#define pr_fmt(fmt) "DMAR-IR: " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "irq_remapping.h" enum irq_mode { IRQ_REMAPPING, IRQ_POSTING, }; struct ioapic_scope { struct intel_iommu *iommu; unsigned int id; unsigned int bus; /* PCI bus number */ unsigned int devfn; /* PCI devfn number */ }; struct hpet_scope { struct intel_iommu *iommu; u8 id; unsigned int bus; unsigned int devfn; }; struct irq_2_iommu { struct intel_iommu *iommu; u16 irte_index; u16 sub_handle; u8 irte_mask; enum irq_mode mode; }; struct intel_ir_data { struct irq_2_iommu irq_2_iommu; struct irte irte_entry; union { struct msi_msg msi_entry; }; }; #define IR_X2APIC_MODE(mode) (mode ? (1 << 11) : 0) #define IRTE_DEST(dest) ((eim_mode) ? dest : dest << 8) static int __read_mostly eim_mode; static struct ioapic_scope ir_ioapic[MAX_IO_APICS]; static struct hpet_scope ir_hpet[MAX_HPET_TBS]; /* * Lock ordering: * ->dmar_global_lock * ->irq_2_ir_lock * ->qi->q_lock * ->iommu->register_lock * Note: * intel_irq_remap_ops.{supported,prepare,enable,disable,reenable} are called * in single-threaded environment with interrupt disabled, so no need to tabke * the dmar_global_lock. */ static DEFINE_RAW_SPINLOCK(irq_2_ir_lock); static const struct irq_domain_ops intel_ir_domain_ops; static void iommu_disable_irq_remapping(struct intel_iommu *iommu); static int __init parse_ioapics_under_ir(void); static bool ir_pre_enabled(struct intel_iommu *iommu) { return (iommu->flags & VTD_FLAG_IRQ_REMAP_PRE_ENABLED); } static void clear_ir_pre_enabled(struct intel_iommu *iommu) { iommu->flags &= ~VTD_FLAG_IRQ_REMAP_PRE_ENABLED; } static void init_ir_status(struct intel_iommu *iommu) { u32 gsts; gsts = readl(iommu->reg + DMAR_GSTS_REG); if (gsts & DMA_GSTS_IRES) iommu->flags |= VTD_FLAG_IRQ_REMAP_PRE_ENABLED; } static int alloc_irte(struct intel_iommu *iommu, int irq, struct irq_2_iommu *irq_iommu, u16 count) { struct ir_table *table = iommu->ir_table; unsigned int mask = 0; unsigned long flags; int index; if (!count || !irq_iommu) return -1; if (count > 1) { count = __roundup_pow_of_two(count); mask = ilog2(count); } if (mask > ecap_max_handle_mask(iommu->ecap)) { pr_err("Requested mask %x exceeds the max invalidation handle" " mask value %Lx\n", mask, ecap_max_handle_mask(iommu->ecap)); return -1; } raw_spin_lock_irqsave(&irq_2_ir_lock, flags); index = bitmap_find_free_region(table->bitmap, INTR_REMAP_TABLE_ENTRIES, mask); if (index < 0) { pr_warn("IR%d: can't allocate an IRTE\n", iommu->seq_id); } else { irq_iommu->iommu = iommu; irq_iommu->irte_index = index; irq_iommu->sub_handle = 0; irq_iommu->irte_mask = mask; irq_iommu->mode = IRQ_REMAPPING; } raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); return index; } static int qi_flush_iec(struct intel_iommu *iommu, int index, int mask) { struct qi_desc desc; desc.low = QI_IEC_IIDEX(index) | QI_IEC_TYPE | QI_IEC_IM(mask) | QI_IEC_SELECTIVE; desc.high = 0; return qi_submit_sync(&desc, iommu); } static int modify_irte(struct irq_2_iommu *irq_iommu, struct irte *irte_modified) { struct intel_iommu *iommu; unsigned long flags; struct irte *irte; int rc, index; if (!irq_iommu) return -1; raw_spin_lock_irqsave(&irq_2_ir_lock, flags); iommu = irq_iommu->iommu; index = irq_iommu->irte_index + irq_iommu->sub_handle; irte = &iommu->ir_table->base[index]; #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) if ((irte->pst == 1) || (irte_modified->pst == 1)) { bool ret; ret = cmpxchg_double(&irte->low, &irte->high, irte->low, irte->high, irte_modified->low, irte_modified->high); /* * We use cmpxchg16 to atomically update the 128-bit IRTE, * and it cannot be updated by the hardware or other processors * behind us, so the return value of cmpxchg16 should be the * same as the old value. */ WARN_ON(!ret); } else #endif { set_64bit(&irte->low, irte_modified->low); set_64bit(&irte->high, irte_modified->high); } __iommu_flush_cache(iommu, irte, sizeof(*irte)); rc = qi_flush_iec(iommu, index, 0); /* Update iommu mode according to the IRTE mode */ irq_iommu->mode = irte->pst ? IRQ_POSTING : IRQ_REMAPPING; raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); return rc; } static struct intel_iommu *map_hpet_to_ir(u8 hpet_id) { int i; for (i = 0; i < MAX_HPET_TBS; i++) if (ir_hpet[i].id == hpet_id && ir_hpet[i].iommu) return ir_hpet[i].iommu; return NULL; } static struct intel_iommu *map_ioapic_to_ir(int apic) { int i; for (i = 0; i < MAX_IO_APICS; i++) if (ir_ioapic[i].id == apic && ir_ioapic[i].iommu) return ir_ioapic[i].iommu; return NULL; } static struct intel_iommu *map_dev_to_ir(struct pci_dev *dev) { struct dmar_drhd_unit *drhd; drhd = dmar_find_matched_drhd_unit(dev); if (!drhd) return NULL; return drhd->iommu; } static int clear_entries(struct irq_2_iommu *irq_iommu) { struct irte *start, *entry, *end; struct intel_iommu *iommu; int index; if (irq_iommu->sub_handle) return 0; iommu = irq_iommu->iommu; index = irq_iommu->irte_index; start = iommu->ir_table->base + index; end = start + (1 << irq_iommu->irte_mask); for (entry = start; entry < end; entry++) { set_64bit(&entry->low, 0); set_64bit(&entry->high, 0); } bitmap_release_region(iommu->ir_table->bitmap, index, irq_iommu->irte_mask); return qi_flush_iec(iommu, index, irq_iommu->irte_mask); } /* * source validation type */ #define SVT_NO_VERIFY 0x0 /* no verification is required */ #define SVT_VERIFY_SID_SQ 0x1 /* verify using SID and SQ fields */ #define SVT_VERIFY_BUS 0x2 /* verify bus of request-id */ /* * source-id qualifier */ #define SQ_ALL_16 0x0 /* verify all 16 bits of request-id */ #define SQ_13_IGNORE_1 0x1 /* verify most significant 13 bits, ignore * the third least significant bit */ #define SQ_13_IGNORE_2 0x2 /* verify most significant 13 bits, ignore * the second and third least significant bits */ #define SQ_13_IGNORE_3 0x3 /* verify most significant 13 bits, ignore * the least three significant bits */ /* * set SVT, SQ and SID fields of irte to verify * source ids of interrupt requests */ static void set_irte_sid(struct irte *irte, unsigned int svt, unsigned int sq, unsigned int sid) { if (disable_sourceid_checking) svt = SVT_NO_VERIFY; irte->svt = svt; irte->sq = sq; irte->sid = sid; } static int set_ioapic_sid(struct irte *irte, int apic) { int i; u16 sid = 0; if (!irte) return -1; down_read(&dmar_global_lock); for (i = 0; i < MAX_IO_APICS; i++) { if (ir_ioapic[i].iommu && ir_ioapic[i].id == apic) { sid = (ir_ioapic[i].bus << 8) | ir_ioapic[i].devfn; break; } } up_read(&dmar_global_lock); if (sid == 0) { pr_warn("Failed to set source-id of IOAPIC (%d)\n", apic); return -1; } set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, sid); return 0; } static int set_hpet_sid(struct irte *irte, u8 id) { int i; u16 sid = 0; if (!irte) return -1; down_read(&dmar_global_lock); for (i = 0; i < MAX_HPET_TBS; i++) { if (ir_hpet[i].iommu && ir_hpet[i].id == id) { sid = (ir_hpet[i].bus << 8) | ir_hpet[i].devfn; break; } } up_read(&dmar_global_lock); if (sid == 0) { pr_warn("Failed to set source-id of HPET block (%d)\n", id); return -1; } /* * Should really use SQ_ALL_16. Some platforms are broken. * While we figure out the right quirks for these broken platforms, use * SQ_13_IGNORE_3 for now. */ set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_13_IGNORE_3, sid); return 0; } struct set_msi_sid_data { struct pci_dev *pdev; u16 alias; }; static int set_msi_sid_cb(struct pci_dev *pdev, u16 alias, void *opaque) { struct set_msi_sid_data *data = opaque; data->pdev = pdev; data->alias = alias; return 0; } static int set_msi_sid(struct irte *irte, struct pci_dev *dev) { struct set_msi_sid_data data; if (!irte || !dev) return -1; pci_for_each_dma_alias(dev, set_msi_sid_cb, &data); /* * DMA alias provides us with a PCI device and alias. The only case * where the it will return an alias on a different bus than the * device is the case of a PCIe-to-PCI bridge, where the alias is for * the subordinate bus. In this case we can only verify the bus. * * If the alias device is on a different bus than our source device * then we have a topology based alias, use it. * * Otherwise, the alias is for a device DMA quirk and we cannot * assume that MSI uses the same requester ID. Therefore use the * original device. */ if (PCI_BUS_NUM(data.alias) != data.pdev->bus->number) set_irte_sid(irte, SVT_VERIFY_BUS, SQ_ALL_16, PCI_DEVID(PCI_BUS_NUM(data.alias), dev->bus->number)); else if (data.pdev->bus->number != dev->bus->number) set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, data.alias); else