/* * IPMMU VMSA * * Copyright (C) 2014 Renesas Electronics Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; version 2 of the License. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include struct ipmmu_vmsa_device { struct device *dev; void __iomem *base; struct list_head list; const struct ipmmu_vmsa_platform_data *pdata; unsigned int num_utlbs; struct dma_iommu_mapping *mapping; }; struct ipmmu_vmsa_domain { struct ipmmu_vmsa_device *mmu; struct iommu_domain *io_domain; unsigned int context_id; spinlock_t lock; /* Protects mappings */ pgd_t *pgd; }; struct ipmmu_vmsa_archdata { struct ipmmu_vmsa_device *mmu; unsigned int utlb; }; static DEFINE_SPINLOCK(ipmmu_devices_lock); static LIST_HEAD(ipmmu_devices); #define TLB_LOOP_TIMEOUT 100 /* 100us */ /* ----------------------------------------------------------------------------- * Registers Definition */ #define IM_CTX_SIZE 0x40 #define IMCTR 0x0000 #define IMCTR_TRE (1 << 17) #define IMCTR_AFE (1 << 16) #define IMCTR_RTSEL_MASK (3 << 4) #define IMCTR_RTSEL_SHIFT 4 #define IMCTR_TREN (1 << 3) #define IMCTR_INTEN (1 << 2) #define IMCTR_FLUSH (1 << 1) #define IMCTR_MMUEN (1 << 0) #define IMCAAR 0x0004 #define IMTTBCR 0x0008 #define IMTTBCR_EAE (1 << 31) #define IMTTBCR_PMB (1 << 30) #define IMTTBCR_SH1_NON_SHAREABLE (0 << 28) #define IMTTBCR_SH1_OUTER_SHAREABLE (2 << 28) #define IMTTBCR_SH1_INNER_SHAREABLE (3 << 28) #define IMTTBCR_SH1_MASK (3 << 28) #define IMTTBCR_ORGN1_NC (0 << 26) #define IMTTBCR_ORGN1_WB_WA (1 << 26) #define IMTTBCR_ORGN1_WT (2 << 26) #define IMTTBCR_ORGN1_WB (3 << 26) #define IMTTBCR_ORGN1_MASK (3 << 26) #define IMTTBCR_IRGN1_NC (0 << 24) #define IMTTBCR_IRGN1_WB_WA (1 << 24) #define IMTTBCR_IRGN1_WT (2 << 24) #define IMTTBCR_IRGN1_WB (3 << 24) #define IMTTBCR_IRGN1_MASK (3 << 24) #define IMTTBCR_TSZ1_MASK (7 << 16) #define IMTTBCR_TSZ1_SHIFT 16 #define IMTTBCR_SH0_NON_SHAREABLE (0 << 12) #define IMTTBCR_SH0_OUTER_SHAREABLE (2 << 12) #define IMTTBCR_SH0_INNER_SHAREABLE (3 << 12) #define IMTTBCR_SH0_MASK (3 << 12) #define IMTTBCR_ORGN0_NC (0 << 10) #define IMTTBCR_ORGN0_WB_WA (1 << 10) #define IMTTBCR_ORGN0_WT (2 << 10) #define IMTTBCR_ORGN0_WB (3 << 10) #define IMTTBCR_ORGN0_MASK (3 << 10) #define IMTTBCR_IRGN0_NC (0 << 8) #define IMTTBCR_IRGN0_WB_WA (1 << 8) #define IMTTBCR_IRGN0_WT (2 << 8) #define IMTTBCR_IRGN0_WB (3 << 8) #define IMTTBCR_IRGN0_MASK (3 << 8) #define IMTTBCR_SL0_LVL_2 (0 << 4) #define IMTTBCR_SL0_LVL_1 (1 << 4) #define IMTTBCR_TSZ0_MASK (7 << 0) #define IMTTBCR_TSZ0_SHIFT O #define IMBUSCR 0x000c #define IMBUSCR_DVM (1 << 2) #define IMBUSCR_BUSSEL_SYS (0 << 0) #define IMBUSCR_BUSSEL_CCI (1 << 0) #define IMBUSCR_BUSSEL_IMCAAR (2 << 0) #define IMBUSCR_BUSSEL_CCI_IMCAAR (3 << 0) #define IMBUSCR_BUSSEL_MASK (3 << 0) #define IMTTLBR0 0x0010 #define IMTTUBR0 0x0014 #define IMTTLBR1 0x0018 #define IMTTUBR1 0x001c #define IMSTR 0x0020 #define IMSTR_ERRLVL_MASK (3 << 12) #define IMSTR_ERRLVL_SHIFT 12 #define IMSTR_ERRCODE_TLB_FORMAT (1 << 8) #define IMSTR_ERRCODE_ACCESS_PERM (4 << 8) #define IMSTR_ERRCODE_SECURE_ACCESS (5 << 8) #define IMSTR_ERRCODE_MASK (7 << 8) #define IMSTR_MHIT (1 << 4) #define IMSTR_ABORT (1 << 2) #define IMSTR_PF (1 << 1) #define IMSTR_TF (1 << 0) #define IMMAIR0 0x0028 #define IMMAIR1 0x002c #define IMMAIR_ATTR_MASK 0xff #define IMMAIR_ATTR_DEVICE 0x04 #define IMMAIR_ATTR_NC 0x44 #define IMMAIR_ATTR_WBRWA 0xff #define IMMAIR_ATTR_SHIFT(n) ((n) << 3) #define IMMAIR_ATTR_IDX_NC 0 #define IMMAIR_ATTR_IDX_WBRWA 1 #define IMMAIR_ATTR_IDX_DEV 2 #define