto out; /* * Wait for the status change of calibration, max 10 sampling */ calibration_done = false; for (i = 0; i < 10; i++) { mdelay(SAMPLING_DELAY); val = i2c_smbus_read_byte_data(client, TOUCH_GESTURE); if (!(val & CALIBRATION_MASK)) { calibration_done = true; break; } else if (val < 0) { error = val; goto out; } } if (calibration_done) { val = i2c_smbus_read_byte_data(client, INT_STATUS); if (val == CALIBRATION_DONE) { success = true; break; } else if (val < 0) { error = val; goto out; } } else { dev_warn(dev, "calibration timeout\n"); } } if (!success) { error = i2c_smbus_write_byte_data(client, CALIBRATION_REG1, reg1_orig); if (error) goto out; error = i2c_smbus_write_byte_data(client, CALIBRATION_REG2, reg2_orig); if (error) goto out; error = i2c_smbus_write_byte_data(client, CALIBRATION_REG3, reg3_orig); if (error) goto out; /* calibration data enable */ error = i2c_smbus_write_byte_data(client, TEST1, DUALTOUCH_STABILIZE_ON | DUALTOUCH_REG_ON); if (error) goto out; /* wait 10 sampling */ mdelay(10 * SAMPLING_DELAY); error = -EBUSY; } out: error2 = i2c_smbus_write_byte_data(client, INT_MASK, INT_ALL); if (!error2) /* Clear all interrupts */ error2 = i2c_smbus_write_byte_data(client, INT_CLEAR, 0xff); return error ? error : error2; } static const unsigned int untouch_threshold[3] = { 0, 1, 5 }; static const unsigned int single_touch_threshold[3] = { 0, 0, 4 }; static const unsigned int dual_touch_threshold[3] = { 10, 8, 0 }; static irqreturn_t rohm_ts_soft_irq(int irq, void *dev_id) { struct rohm_ts_data *ts = dev_id; struct i2c_client *client = ts->client; struct input_dev *input_dev = ts->input; struct device *dev = &client->dev; u8 buf[10]; /* for POS_X1_H(0x20)-TOUCH_GESTURE(0x29) */ struct input_mt_pos pos[MAX_CONTACTS]; int slots[MAX_CONTACTS]; u8 touch_flags; unsigned int threshold; int finger_count = -1; int prev_finger_count = ts->finger_count; int count; int error; int i; error = i2c_smbus_write_byte_data(client, INT_MASK, INT_ALL); if (error) return IRQ_HANDLED; /* Clear all interrupts */ error = i2c_smbus_write_byte_data(client, INT_CLEAR, 0xff); if (error) return IRQ_HANDLED; #define READ_POS_BUF(reg) buf[((reg) - POS_X1_H)] error = rohm_i2c_burst_read(client, POS_X1_H, buf, sizeof(buf)); if (error) return IRQ_HANDLED; touch_flags = READ_POS_BUF(TOUCH_GESTURE) & TOUCH_MASK; if (touch_flags) { /* generate coordinates */ pos[0].x = ((s16)READ_POS_BUF(POS_X1_H) << 2) | READ_POS_BUF(POS_X1_L); pos[0].y = ((s16)READ_POS_BUF(POS_Y1_H) << 2) | READ_POS_BUF(POS_Y1_L); pos[1].x = ((s16)READ_POS_BUF(POS_X2_H) << 2) | READ_POS_BUF(POS_X2_L); pos[1].y = ((s16)READ_POS_BUF(POS_Y2_H) << 2) | READ_POS_BUF(POS_Y2_L); } switch (touch_flags) { case 0: threshold = untouch_threshold[prev_finger_count]; if (++ts->contact_count[0] >= threshold) finger_count = 0; break; case SINGLE_TOUCH: threshold = single_touch_threshold[prev_finger_count]; if (++ts->contact_count[1] >= threshold) finger_count = 1; if (finger_count == 1) { if (pos[1].x != 0 && pos[1].y != 0) { pos[0].x = pos[1].x; pos[0].y = pos[1].y; pos[1].x = 0; pos[1].y = 0; } } break; case DUAL_TOUCH: threshold = dual_touch_threshold[prev_finger_count]; if (++ts->contact_count[2] >= threshold) finger_count = 2; break; default: dev_dbg(dev, "Three or more touches are not supported\n"); return IRQ_HANDLED; } if (finger_count >= 0) { if (prev_finger_count != finger_count) { count = ts->contact_count[finger_count]; memset(ts->contact_count, 0, sizeof(ts->contact_count)); ts->contact_count[finger_count] = count; } input_mt_assign_slots(input_dev, slots, pos, finger_count, ROHM_TS_DISPLACEMENT_MAX); for (i = 0; i < finger_count; i++) { input_mt_slot(input_dev, slots[i]); input_mt_report_slot_state(input_dev, MT_TOOL_FINGER, true); input_report_abs(input_dev, ABS_MT_POSITION_X, pos[i].x); input_report_abs(input_dev, ABS_MT_POSITION_Y, pos[i].y); } input_mt_sync_frame(input_dev); input_mt_report_pointer_emulation(input_dev, true); input_sync(input_dev); ts->finger_count = finger_count; } if (READ_POS_BUF(TOUCH_GESTURE) & CALIBRATION_REQUEST) { error = rohm_ts_manual_calibration(ts); if (error) dev_warn(dev, "manual calibration failed: %d\n", error); } i2c_smbus_write_byte_data(client, INT_MASK, CALIBRATION_DONE | SLEEP_OUT | SLEEP_IN | PROGRAM_LOAD_DONE); return IRQ_HANDLED; } static int rohm_ts_load_firmware(struct i2c_client *client, const char *firmware_name) { struct device *dev = &client->dev; const struct firmware *fw; s32 status; unsigned int offset, len, xfer_len; unsigned int retry = 0; int error, error2; error = request_firmware(&fw, firmware_name, dev); if (error) { dev_err(dev, "unable to retrieve firmware %s: %d\n", firmware_name, error); return error; } error = i2c_smbus_write_byte_data(client, INT_MASK, COORD_UPDATE | CALIBRATION_DONE | SLEEP_IN | SLEEP_OUT); if (error) goto out; do { if (retry) { dev_warn(dev, "retrying firmware load\n"); /* settings for retry */ error = i2c_smbus_write_byte_data(client, EX_WDAT, 0); if (error) goto out; } error = i2c_smbus_write_byte_data(client, EX_ADDR_H, 0); if (error) goto out; error = i2c_smbus_write_byte_data(client, EX_ADDR_L, 0); if (error) goto out; error = i2c_smbus_write_byte_data(client, COMMON_SETUP1, COMMON_SETUP1_DEFAULT); if (error) goto out; /* firmware load to the device */ offset = 0; len = fw->size; while (len) { xfer_len = min(FIRMWARE_BLOCK_SIZE, len); error = i2c_smbus_write_i2c_block_data(client, EX_WDAT, xfer_len, &fw->data[offset]); if (error) goto out; len -= xfer_len; offset += xfer_len; } /* check firmware load result */ status = i2c_smbus_read_byte_data(client, INT_STATUS); if (status < 0) { error = status; goto out; } /* clear all interrupts */ error = i2c_smbus_write_byte_data(client, INT_CLEAR, 0xff); if (error) goto out; if (status == PROGRAM_LOAD_DONE) break; error = -EIO; } while (++retry <= FIRMWARE_RETRY_MAX); out: error2 = i2c_smbus_write_byte_data(client, INT_MASK, INT_ALL); release_firmware(fw); return error ? error : error2; } static ssize_t swap_xy_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); struct rohm_ts_data *ts = i2c_get_clientdata(client); return sprintf(buf, "%d\n", !!(ts->setup2 & SWAP_XY)); } static ssize_t swap_xy_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct rohm_ts_data *ts = i2c_get_clientdata(client); unsigned int val; int error; error = kstrtouint(buf, 0, &val); if (error) return error; error = mutex_lock_interruptible(&ts->input->mutex); if (error) return error; if (val) ts->setup2 |= SWAP_XY; else ts->setup2 &= ~SWAP_XY; if (ts->initialized) error = i2c_smbus_write_byte_data(ts->client, COMMON_SETUP2, ts->setup2); mutex_unlock(&ts->input->mutex); return error ? error : count; } static ssize_t inv_x_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); struct rohm_ts_data *ts = i2c_get_clientdata(client); return sprintf(buf, "%d\n", !!(ts->setup2 & INV_X)); } static ssize_t inv_x_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct rohm_ts_data *ts = i2c_get_clientdata(client); unsigned int val; int error; error = kstrtouint(buf, 0, &val); if (error) return error; error = mutex_lock_interruptible(&ts->input->mutex); if (error) return error; if (val) ts->setup2 |= INV_X; else ts->setup2 &= ~INV_X; if (ts->initialized) error = i2c_smbus_write_byte_data(ts->client, COMMON_SETUP2, ts->setup2); mutex_unlock(&ts->input->mutex); return error ? error : count; } static ssize_t inv_y_show(struct device *dev, struct device_attribute *attr, char *buf) { struct i2c_client *client = to_i2c_client(dev); struct rohm_ts_data *ts = i2c_get_clientdata(client); return sprintf(buf, "%d\n", !!