set_irte_sid(irte, SVT_VERIFY_SID_SQ, SQ_ALL_16, PCI_DEVID(dev->bus->number, dev->devfn)); return 0; } static int iommu_load_old_irte(struct intel_iommu *iommu) { struct irte *old_ir_table; phys_addr_t irt_phys; unsigned int i; size_t size; u64 irta; /* Check whether the old ir-table has the same size as ours */ irta = dmar_readq(iommu->reg + DMAR_IRTA_REG); if ((irta & INTR_REMAP_TABLE_REG_SIZE_MASK) != INTR_REMAP_TABLE_REG_SIZE) return -EINVAL; irt_phys = irta & VTD_PAGE_MASK; size = INTR_REMAP_TABLE_ENTRIES*sizeof(struct irte); /* Map the old IR table */ old_ir_table = memremap(irt_phys, size, MEMREMAP_WB); if (!old_ir_table) return -ENOMEM; /* Copy data over */ memcpy(iommu->ir_table->base, old_ir_table, size); __iommu_flush_cache(iommu, iommu->ir_table->base, size); /* * Now check the table for used entries and mark those as * allocated in the bitmap */ for (i = 0; i < INTR_REMAP_TABLE_ENTRIES; i++) { if (iommu->ir_table->base[i].present) bitmap_set(iommu->ir_table->bitmap, i, 1); } memunmap(old_ir_table); return 0; } static void iommu_set_irq_remapping(struct intel_iommu *iommu, int mode) { unsigned long flags; u64 addr; u32 sts; addr = virt_to_phys((void *)iommu->ir_table->base); raw_spin_lock_irqsave(&iommu->register_lock, flags); dmar_writeq(iommu->reg + DMAR_IRTA_REG, (addr) | IR_X2APIC_MODE(mode) | INTR_REMAP_TABLE_REG_SIZE); /* Set interrupt-remapping table pointer */ writel(iommu->gcmd | DMA_GCMD_SIRTP, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_IRTPS), sts); raw_spin_unlock_irqrestore(&iommu->register_lock, flags); /* * Global invalidation of interrupt entry cache to make sure the * hardware uses the new irq remapping table. */ qi_global_iec(iommu); } static void iommu_enable_irq_remapping(struct intel_iommu *iommu) { unsigned long flags; u32 sts; raw_spin_lock_irqsave(&iommu->register_lock, flags); /* Enable interrupt-remapping */ iommu->gcmd |= DMA_GCMD_IRE; iommu->gcmd &= ~DMA_GCMD_CFI; /* Block compatibility-format MSIs */ writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, (sts & DMA_GSTS_IRES), sts); /* * With CFI clear in the Global Command register, we should be * protected from dangerous (i.e. compatibility) interrupts * regardless of x2apic status. Check just to be sure. */ if (sts & DMA_GSTS_CFIS) WARN(1, KERN_WARNING "Compatibility-format IRQs enabled despite intr remapping;\n" "you are vulnerable to IRQ injection.\n"); raw_spin_unlock_irqrestore(&iommu->register_lock, flags); } static int intel_setup_irq_remapping(struct intel_iommu *iommu) { struct ir_table *ir_table; struct fwnode_handle *fn; unsigned long *bitmap; struct page *pages; if (iommu->ir_table) return 0; ir_table = kzalloc(sizeof(struct ir_table), GFP_KERNEL); if (!ir_table) return -ENOMEM; pages = alloc_pages_node(iommu->node, GFP_KERNEL | __GFP_ZERO, INTR_REMAP_PAGE_ORDER); if (!pages) { pr_err("IR%d: failed to allocate pages of order %d\n", iommu->seq_id, INTR_REMAP_PAGE_ORDER); goto out_free_table; } bitmap = kcalloc(BITS_TO_LONGS(INTR_REMAP_TABLE_ENTRIES), sizeof(long), GFP_ATOMIC); if (bitmap == NULL) { pr_err("IR%d: failed to allocate bitmap\n", iommu->seq_id); goto out_free_pages; } fn = irq_domain_alloc_named_id_fwnode("INTEL-IR", iommu->seq_id); if (!fn) goto out_free_bitmap; iommu->ir_domain = irq_domain_create_hierarchy(arch_get_ir_parent_domain(), 0, INTR_REMAP_TABLE_ENTRIES, fn, &intel_ir_domain_ops, iommu); irq_domain_free_fwnode(fn); if (!iommu->ir_domain) { pr_err("IR%d: failed to allocate irqdomain\n", iommu->seq_id); goto out_free_bitmap; } iommu->ir_msi_domain = arch_create_remap_msi_irq_domain(iommu->ir_domain, "INTEL-IR-MSI", iommu->seq_id); ir_table->base = page_address(pages); ir_table->bitmap = bitmap; iommu->ir_table = ir_table; /* * If the queued invalidation is already initialized, * shouldn't disable it. */ if (!iommu->qi) { /* * Clear previous faults. */ dmar_fault(-1, iommu); dmar_disable_qi(iommu); if (dmar_enable_qi(iommu)) { pr_err("Failed to enable queued invalidation\n"); goto out_free_bitmap; } } init_ir_status(iommu); if (ir_pre_enabled(iommu)) { if (!is_kdump_kernel()) { pr_warn("IRQ remapping was enabled on %s but we are not in kdump mode\n", iommu->name); clear_ir_pre_enabled(iommu); iommu_disable_irq_remapping(iommu); } else if (iommu_load_old_irte(iommu)) pr_err("Failed to copy IR table for %s from previous kernel\n", iommu->name); else pr_info("Copied IR table for %s from previous kernel\n", iommu->name); } iommu_set_irq_remapping(iommu, eim_mode); return 0; out_free_bitmap: kfree(bitmap); out_free_pages: __free_pages(pages, INTR_REMAP_PAGE_ORDER); out_free_table: kfree(ir_table); iommu->ir_table = NULL; return -ENOMEM; } static void intel_teardown_irq_remapping(struct intel_iommu *iommu) { if (iommu && iommu->ir_table) { if (iommu->ir_msi_domain) { irq_domain_remove(iommu->ir_msi_domain); iommu->ir_msi_domain = NULL; } if (iommu->ir_domain) { irq_domain_remove(iommu->ir_domain); iommu->ir_domain = NULL; } free_pages((unsigned long)iommu->ir_table->base, INTR_REMAP_PAGE_ORDER); kfree(iommu->ir_table->bitmap); kfree(iommu->ir_table); iommu->ir_table = NULL; } } /* * Disable Interrupt Remapping. */ static void iommu_disable_irq_remapping(struct intel_iommu *iommu) { unsigned long flags; u32 sts; if (!ecap_ir_support(iommu->ecap)) return; /* * global invalidation of interrupt entry cache before disabling * interrupt-remapping. */ qi_global_iec(iommu); raw_spin_lock_irqsave(&iommu->register_lock, flags); sts = readl(iommu->reg + DMAR_GSTS_REG); if (!(sts & DMA_GSTS_IRES)) goto end; iommu->gcmd &= ~DMA_GCMD_IRE; writel(iommu->gcmd, iommu->reg + DMAR_GCMD_REG); IOMMU_WAIT_OP(iommu, DMAR_GSTS_REG, readl, !(sts & DMA_GSTS_IRES), sts); end: raw_spin_unlock_irqrestore(&iommu->register_lock, flags); } static int __init dmar_x2apic_optout(void) { struct acpi_table_dmar *dmar; dmar = (struct acpi_table_dmar *)dmar_tbl; if (!dmar || no_x2apic_optout) return 0; return dmar->flags & DMAR_X2APIC_OPT_OUT; } static void __init intel_cleanup_irq_remapping(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; for_each_iommu(iommu, drhd) { if (ecap_ir_support(iommu->ecap)) { iommu_disable_irq_remapping(iommu); intel_teardown_irq_remapping(iommu); } } if (x2apic_supported()) pr_warn("Failed to enable irq remapping. You are vulnerable to irq-injection attacks.\n"); } static int __init intel_prepare_irq_remapping(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; int eim = 0; if (irq_remap_broken) { pr_warn("This system BIOS has enabled interrupt remapping\n" "on a chipset that contains an erratum making that\n" "feature unstable. To maintain system stability\n" "interrupt remapping is being disabled. Please\n" "contact your BIOS vendor for an update\n"); add_taint(TAINT_FIRMWARE_WORKAROUND, LOCKDEP_STILL_OK); return -ENODEV; } if (dmar_table_init() < 0) return -ENODEV; if (!dmar_ir_support()) return -ENODEV; if (parse_ioapics_under_ir()) { pr_info("Not enabling interrupt remapping\n"); goto error; } /* First make sure all IOMMUs support IRQ remapping */ for_each_iommu(iommu, drhd) if (!ecap_ir_support(iommu->ecap)) goto error; /* Detect remapping mode: lapic or x2apic */ if (x2apic_supported()) { eim = !dmar_x2apic_optout(); if (!eim) { pr_info("x2apic is disabled because BIOS sets x2apic opt out bit."); pr_info("Use 'intremap=no_x2apic_optout' to override the BIOS setting.\n"); } } for_each_iommu(iommu, drhd) { if (eim && !ecap_eim_support(iommu->ecap)) { pr_info("%s does not support EIM\n", iommu->name); eim = 0; } } eim_mode = eim; if (eim) pr_info("Queued invalidation will be enabled to support x2apic and Intr-remapping.\n"); /* Do the initializations early */ for_each_iommu(iommu, drhd) { if (intel_setup_irq_remapping(iommu)) { pr_err("Failed to setup irq remapping for %s\n", iommu->name); goto error; } } return 0; error: intel_cleanup_irq_remapping(); return -ENODEV; } /* * Set Posted-Interrupts capability. */ static inline void set_irq_posting_cap(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; if (!disable_irq_post) { /* * If IRTE is in posted format, the 'pda' field goes across the * 64-bit boundary, we need use cmpxchg16b to atomically update * it. We only expose posted-interrupt when X86_FEATURE_CX16 * is supported. Actually, hardware platforms supporting PI * should have X86_FEATURE_CX16 support, this has been confirmed * with Intel hardware guys. */ if (boot_cpu_has(X86_FEATURE_CX16)) intel_irq_remap_ops.capability |= 1 << IRQ_POSTING_CAP; for_each_iommu(iommu, drhd) if (!cap_pi_support(iommu->cap)) { intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); break; } } } static int __init intel_enable_irq_remapping(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; bool setup = false; /* * Setup Interrupt-remapping for all the DRHD's now. */ for_each_iommu(iommu, drhd) { if (!ir_pre_enabled(iommu)) iommu_enable_irq_remapping(iommu); setup = true; } if (!setup) goto error; irq_remapping_enabled = 1; set_irq_posting_cap(); pr_info("Enabled IRQ remapping in %s mode\n", eim_mode ? "x2apic" : "xapic"); return eim_mode ? IRQ_REMAP_X2APIC_MODE : IRQ_REMAP_XAPIC_MODE; error: intel_cleanup_irq_remapping(); return -1; } static int ir_parse_one_hpet_scope(struct acpi_dmar_device_scope *scope, struct intel_iommu *iommu, struct acpi_dmar_hardware_unit *drhd) { struct acpi_dmar_pci_path *path; u8 bus; int count, free = -1; bus = scope->bus; path = (struct acpi_dmar_pci_path *)(scope + 1); count = (scope->length - sizeof(struct acpi_dmar_device_scope)) / sizeof(struct acpi_dmar_pci_path); while (--count > 0) { /* * Access PCI directly due to the PCI * subsystem isn't initialized yet. */ bus = read_pci_config_byte(bus, path->device, path->function, PCI_SECONDARY_BUS); path++; } for (count = 0; count < MAX_HPET_TBS; count++) { if (ir_hpet[count].iommu == iommu && ir_hpet[count].id == scope->enumeration_id) return 0; else if (ir_hpet[count].iommu == NULL && free == -1) free = count; } if (free == -1) { pr_warn("Exceeded Max HPET blocks\n"); return -ENOSPC; } ir_hpet[free].iommu = iommu; ir_hpet[free].id = scope->enumeration_id; ir_hpet[free].bus = bus; ir_hpet[free].devfn = PCI_DEVFN(path->device, path->function); pr_info("HPET id %d under DRHD base 0x%Lx\n", scope->enumeration_id, drhd->address); return 0; } static int ir_parse_one_ioapic_scope(struct acpi_dmar_device_scope *scope, struct intel_iommu *iommu, struct acpi_dmar_hardware_unit *drhd) { struct acpi_dmar_pci_path *path; u8 bus; int count, free = -1; bus = scope->bus; path = (struct acpi_dmar_pci_path *)(scope + 1); count = (scope->length - sizeof(struct acpi_dmar_device_scope)) / sizeof(struct acpi_dmar_pci_path); while (--count > 0) { /* * Access PCI directly due to the PCI * subsystem isn't initialized yet. */ bus = read_pci_config_byte(bus, path->device, path->function, PCI_SECONDARY_BUS); path++; } for (count = 0; count < MAX_IO_APICS; count++) { if (ir_ioapic[count].iommu == iommu && ir_ioapic[count].id == scope->enumeration_id) return 0; else if (ir_ioapic[count].iommu == NULL && free == -1) free = count; } if (free == -1) { pr_warn("Exceeded Max IO APICS\n"); return -ENOSPC; } ir_ioapic[free].bus = bus; ir_ioapic[free].devfn = PCI_DEVFN(path->device, path->function); ir_ioapic[free].iommu = iommu; ir_ioapic[free].id = scope->enumeration_id; pr_info("IOAPIC id %d under DRHD base 0x%Lx IOMMU %d\n", scope->enumeration_id, drhd->address, iommu->seq_id); return 0; } static int ir_parse_ioapic_hpet_scope(struct acpi_dmar_header *header, struct intel_iommu *iommu) { int ret = 0; struct acpi_dmar_hardware_unit *drhd; struct acpi_dmar_device_scope *scope; void *start, *end; drhd = (struct acpi_dmar_hardware_unit *)header; start = (void *)(drhd + 1); end = ((void *)drhd) + header->length; while (start < end && ret == 0) { scope = start; if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_IOAPIC) ret = ir_parse_one_ioapic_scope(scope, iommu, drhd); else if (scope->entry_type == ACPI_DMAR_SCOPE_TYPE_HPET) ret = ir_parse_one_hpet_scope(scope, iommu, drhd); start += scope->length; } return ret; } static void ir_remove_ioapic_hpet_scope(struct intel_iommu *iommu) { int i; for (i = 0; i < MAX_HPET_TBS; i++) if (ir_hpet[i].iommu == iommu) ir_hpet[i].iommu = NULL; for (i = 0; i < MAX_IO_APICS; i++) if (ir_ioapic[i].iommu == iommu) ir_ioapic[i].iommu = NULL; } /* * Finds the assocaition between IOAPIC's and its Interrupt-remapping * hardware unit. */ static int __init parse_ioapics_under_ir(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu; bool ir_supported = false; int ioapic_idx; for_each_iommu(iommu, drhd) { int ret; if (!ecap_ir_support(iommu->ecap)) continue; ret = ir_parse_ioapic_hpet_scope(drhd->hdr, iommu); if (ret) return ret; ir_supported = true; } if (!ir_supported) return -ENODEV; for (ioapic_idx = 0; ioapic_idx < nr_ioapics; ioapic_idx++) { int ioapic_id = mpc_ioapic_id(ioapic_idx); if (!map_ioapic_to_ir(ioapic_id)) { pr_err(FW_BUG "ioapic %d has no mapping iommu, " "interrupt remapping will be disabled\n", ioapic_id); return -1; } } return 0; } static int __init ir_dev_scope_init(void) { int ret; if (!irq_remapping_enabled) return 0; down_write(&dmar_global_lock); ret = dmar_dev_scope_init(); up_write(&dmar_global_lock); return ret; } rootfs_initcall(ir_dev_scope_init); static void disable_irq_remapping(void) { struct dmar_drhd_unit *drhd; struct intel_iommu *iommu = NULL; /* * Disable Interrupt-remapping for all the DRHD's now. */ for_each_iommu(iommu, drhd) { if (!ecap_ir_support(iommu->ecap)) continue; iommu_disable_irq_remapping(iommu); } /* * Clear Posted-Interrupts capability. */ if (!disable_irq_post) intel_irq_remap_ops.capability &= ~(1 << IRQ_POSTING_CAP); } static int reenable_irq_remapping(int eim) { struct dmar_drhd_unit *drhd; bool setup = false; struct intel_iommu *iommu = NULL; for_each_iommu(iommu, drhd) if (iommu->qi) dmar_reenable_qi(iommu); /* * Setup Interrupt-remapping for all the DRHD's now. */ for_each_iommu(iommu, drhd) { if (!ecap_ir_support(iommu->ecap)) continue; /* Set up interrupt remapping for iommu.*/ iommu_set_irq_remapping(iommu, eim); iommu_enable_irq_remapping(iommu); setup = true; } if (!setup) goto error; set_irq_posting_cap(); return 0; error: /* * handle error condition gracefully here! */ return -1; } static void prepare_irte(struct irte *irte, int vector, unsigned int dest) { memset(irte, 0, sizeof(*irte)); irte->present = 1; irte->dst_mode = apic->irq_dest_mode; /* * Trigger mode in the IRTE will always be edge, and for IO-APIC, the * actual level or edge trigger will be setup in the IO-APIC * RTE. This will help simplify level triggered irq migration. * For more details, see the comments (in io_apic.c) explainig IO-APIC * irq migration in the presence of interrupt-remapping. */ irte->trigger_mode = 0; irte->dlvry_mode = apic->irq_delivery_mode; irte->vector = vector; irte->dest_id = IRTE_DEST(dest); irte->redir_hint = 1; } static struct irq_domain *intel_get_ir_irq_domain(struct irq_alloc_info *info) { struct intel_iommu *iommu = NULL; if (!info) return NULL; switch (info->type) { case X86_IRQ_ALLOC_TYPE_IOAPIC: iommu = map_ioapic_to_ir(info->ioapic_id); break; case X86_IRQ_ALLOC_TYPE_HPET: iommu = map_hpet_to_ir(info->hpet_id); break; case X86_IRQ_ALLOC_TYPE_MSI: case X86_IRQ_ALLOC_TYPE_MSIX: iommu = map_dev_to_ir(info->msi_dev); break; default: BUG_ON(1); break; } return iommu ? iommu->ir_domain : NULL; } static struct irq_domain *intel_get_irq_domain(struct irq_alloc_info *info) { struct intel_iommu *iommu; if (!info) return NULL; switch (info->type) { case X86_IRQ_ALLOC_TYPE_MSI: case X86_IRQ_ALLOC_TYPE_MSIX: iommu = map_dev_to_ir(info->msi_dev); if (iommu) return iommu->ir_msi_domain; break; default: break; } return NULL; } struct irq_remap_ops intel_irq_remap_ops = { .prepare = intel_prepare_irq_remapping, .enable = intel_enable_irq_remapping, .disable = disable_irq_remapping, .reenable = reenable_irq_remapping, .enable_faulting = enable_drhd_fault_handling, .get_ir_irq_domain = intel_get_ir_irq_domain, .get_irq_domain = intel_get_irq_domain, }; /* * Migrate the IO-APIC irq in the presence of intr-remapping. * * For both level and edge triggered, irq migration is a simple atomic * update(of vector and cpu destination) of IRTE and flush the hardware cache. * * For level triggered, we eliminate the io-apic RTE modification (with the * updated vector information), by using a virtual vector (io-apic pin number). * Real vector that is used for interrupting cpu will be coming from * the interrupt-remapping table entry. * * As the migration is a simple atomic update of IRTE, the same mechanism * is used to migrate MSI irq's in the presence of interrupt-remapping. */ static int intel_ir_set_affinity(struct irq_data *data, const struct cpumask *mask, bool force) { struct intel_ir_data *ir_data = data->chip_data; struct irte *irte = &ir_data->irte_entry; struct irq_cfg *cfg = irqd_cfg(data); struct irq_data *parent = data->parent_data; int ret; ret = parent->chip->irq_set_affinity(parent, mask, force); if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE) return