IMEAR 0x0030 #define IMPCTR 0x0200 #define IMPSTR 0x0208 #define IMPEAR 0x020c #define IMPMBA(n) (0x0280 + ((n) * 4)) #define IMPMBD(n) (0x02c0 + ((n) * 4)) #define IMUCTR(n) (0x0300 + ((n) * 16)) #define IMUCTR_FIXADDEN (1 << 31) #define IMUCTR_FIXADD_MASK (0xff << 16) #define IMUCTR_FIXADD_SHIFT 16 #define IMUCTR_TTSEL_MMU(n) ((n) << 4) #define IMUCTR_TTSEL_PMB (8 << 4) #define IMUCTR_TTSEL_MASK (15 << 4) #define IMUCTR_FLUSH (1 << 1) #define IMUCTR_MMUEN (1 << 0) #define IMUASID(n) (0x0308 + ((n) * 16)) #define IMUASID_ASID8_MASK (0xff << 8) #define IMUASID_ASID8_SHIFT 8 #define IMUASID_ASID0_MASK (0xff << 0) #define IMUASID_ASID0_SHIFT 0 /* ----------------------------------------------------------------------------- * Page Table Bits */ /* * VMSA states in section B3.6.3 "Control of Secure or Non-secure memory access, * Long-descriptor format" that the NStable bit being set in a table descriptor * will result in the NStable and NS bits of all child entries being ignored and * considered as being set. The IPMMU seems not to comply with this, as it * generates a secure access page fault if any of the NStable and NS bits isn't * set when running in non-secure mode. */ #ifndef PMD_NSTABLE #define PMD_NSTABLE (_AT(pmdval_t, 1) << 63) #endif #define ARM_VMSA_PTE_XN (((pteval_t)3) << 53) #define ARM_VMSA_PTE_CONT (((pteval_t)1) << 52) #define ARM_VMSA_PTE_AF (((pteval_t)1) << 10) #define ARM_VMSA_PTE_SH_NS (((pteval_t)0) << 8) #define ARM_VMSA_PTE_SH_OS (((pteval_t)2) << 8) #define ARM_VMSA_PTE_SH_IS (((pteval_t)3) << 8) #define ARM_VMSA_PTE_SH_MASK (((pteval_t)3) << 8) #define ARM_VMSA_PTE_NS (((pteval_t)1) << 5) #define ARM_VMSA_PTE_PAGE (((pteval_t)3) << 0) /* Stage-1 PTE */ #define ARM_VMSA_PTE_nG (((pteval_t)1) << 11) #define ARM_VMSA_PTE_AP_UNPRIV (((pteval_t)1) << 6) #define ARM_VMSA_PTE_AP_RDONLY (((pteval_t)2) << 6) #define ARM_VMSA_PTE_AP_MASK (((pteval_t)3) << 6) #define ARM_VMSA_PTE_ATTRINDX_MASK (((pteval_t)3) << 2) #define ARM_VMSA_PTE_ATTRINDX_SHIFT 2 #define ARM_VMSA_PTE_ATTRS_MASK \ (ARM_VMSA_PTE_XN | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_nG | \ ARM_VMSA_PTE_AF | ARM_VMSA_PTE_SH_MASK | ARM_VMSA_PTE_AP_MASK | \ ARM_VMSA_PTE_NS | ARM_VMSA_PTE_ATTRINDX_MASK) #define ARM_VMSA_PTE_CONT_ENTRIES 16 #define ARM_VMSA_PTE_CONT_SIZE (PAGE_SIZE * ARM_VMSA_PTE_CONT_ENTRIES) #define IPMMU_PTRS_PER_PTE 512 #define IPMMU_PTRS_PER_PMD 512 #define IPMMU_PTRS_PER_PGD 4 /* ----------------------------------------------------------------------------- * Read/Write Access */ static u32 ipmmu_read(struct ipmmu_vmsa_device *mmu, unsigned int offset) { return ioread32(mmu->base + offset); } static void ipmmu_write(struct ipmmu_vmsa_device *mmu, unsigned int offset, u32 data) { iowrite32(data, mmu->base + offset); } static u32 ipmmu_ctx_read(struct ipmmu_vmsa_domain *domain, unsigned int reg) { return ipmmu_read(domain->mmu, domain->context_id * IM_CTX_SIZE + reg); } static void ipmmu_ctx_write(struct ipmmu_vmsa_domain *domain, unsigned int reg, u32 data) { ipmmu_write(domain->mmu, domain->context_id * IM_CTX_SIZE + reg, data); } /* ----------------------------------------------------------------------------- * TLB and microTLB Management */ /* Wait for any pending TLB invalidations to complete */ static void ipmmu_tlb_sync(struct ipmmu_vmsa_domain *domain) { unsigned int count = 0; while (ipmmu_ctx_read(domain, IMCTR) & IMCTR_FLUSH) { cpu_relax(); if (++count == TLB_LOOP_TIMEOUT) { dev_err_ratelimited(domain->mmu->dev, "TLB sync timed out -- MMU may be