(ts->setup2 & INV_Y)); } static ssize_t inv_y_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { struct i2c_client *client = to_i2c_client(dev); struct rohm_ts_data *ts = i2c_get_clientdata(client); unsigned int val; int error; error = kstrtouint(buf, 0, &val); if (error) return error; error = mutex_lock_interruptible(&ts->input->mutex); if (error) return error; if (val) ts->setup2 |= INV_Y; else ts->setup2 &= ~INV_Y; if (ts->initialized) error = i2c_smbus_write_byte_data(client, COMMON_SETUP2, ts->setup2); mutex_unlock(&ts->input->mutex); return error ? error : count; } static DEVICE_ATTR_RW(swap_xy); static DEVICE_ATTR_RW(inv_x); static DEVICE_ATTR_RW(inv_y); static struct attribute *rohm_ts_attrs[] = { &dev_attr_swap_xy.attr, &dev_attr_inv_x.attr, &dev_attr_inv_y.attr, NULL, }; static const struct attribute_group rohm_ts_attr_group = { .attrs = rohm_ts_attrs, }; static int rohm_ts_device_init(struct i2c_client *client, u8 setup2) { struct device *dev = &client->dev; int error; disable_irq(client->irq); /* * Wait 200usec for reset */ udelay(200); /* Release analog reset */ error = i2c_smbus_write_byte_data(client, SYSTEM, ANALOG_POWER_ON | CPU_POWER_OFF); if (error) return error; /* Waiting for the analog warm-up, max. 200usec */ udelay(200); /* clear all interrupts */ error = i2c_smbus_write_byte_data(client, INT_CLEAR, 0xff); if (error) return error; error = i2c_smbus_write_byte_data(client, EX_WDAT, 0); if (error) return error; error = i2c_smbus_write_byte_data(client, COMMON_SETUP1, 0); if (error) return error; error = i2c_smbus_write_byte_data(client, COMMON_SETUP2, setup2); if (error) return error; error = i2c_smbus_write_byte_data(client, COMMON_SETUP3, SEL_TBL_DEFAULT | EN_MULTI); if (error) return error; error = i2c_smbus_write_byte_data(client, THRESHOLD_GESTURE, THRESHOLD_GESTURE_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, INTERVAL_TIME, INTERVAL_TIME_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, CPU_FREQ, CPU_FREQ_10MHZ); if (error) return error; error = i2c_smbus_write_byte_data(client, PRM_SWOFF_TIME, PRM_SWOFF_TIME_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, ADC_CTRL, ADC_DIV_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, ADC_WAIT, ADC_WAIT_DEFAULT); if (error) return error; /* * Panel setup, these values change with the panel. */ error = i2c_smbus_write_byte_data(client, STEP_X, STEP_X_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, STEP_Y, STEP_Y_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, OFFSET_X, OFFSET_X_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, OFFSET_Y, OFFSET_Y_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, THRESHOLD_TOUCH, THRESHOLD_TOUCH_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, EVR_XY, EVR_XY_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, EVR_X, EVR_X_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, EVR_Y, EVR_Y_DEFAULT); if (error) return error; /* Fixed value settings */ error = i2c_smbus_write_byte_data(client, CALIBRATION_ADJUST, CALIBRATION_ADJUST_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, SWCONT, SWCONT_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, TEST1, DUALTOUCH_STABILIZE_ON | DUALTOUCH_REG_ON); if (error) return error; error = rohm_ts_load_firmware(client, BU21023_FIRMWARE_NAME); if (error) { dev_err(dev, "failed to load firmware: %d\n", error); return error; } /* * Manual calibration results are not changed in same environment. * If the force calibration is performed, * the controller will not require calibration request interrupt * when the typical values are set to the calibration registers. */ error = i2c_smbus_write_byte_data(client, CALIBRATION_REG1, CALIBRATION_REG1_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, CALIBRATION_REG2, CALIBRATION_REG2_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, CALIBRATION_REG3, CALIBRATION_REG3_DEFAULT); if (error) return error; error = i2c_smbus_write_byte_data(client, FORCE_CALIBRATION, FORCE_CALIBRATION_OFF); if (error) return