ret; /* * Atomically updates the IRTE with the new destination, vector * and flushes the interrupt entry cache. */ irte->vector = cfg->vector; irte->dest_id = IRTE_DEST(cfg->dest_apicid); /* Update the hardware only if the interrupt is in remapped mode. */ if (ir_data->irq_2_iommu.mode == IRQ_REMAPPING) modify_irte(&ir_data->irq_2_iommu, irte); /* * After this point, all the interrupts will start arriving * at the new destination. So, time to cleanup the previous * vector allocation. */ send_cleanup_vector(cfg); return IRQ_SET_MASK_OK_DONE; } static void intel_ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg) { struct intel_ir_data *ir_data = irq_data->chip_data; *msg = ir_data->msi_entry; } static int intel_ir_set_vcpu_affinity(struct irq_data *data, void *info) { struct intel_ir_data *ir_data = data->chip_data; struct vcpu_data *vcpu_pi_info = info; /* stop posting interrupts, back to remapping mode */ if (!vcpu_pi_info) { modify_irte(&ir_data->irq_2_iommu, &ir_data->irte_entry); } else { struct irte irte_pi; /* * We are not caching the posted interrupt entry. We * copy the data from the remapped entry and modify * the fields which are relevant for posted mode. The * cached remapped entry is used for switching back to * remapped mode. */ memset(&irte_pi, 0, sizeof(irte_pi)); dmar_copy_shared_irte(&irte_pi, &ir_data->irte_entry); /* Update the posted mode fields */ irte_pi.p_pst = 1; irte_pi.p_urgent = 0; irte_pi.p_vector = vcpu_pi_info->vector; irte_pi.pda_l = (vcpu_pi_info->pi_desc_addr >> (32 - PDA_LOW_BIT)) & ~(-1UL << PDA_LOW_BIT); irte_pi.pda_h = (vcpu_pi_info->pi_desc_addr >> 32) & ~(-1UL << PDA_HIGH_BIT); modify_irte(&ir_data->irq_2_iommu, &irte_pi); } return 0; } static struct irq_chip intel_ir_chip = { .name = "INTEL-IR", .irq_ack = ir_ack_apic_edge, .irq_set_affinity = intel_ir_set_affinity, .irq_compose_msi_msg = intel_ir_compose_msi_msg, .irq_set_vcpu_affinity = intel_ir_set_vcpu_affinity, }; static void intel_irq_remapping_prepare_irte(struct intel_ir_data *data, struct irq_cfg *irq_cfg, struct irq_alloc_info *info, int index, int sub_handle) { struct IR_IO_APIC_route_entry *entry; struct irte *irte = &data->irte_entry; struct msi_msg *msg = &data->msi_entry; prepare_irte(irte, irq_cfg->vector, irq_cfg->dest_apicid); switch (info->type) { case X86_IRQ_ALLOC_TYPE_IOAPIC: /* Set source-id of interrupt request */ set_ioapic_sid(irte, info->ioapic_id); apic_printk(APIC_VERBOSE, KERN_DEBUG "IOAPIC[%d]: Set IRTE entry (P:%d FPD:%d Dst_Mode:%d Redir_hint:%d Trig_Mode:%d Dlvry_Mode:%X Avail:%X Vector:%02X Dest:%08X SID:%04X SQ:%X SVT:%X)\n", info->ioapic_id, irte->present, irte->fpd, irte->dst_mode, irte->redir_hint, irte->trigger_mode, irte->dlvry_mode, irte->avail, irte->vector, irte->dest_id, irte->sid, irte->sq, irte->svt); entry = (struct IR_IO_APIC_route_entry *)info->ioapic_entry; info->ioapic_entry = NULL; memset(entry, 0, sizeof(*entry)); entry->index2 = (index >> 15) & 0x1; entry->zero = 0; entry->format = 1; entry->index = (index & 0x7fff); /* * IO-APIC RTE will be configured with virtual vector. * irq handler will do the explicit EOI to the io-apic. */ entry->vector = info->ioapic_pin; entry->mask = 0; /* enable IRQ */ entry->trigger = info->ioapic_trigger; entry->polarity = info->ioapic_polarity; if (info->ioapic_trigger) entry->mask = 1; /* Mask level triggered irqs. */ break; case X86_IRQ_ALLOC_TYPE_HPET: case X86_IRQ_ALLOC_TYPE_MSI: case X86_IRQ_ALLOC_TYPE_MSIX: if (info->type == X86_IRQ_ALLOC_TYPE_HPET) set_hpet_sid(irte, info->hpet_id); else set_msi_sid(irte, info->msi_dev); msg->address_hi = MSI_ADDR_BASE_HI; msg->data = sub_handle; msg->address_lo = MSI_ADDR_BASE_LO | MSI_ADDR_IR_EXT_INT | MSI_ADDR_IR_SHV | MSI_ADDR_IR_INDEX1(index) | MSI_ADDR_IR_INDEX2(index); break; default: BUG_ON(1); break; } } static void intel_free_irq_resources(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { struct irq_data *irq_data; struct intel_ir_data *data; struct irq_2_iommu *irq_iommu; unsigned long flags; int i; for (i = 0; i < nr_irqs; i++) { irq_data = irq_domain_get_irq_data(domain, virq + i); if (irq_data && irq_data->chip_data) { data = irq_data->chip_data; irq_iommu = &data->irq_2_iommu; raw_spin_lock_irqsave(&irq_2_ir_lock, flags); clear_entries(irq_iommu); raw_spin_unlock_irqrestore(&irq_2_ir_lock, flags); irq_domain_reset_irq_data(irq_data); kfree(data); } } } static int intel_irq_remapping_alloc(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs, void *arg) { struct intel_iommu *iommu = domain->host_data; struct irq_alloc_info *info = arg; struct intel_ir_data *data, *ird; struct irq_data *irq_data; struct irq_cfg *irq_cfg; int i, ret, index; if (!info || !iommu) return -EINVAL; if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI && info->type != X86_IRQ_ALLOC_TYPE_MSIX) return -EINVAL; /* * With IRQ remapping enabled, don't need contiguous CPU vectors * to support multiple MSI interrupts. */ if (info->type == X86_IRQ_ALLOC_TYPE_MSI) info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS; ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg); if (ret < 0) return ret; ret = -ENOMEM; data = kzalloc(sizeof(*data), GFP_KERNEL); if (!data) goto out_free_parent; down_read(&dmar_global_lock); index = alloc_irte(iommu, virq, &data->irq_2_iommu, nr_irqs); up_read(&dmar_global_lock); if (index < 0) { pr_warn("Failed to allocate IRTE\n"); kfree(data); goto out_free_parent; } for (i = 0; i < nr_irqs; i++) { irq_data = irq_domain_get_irq_data(domain, virq + i); irq_cfg = irqd_cfg(irq_data); if (!irq_data || !irq_cfg) { ret = -EINVAL; goto out_free_data; } if (i > 0) { ird = kzalloc(sizeof(*ird), GFP_KERNEL); if (!ird) goto out_free_data; /* Initialize the common data */ ird->irq_2_iommu = data->irq_2_iommu; ird->irq_2_iommu.sub_handle = i; } else { ird = data; } irq_data->hwirq = (index << 16) + i; irq_data->chip_data = ird; irq_data->chip = &intel_ir_chip; intel_irq_remapping_prepare_irte(ird, irq_cfg, info, index, i); irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT); } return 0; out_free_data: intel_free_irq_resources(domain, virq, i); out_free_parent: irq_domain_free_irqs_common(domain, virq, nr_irqs); return ret; } static void intel_irq_remapping_free(struct irq_domain *domain, unsigned int virq, unsigned int nr_irqs) { intel_free_irq_resources(domain, virq, nr_irqs); irq_domain_free_irqs_common(domain, virq, nr_irqs); } static void intel_irq_remapping_activate(struct irq_domain *domain, struct irq_data *irq_data) { struct intel_ir_data *data = irq_data->chip_data; modify_irte(&data->irq_2_iommu, &data->irte_entry); } static void intel_irq_remapping_deactivate(struct irq_domain *domain, struct irq_data *irq_data) { struct intel_ir_data *data = irq_data->chip_data; struct irte entry; memset(&entry, 0, sizeof(entry)); modify_irte(&data->irq_2_iommu, &entry); } static const struct irq_domain_ops intel_ir_domain_ops = { .alloc = intel_irq_remapping_alloc, .free = intel_irq_remapping_free, .activate = intel_irq_remapping_activate, .deactivate = intel_irq_remapping_deactivate, }; /* * Support of Interrupt Remapping Unit Hotplug */ static int dmar_ir_add(struct dmar_drhd_unit *dmaru, struct intel_iommu *iommu) { int ret; int eim = x2apic_enabled(); if (eim && !ecap_eim_support(iommu->ecap)) { pr_info("DRHD %Lx: EIM not supported by DRHD, ecap %Lx\n", iommu->reg_phys, iommu->ecap); return -ENODEV; } if (ir_parse_ioapic_hpet_scope(dmaru->hdr, iommu)) { pr_warn("DRHD %Lx: failed to parse managed IOAPIC/HPET\n", iommu->reg_phys); return -ENODEV; } /* TODO: check all IOAPICs are covered by IOMMU */ /* Setup Interrupt-remapping now. */ ret = intel_setup_irq_remapping(iommu); if (ret) { pr_err("Failed to setup irq remapping for %s\n", iommu->name); intel_teardown_irq_remapping(iommu); ir_remove_ioapic_hpet_scope(iommu); } else { iommu_enable_irq_remapping(iommu); } return ret; } int dmar_ir_hotplug(struct dmar_drhd_unit *dmaru, bool insert) { int ret = 0; struct intel_iommu *iommu = dmaru->iommu; if (!irq_remapping_enabled) return 0; if (iommu == NULL) return -EINVAL; if (!ecap_ir_support(iommu->ecap)) return 0; if (irq_remapping_cap(IRQ_POSTING_CAP) && !cap_pi_support(iommu->cap)) return -EBUSY; if (insert) { if (!iommu->ir_table) ret = dmar_ir_add(dmaru, iommu); } else { if (iommu->ir_table) { if (!bitmap_empty(iommu->ir_table->bitmap, INTR_REMAP_TABLE_ENTRIES)) { ret = -EBUSY; } else { iommu_disable_irq_remapping(iommu); intel_teardown_irq_remapping(iommu); ir_remove_ioapic_hpet_scope(iommu); } } } return ret; }