deadlocked\n"); return; } udelay(1); } } static void ipmmu_tlb_invalidate(struct ipmmu_vmsa_domain *domain) { u32 reg; reg = ipmmu_ctx_read(domain, IMCTR); reg |= IMCTR_FLUSH; ipmmu_ctx_write(domain, IMCTR, reg); ipmmu_tlb_sync(domain); } /* * Enable MMU translation for the microTLB. */ static void ipmmu_utlb_enable(struct ipmmu_vmsa_domain *domain, unsigned int utlb) { struct ipmmu_vmsa_device *mmu = domain->mmu; /* * TODO: Reference-count the microTLB as several bus masters can be * connected to the same microTLB. */ /* TODO: What should we set the ASID to ? */ ipmmu_write(mmu, IMUASID(utlb), 0); /* TODO: Do we need to flush the microTLB ? */ ipmmu_write(mmu, IMUCTR(utlb), IMUCTR_TTSEL_MMU(domain->context_id) | IMUCTR_FLUSH | IMUCTR_MMUEN); } /* * Disable MMU translation for the microTLB. */ static void ipmmu_utlb_disable(struct ipmmu_vmsa_domain *domain, unsigned int utlb) { struct ipmmu_vmsa_device *mmu = domain->mmu; ipmmu_write(mmu, IMUCTR(utlb), 0); } static void ipmmu_flush_pgtable(struct ipmmu_vmsa_device *mmu, void *addr, size_t size) { unsigned long offset = (unsigned long)addr & ~PAGE_MASK; /* * TODO: Add support for coherent walk through CCI with DVM and remove * cache handling. */ dma_map_page(mmu->dev, virt_to_page(addr), offset, size, DMA_TO_DEVICE); } /* ----------------------------------------------------------------------------- * Domain/Context Management */ static int ipmmu_domain_init_context(struct ipmmu_vmsa_domain *domain) { phys_addr_t ttbr; u32 reg; /* * TODO: When adding support for multiple contexts, find an unused * context. */ domain->context_id = 0; /* TTBR0 */ ipmmu_flush_pgtable(domain->mmu, domain->pgd, IPMMU_PTRS_PER_PGD * sizeof(*domain->pgd)); ttbr = __pa(domain->pgd); ipmmu_ctx_write(domain, IMTTLBR0, ttbr); ipmmu_ctx_write(domain, IMTTUBR0, ttbr >> 32); /* * TTBCR * We use long descriptors with inner-shareable WBWA tables and allocate * the whole 32-bit VA space to TTBR0. */ ipmmu_ctx_write(domain, IMTTBCR, IMTTBCR_EAE | IMTTBCR_SH0_INNER_SHAREABLE | IMTTBCR_ORGN0_WB_WA | IMTTBCR_IRGN0_WB_WA | IMTTBCR_SL0_LVL_1); /* * MAIR0 * We need three attributes only, non-cacheable, write-back read/write * allocate and device memory. */ reg = (IMMAIR_ATTR_NC << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_NC)) | (IMMAIR_ATTR_WBRWA << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_WBRWA)) | (IMMAIR_ATTR_DEVICE << IMMAIR_ATTR_SHIFT(IMMAIR_ATTR_IDX_DEV)); ipmmu_ctx_write(domain, IMMAIR0, reg); /* IMBUSCR */ ipmmu_ctx_write(domain, IMBUSCR, ipmmu_ctx_read(domain, IMBUSCR) & ~(IMBUSCR_DVM | IMBUSCR_BUSSEL_MASK)); /* * IMSTR * Clear all interrupt flags. */ ipmmu_ctx_write(domain, IMSTR, ipmmu_ctx_read(domain, IMSTR)); /* * IMCTR * Enable the MMU and interrupt generation. The long-descriptor * translation table format doesn't use TEX remapping. Don't enable AF * software management as we have no use for it. Flush the TLB as * required when modifying the context registers. */ ipmmu_ctx_write(domain, IMCTR, IMCTR_INTEN | IMCTR_FLUSH | IMCTR_MMUEN); return 0; } static void ipmmu_domain_destroy_context(struct ipmmu_vmsa_domain *domain) { /* * Disable the context. Flush the TLB as required when modifying the * context registers. * * TODO: Is TLB flush really needed ? */ ipmmu_ctx_write(domain, IMCTR, IMCTR_FLUSH); ipmmu_tlb_sync(domain); } /* ----------------------------------------------------------------------------- * Fault Handling */ static irqreturn_t ipmmu_domain_irq(struct ipmmu_vmsa_domain *domain) { const u32 err_mask = IMSTR_MHIT | IMSTR_ABORT | IMSTR_PF | IMSTR_TF; struct ipmmu_vmsa_device *mmu = domain->mmu; u32 status; u32 iova; status = ipmmu_ctx_read(domain, IMSTR); if (!