error; error = i2c_smbus_write_byte_data(client, FORCE_CALIBRATION, FORCE_CALIBRATION_ON); if (error) return error; /* Clear all interrupts */ error = i2c_smbus_write_byte_data(client, INT_CLEAR, 0xff); if (error) return error; /* Enable coordinates update interrupt */ error = i2c_smbus_write_byte_data(client, INT_MASK, CALIBRATION_DONE | SLEEP_OUT | SLEEP_IN | PROGRAM_LOAD_DONE); if (error) return error; error = i2c_smbus_write_byte_data(client, ERR_MASK, PROGRAM_LOAD_ERR | CPU_TIMEOUT | ADC_TIMEOUT); if (error) return error; /* controller CPU power on */ error = i2c_smbus_write_byte_data(client, SYSTEM, ANALOG_POWER_ON | CPU_POWER_ON); enable_irq(client->irq); return error; } static int rohm_ts_power_off(struct i2c_client *client) { int error; error = i2c_smbus_write_byte_data(client, SYSTEM, ANALOG_POWER_ON | CPU_POWER_OFF); if (error) { dev_err(&client->dev, "failed to power off device CPU: %d\n", error); return error; } error = i2c_smbus_write_byte_data(client, SYSTEM, ANALOG_POWER_OFF | CPU_POWER_OFF); if (error) dev_err(&client->dev, "failed to power off the device: %d\n", error); return error; } static int rohm_ts_open(struct input_dev *input_dev) { struct rohm_ts_data *ts = input_get_drvdata(input_dev); struct i2c_client *client = ts->client; int error; if (!ts->initialized) { error = rohm_ts_device_init(client, ts->setup2); if (error) { dev_err(&client->dev, "device initialization failed: %d\n", error); return error; } ts->initialized = true; } return 0; } static void rohm_ts_close(struct input_dev *input_dev) { struct rohm_ts_data *ts = input_get_drvdata(input_dev); rohm_ts_power_off(ts->client); ts->initialized = false; } static int rohm_bu21023_i2c_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct device *dev = &client->dev; struct rohm_ts_data *ts; struct input_dev *input; int error; if (!client->irq) { dev_err(dev, "IRQ is not assigned\n"); return -EINVAL; } if (!client->adapter->algo->master_xfer) { dev_err(dev, "I2C level transfers not supported\n"); return -EOPNOTSUPP; } /* Turn off CPU just in case */ error = rohm_ts_power_off(client); if (error) return error; ts = devm_kzalloc(dev, sizeof(struct rohm_ts_data), GFP_KERNEL); if (!ts) return -ENOMEM; ts->client = client; ts->setup2 = MAF_1SAMPLE; i2c_set_clientdata(client, ts); input = devm_input_allocate_device(dev); if (!input) return -ENOMEM; input->name = BU21023_NAME; input->id.bustype = BUS_I2C; input->open = rohm_ts_open; input->close = rohm_ts_close; ts->input = input; input_set_drvdata(input, ts); input_set_abs_params(input, ABS_MT_POSITION_X, ROHM_TS_ABS_X_MIN, ROHM_TS_ABS_X_MAX, 0, 0); input_set_abs_params(input, ABS_MT_POSITION_Y, ROHM_TS_ABS_Y_MIN, ROHM_TS_ABS_Y_MAX, 0, 0); error = input_mt_init_slots(input, MAX_CONTACTS, INPUT_MT_DIRECT | INPUT_MT_TRACK | INPUT_MT_DROP_UNUSED); if (error) { dev_err(dev, "failed to multi touch slots initialization\n"); return error; } error = devm_request_threaded_irq(dev, client->irq, NULL, rohm_ts_soft_irq, IRQF_ONESHOT, client->name, ts); if (error) { dev_err(dev, "failed to request IRQ: %d\n", error); return error; } error = input_register_device(input); if (error) { dev_err(dev, "failed to register input device: %d\n", error); return error; } error = devm_device_add_group(dev, &rohm_ts_attr_group); if (error) { dev_err(dev, "failed to create sysfs group: %d\n", error); return error; } return error; } static const struct i2c_device_id rohm_bu21023_i2c_id[] = { { BU21023_NAME, 0 }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(i2c, rohm_bu21023_i2c_id); static struct i2c_driver rohm_bu21023_i2c_driver = { .driver = { .name = BU21023_NAME, }, .probe = rohm_bu21023_i2c_probe, .id_table = rohm_bu21023_i2c_id, }; module_i2c_driver(rohm_bu21023_i2c_driver); MODULE_DESCRIPTION("ROHM BU21023/24 Touchscreen driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("ROHM Co., Ltd.");