(status & err_mask)) return IRQ_NONE; iova = ipmmu_ctx_read(domain, IMEAR); /* * Clear the error status flags. Unlike traditional interrupt flag * registers that must be cleared by writing 1, this status register * seems to require 0. The error address register must be read before, * otherwise its value will be 0. */ ipmmu_ctx_write(domain, IMSTR, 0); /* Log fatal errors. */ if (status & IMSTR_MHIT) dev_err_ratelimited(mmu->dev, "Multiple TLB hits @0x%08x\n", iova); if (status & IMSTR_ABORT) dev_err_ratelimited(mmu->dev, "Page Table Walk Abort @0x%08x\n", iova); if (!(status & (IMSTR_PF | IMSTR_TF))) return IRQ_NONE; /* * Try to handle page faults and translation faults. * * TODO: We need to look up the faulty device based on the I/O VA. Use * the IOMMU device for now. */ if (!report_iommu_fault(domain->io_domain, mmu->dev, iova, 0)) return IRQ_HANDLED; dev_err_ratelimited(mmu->dev, "Unhandled fault: status 0x%08x iova 0x%08x\n", status, iova); return IRQ_HANDLED; } static irqreturn_t ipmmu_irq(int irq, void *dev) { struct ipmmu_vmsa_device *mmu = dev; struct iommu_domain *io_domain; struct ipmmu_vmsa_domain *domain; if (!mmu->mapping) return IRQ_NONE; io_domain = mmu->mapping->domain; domain = io_domain->priv; return ipmmu_domain_irq(domain); } /* ----------------------------------------------------------------------------- * Page Table Management */ #define pud_pgtable(pud) pfn_to_page(__phys_to_pfn(pud_val(pud) & PHYS_MASK)) static void ipmmu_free_ptes(pmd_t *pmd) { pgtable_t table = pmd_pgtable(*pmd); __free_page(table); } static void ipmmu_free_pmds(pud_t *pud) { pmd_t *pmd = pmd_offset(pud, 0); pgtable_t table; unsigned int i; for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) { if (!pmd_table(*pmd)) continue; ipmmu_free_ptes(pmd); pmd++; } table = pud_pgtable(*pud); __free_page(table); } static void ipmmu_free_pgtables(struct ipmmu_vmsa_domain *domain) { pgd_t *pgd, *pgd_base = domain->pgd; unsigned int i; /* * Recursively free the page tables for this domain. We don't care about * speculative TLB filling, because the TLB will be nuked next time this * context bank is re-allocated and no devices currently map to these * tables. */ pgd = pgd_base; for (i = 0; i < IPMMU_PTRS_PER_PGD; ++i) { if (pgd_none(*pgd)) continue; ipmmu_free_pmds((pud_t *)pgd); pgd++; } kfree(pgd_base); } /* * We can't use the (pgd|pud|pmd|pte)_populate or the set_(pgd|pud|pmd|pte) * functions as they would flush the CPU TLB. */ static pte_t *ipmmu_alloc_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd, unsigned long iova) { pte_t *pte; if (!pmd_none(*pmd)) return pte_offset_kernel(pmd, iova); pte = (pte_t *)get_zeroed_page(GFP_ATOMIC); if (!pte) return NULL; ipmmu_flush_pgtable(mmu, pte, PAGE_SIZE); *pmd = __pmd(__pa(pte) | PMD_NSTABLE | PMD_TYPE_TABLE); ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd)); return pte + pte_index(iova); } static pmd_t *ipmmu_alloc_pmd(struct ipmmu_vmsa_device *mmu, pgd_t *pgd, unsigned long iova) { pud_t *pud = (pud_t *)pgd; pmd_t *pmd; if (!pud_none(*pud)) return pmd_offset(pud, iova); pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC); if (!pmd) return NULL; ipmmu_flush_pgtable(mmu, pmd, PAGE_SIZE); *pud = __pud(__pa(pmd) | PMD_NSTABLE | PMD_TYPE_TABLE); ipmmu_flush_pgtable(mmu, pud, sizeof(*pud)); return pmd + pmd_index(iova); } static u64 ipmmu_page_prot(unsigned int prot, u64 type) { u64 pgprot = ARM_VMSA_PTE_XN | ARM_VMSA_PTE_nG | ARM_VMSA_PTE_AF | ARM_VMSA_PTE_SH_IS | ARM_VMSA_PTE_AP_UNPRIV | ARM_VMSA_PTE_NS | type; if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ)) pgprot |= ARM_VMSA_PTE_AP_RDONLY; if (prot & IOMMU_CACHE) pgprot |= IMMAIR_ATTR_IDX_WBRWA << ARM_VMSA_PTE_ATTRINDX_SHIFT; if (prot & IOMMU_EXEC) pgprot &= ~ARM_VMSA_PTE_XN; else if (!(prot & (IOMMU_READ | IOMMU_WRITE))) /* If no access create a faulting entry to avoid TLB fills. */ pgprot &= ~ARM_VMSA_PTE_PAGE; return pgprot; } static int ipmmu_alloc_init_pte(struct ipmmu_vmsa_device *mmu, pmd_t *pmd, unsigned long iova, unsigned long pfn, size_t size, int prot) { pteval_t pteval = ipmmu_page_prot(prot, ARM_VMSA_PTE_PAGE); unsigned int num_ptes = 1; pte_t *pte, *start; unsigned int i; pte = ipmmu_alloc_pte(mmu, pmd, iova); if (!pte) return -ENOMEM; start = pte; /* * Install the page table entries. We can be called both for a single * page or for a block of 16 physically contiguous pages. In the latter * case set the PTE contiguous hint. */ if (size == SZ_64K) { pteval |= ARM_VMSA_PTE_CONT; num_ptes = ARM_VMSA_PTE_CONT_ENTRIES; } for (i = num_ptes; i; --i) *pte++ = pfn_pte(pfn++, __pgprot(pteval)); ipmmu_flush_pgtable(mmu, start, sizeof(*pte) * num_ptes); return 0; } static int ipmmu_alloc_init_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd, unsigned long iova, unsigned long pfn, int prot) { pmdval_t pmdval = ipmmu_page_prot(prot, PMD_TYPE_SECT); *pmd = pfn_pmd(pfn, __pgprot(pmdval)); ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd)); return 0; } static int ipmmu_create_mapping(struct ipmmu_vmsa_domain *domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot) { struct ipmmu_vmsa_device *mmu = domain->mmu; pgd_t *pgd = domain->pgd; unsigned long flags; unsigned long pfn; pmd_t *pmd; int ret; if (!pgd) return -EINVAL; if (size & ~PAGE_MASK) return -EINVAL; if (paddr & ~((1ULL << 40) - 1)) return -ERANGE; pfn = __phys_to_pfn(paddr); pgd += pgd_index(iova); /* Update the page tables. */ spin_lock_irqsave(&domain->lock, flags); pmd = ipmmu_alloc_pmd(mmu, pgd, iova); if (!pmd) { ret = -ENOMEM; goto done; } switch (size) { case SZ_2M: ret = ipmmu_alloc_init_pmd(mmu, pmd, iova, pfn, prot); break; case SZ_64K: case SZ_4K: ret = ipmmu_alloc_init_pte(mmu, pmd, iova, pfn, size, prot); break; default: ret = -EINVAL; break; } done: spin_unlock_irqrestore(&domain->lock, flags); if (!ret) ipmmu_tlb_invalidate(domain); return ret; } static void ipmmu_clear_pud(struct ipmmu_vmsa_device *mmu, pud_t *pud) { /* Free the page table. */ pgtable_t table = pud_pgtable(*pud); __free_page(table); /* Clear the PUD. */ *pud = __pud(0); ipmmu_flush_pgtable(mmu, pud, sizeof(*pud)); } static void ipmmu_clear_pmd(struct ipmmu_vmsa_device *mmu, pud_t *pud, pmd_t *pmd) { unsigned int i; /* Free the page table. */ if (pmd_table(*pmd)) { pgtable_t table = pmd_pgtable(*pmd); __free_page(table); } /* Clear the PMD. */ *pmd = __pmd(0); ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd)); /* Check whether the PUD is still needed. */ pmd = pmd_offset(pud, 0); for (i = 0; i < IPMMU_PTRS_PER_PMD; ++i) { if (!pmd_none(pmd[i])) return; } /* Clear the parent PUD. */ ipmmu_clear_pud(mmu, pud); } static void ipmmu_clear_pte(struct ipmmu_vmsa_device *mmu, pud_t *pud, pmd_t *pmd, pte_t *pte, unsigned int num_ptes) { unsigned int i; /* Clear the PTE. */ for (i = num_ptes; i; --i) pte[i-1] = __pte(0); ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * num_ptes); /* Check whether the PMD is still needed. */ pte = pte_offset_kernel(pmd, 0); for (i = 0; i < IPMMU_PTRS_PER_PTE; ++i) { if (!pte_none(pte[i])) return; } /* Clear the parent PMD. */ ipmmu_clear_pmd(mmu, pud, pmd); } static int ipmmu_split_pmd(struct ipmmu_vmsa_device *mmu, pmd_t *pmd) { pte_t *pte, *start; pteval_t pteval; unsigned long pfn; unsigned int i; pte = (pte_t *)get_zeroed_page(GFP_ATOMIC); if (!pte) return -ENOMEM; /* Copy the PMD attributes. */ pteval = (pmd_val(*pmd) & ARM_VMSA_PTE_ATTRS_MASK) | ARM_VMSA_PTE_CONT | ARM_VMSA_PTE_PAGE; pfn = pmd_pfn(*pmd); start = pte; for (i = IPMMU_PTRS_PER_PTE; i; --i) *pte++ = pfn_pte(pfn++, __pgprot(pteval)); ipmmu_flush_pgtable(mmu, start, PAGE_SIZE); *pmd = __pmd(__pa(start) | PMD_NSTABLE | PMD_TYPE_TABLE); ipmmu_flush_pgtable(mmu, pmd, sizeof(*pmd)); return 0; } static void ipmmu_split_pte(struct ipmmu_vmsa_device *mmu, pte_t *pte) { unsigned int i; for (i = ARM_VMSA_PTE_CONT_ENTRIES; i; --i) pte[i-1] = __pte(pte_val(*pte) & ~ARM_VMSA_PTE_CONT); ipmmu_flush_pgtable(mmu, pte, sizeof(*pte) * ARM_VMSA_PTE_CONT_ENTRIES); } static int ipmmu_clear_mapping(struct ipmmu_vmsa_domain *domain, unsigned long iova, size_t size) { struct ipmmu_vmsa_device *mmu = domain->mmu; unsigned long flags; pgd_t *pgd = domain->pgd; pud_t *pud; pmd_t *pmd; pte_t *pte; int ret = 0; if (!pgd) return -EINVAL; if (size & ~PAGE_MASK) return -EINVAL; pgd += pgd_index(iova); pud = (pud_t *)pgd; spin_lock_irqsave(&domain->lock, flags); /* If there's no PUD or PMD we're done. */ if (pud_none(*pud)) goto done; pmd = pmd_offset(pud, iova); if (pmd_none(*pmd)) goto done; /* * When freeing a 2MB block just clear the PMD. In the unlikely case the * block is mapped as individual pages this will free the corresponding * PTE page table. */ if (size == SZ_2M) { ipmmu_clear_pmd(mmu, pud, pmd); goto done; } /* * If the PMD has been mapped as a section remap it as pages to allow * freeing individual pages. */ if (pmd_sect(*pmd)) ipmmu_split_pmd(mmu, pmd); pte = pte_offset_kernel(pmd, iova); /* * When freeing a 64kB block just clear the PTE entries. We don't have * to care about the contiguous hint of the surrounding entries. */ if (size == SZ_64K) { ipmmu_clear_pte(mmu, pud, pmd, pte, ARM_VMSA_PTE_CONT_ENTRIES); goto done; } /* * If the PTE has been mapped with the contiguous hint set remap it and * its surrounding PTEs to allow unmapping a single page. */ if (pte_val(*pte) & ARM_VMSA_PTE_CONT) ipmmu_split_pte(mmu, pte); /* Clear the PTE. */ ipmmu_clear_pte(mmu, pud, pmd, pte, 1); done: spin_unlock_irqrestore(&domain->lock, flags); if (ret) ipmmu_tlb_invalidate(domain); return 0; } /* ----------------------------------------------------------------------------- * IOMMU Operations */ static int ipmmu_domain_init(struct iommu_domain *io_domain) { struct ipmmu_vmsa_domain *domain; domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!domain) return -ENOMEM; spin_lock_init(&domain->lock); domain->pgd = kzalloc(IPMMU_PTRS_PER_PGD * sizeof(pgd_t), GFP_KERNEL); if (!domain->pgd) { kfree(domain); return -ENOMEM; } io_domain->priv = domain; domain->io_domain = io_domain; return 0; } static void ipmmu_domain_destroy(struct iommu_domain *io_domain) { struct ipmmu_vmsa_domain *domain = io_domain->priv; /* * Free the domain resources. We assume that all devices have already * been detached. */ ipmmu_domain_destroy_context(domain); ipmmu_free_pgtables(domain); kfree(domain); } static int ipmmu_attach_device(struct iommu_domain *io_domain, struct device *dev) { struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu; struct ipmmu_vmsa_device *mmu = archdata->mmu; struct ipmmu_vmsa_domain *domain = io_domain->priv; unsigned long flags; int ret = 0; if (!mmu) { dev_err(dev, "Cannot attach to IPMMU\n"); return -ENXIO; } spin_lock_irqsave(&domain->lock, flags); if (!domain->mmu) { /* The domain hasn't been used yet, initialize it. */ domain->mmu = mmu; ret = ipmmu_domain_init_context(domain); } else if (domain->mmu != mmu) { /* * Something is wrong, we can't attach two devices using * different IOMMUs to the same domain. */ dev_err(dev, "Can't attach IPMMU %s to domain on IPMMU %s\n", dev_name(mmu->dev), dev_name(domain->mmu->dev)); ret = -EINVAL; } spin_unlock_irqrestore(&domain->lock, flags); if (ret < 0) return ret; ipmmu_utlb_enable(domain, archdata->utlb); return 0; } static void ipmmu_detach_device(struct iommu_domain *io_domain, struct device *dev) { struct ipmmu_vmsa_archdata *archdata = dev->archdata.iommu; struct ipmmu_vmsa_domain *domain = io_domain->priv; ipmmu_utlb_disable(domain, archdata->utlb); /* * TODO: Optimize by disabling the context when no device is attached. */ } static int ipmmu_map(struct iommu_domain *io_domain, unsigned long iova, phys_addr_t paddr, size_t size, int prot) { struct ipmmu_vmsa_domain *domain = io_domain->priv; if (!domain) return -ENODEV; return ipmmu_create_mapping(domain, iova, paddr, size, prot); } static size_t ipmmu_unmap(struct iommu_domain *io_domain, unsigned long iova, size_t size) { struct ipmmu_vmsa_domain *domain = io_domain->priv; int ret; ret = ipmmu_clear_mapping(domain, iova, size); return ret ? 0 : size; } static phys_addr_t ipmmu_iova_to_phys(struct iommu_domain *io_domain, dma_addr_t iova) { struct ipmmu_vmsa_domain *domain = io_domain->priv; pgd_t pgd; pud_t pud; pmd_t pmd; pte_t pte; /* TODO: Is locking needed ? */ if (!domain->pgd) return 0; pgd = *(domain->pgd + pgd_index(iova)); if (pgd_none(pgd)) return 0; pud = *pud_offset(&pgd, iova); if (pud_none(pud)) return 0; pmd = *pmd_offset(&pud, iova); if (pmd_none(pmd)) return 0; if (pmd_sect(pmd)) return __pfn_to_phys(pmd_pfn(pmd)) | (iova & ~PMD_MASK); pte = *(pmd_page_vaddr(pmd) + pte_index(iova)); if (pte_none(pte)) return 0; return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK); } static int ipmmu_find_utlb(struct ipmmu_vmsa_device *mmu, struct device *dev) { const struct ipmmu_vmsa_master *master = mmu->pdata->masters; const char *devname = dev_name(dev); unsigned int i; for (i = 0; i < mmu->pdata->num_masters; ++i, ++master) { if (strcmp(master->name, devname) == 0) return master->utlb; } return -1; } static int ipmmu_add_device(struct device *dev) { struct ipmmu_vmsa_archdata *archdata; struct ipmmu_vmsa_device *mmu; struct iommu_group *group; int utlb = -1; int ret; if (dev->archdata.iommu) { dev_warn(dev, "IOMMU driver already assigned to device %s\n", dev_name(dev)); return -EINVAL; } /* Find the master corresponding to the device. */ spin_lock(&ipmmu_devices_lock); list_for_each_entry(mmu, &ipmmu_devices, list) { utlb = ipmmu_find_utlb(mmu, dev); if (utlb >= 0) { /* * TODO Take a reference to the MMU to protect * against device removal. */ break; } } spin_unlock(&ipmmu_devices_lock); if (utlb < 0) return -ENODEV; if (utlb >= mmu->num_utlbs) return -EINVAL; /* Create a device group and add the device to it. */ group = iommu_group_alloc(); if (IS_ERR(group)) { dev_err(dev, "Failed to allocate IOMMU group\n"); return PTR_ERR(group); } ret = iommu_group_add_device(group, dev); iommu_group_put(group); if (ret < 0) { dev_err(dev, "Failed to add device to IPMMU group\n"); return ret; } archdata = kzalloc(sizeof(*archdata), GFP_KERNEL); if (!archdata) { ret = -ENOMEM; goto error; } archdata->mmu = mmu; archdata->utlb = utlb; dev->archdata.iommu = archdata; /* * Create the ARM mapping, used by the ARM DMA mapping core to allocate * VAs. This will allocate a corresponding IOMMU domain. * * TODO: * - Create one mapping per context (TLB). * - Make the mapping size configurable ? We currently use a 2GB mapping * at a 1GB offset to ensure that NULL VAs will fault. */ if (!mmu->mapping) { struct dma_iommu_mapping *mapping; mapping = arm_iommu_create_mapping(&platform_bus_type, SZ_1G, SZ_2G); if (IS_ERR(mapping)) { dev_err(mmu->dev, "failed to create ARM IOMMU mapping\n"); return PTR_ERR(mapping); } mmu->mapping = mapping; } /* Attach the ARM VA mapping to the device. */ ret = arm_iommu_attach_device(dev, mmu->mapping); if (ret < 0) { dev_err(dev, "Failed to attach device to VA mapping\n"); goto error; } return 0; error: kfree(dev->archdata.iommu); dev->archdata.iommu = NULL; iommu_group_remove_device(dev); return ret; } static void ipmmu_remove_device(struct device *dev) { arm_iommu_detach_device(dev); iommu_group_remove_device(dev); kfree(dev->archdata.iommu); dev->archdata.iommu = NULL; } static const struct iommu_ops ipmmu_ops = { .domain_init = ipmmu_domain_init, .domain_destroy = ipmmu_domain_destroy, .attach_dev = ipmmu_attach_device, .detach_dev = ipmmu_detach_device, .map = ipmmu_map, .unmap = ipmmu_unmap, .iova_to_phys = ipmmu_iova_to_phys, .add_device = ipmmu_add_device, .remove_device = ipmmu_remove_device, .pgsize_bitmap = SZ_2M | SZ_64K | SZ_4K, }; /* ----------------------------------------------------------------------------- * Probe/remove and init */ static void ipmmu_device_reset(struct ipmmu_vmsa_device *mmu) { unsigned int i; /* Disable all contexts. */ for (i = 0; i < 4; ++i) ipmmu_write(mmu, i * IM_CTX_SIZE + IMCTR, 0); } static int ipmmu_probe(struct platform_device *pdev) { struct ipmmu_vmsa_device *mmu; struct resource *res; int irq; int ret; if (!pdev->dev.platform_data) { dev_err(&pdev->dev, "missing platform data\n"); return -EINVAL; } mmu = devm_kzalloc(&pdev->dev, sizeof(*mmu), GFP_KERNEL); if (!mmu) { dev_err(&pdev->dev, "cannot allocate device data\n"); return -ENOMEM; } mmu->dev = &pdev->dev; mmu->pdata = pdev->dev.platform_data; mmu->num_utlbs = 32; /* Map I/O memory and request IRQ. */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); mmu->base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(mmu->base)) return PTR_ERR(mmu->base); irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "no IRQ found\n"); return irq; } ret = devm_request_irq(&pdev->dev, irq, ipmmu_irq, 0, dev_name(&pdev->dev), mmu); if (ret < 0) { dev_err(&pdev->dev, "failed to request IRQ %d\n", irq); return irq; } ipmmu_device_reset(mmu); /* * We can't create the ARM mapping here as it requires the bus to have * an IOMMU, which only happens when bus_set_iommu() is called in * ipmmu_init() after the probe function returns. */ spin_lock(&ipmmu_devices_lock); list_add(&mmu->list, &ipmmu_devices); spin_unlock(&ipmmu_devices_lock); platform_set_drvdata(pdev, mmu); return 0; } static int ipmmu_remove(struct platform_device *pdev) { struct ipmmu_vmsa_device *mmu = platform_get_drvdata(pdev); spin_lock(&ipmmu_devices_lock); list_del(&mmu->list); spin_unlock(&ipmmu_devices_lock); arm_iommu_release_mapping(mmu->mapping); ipmmu_device_reset(mmu); return 0; } static struct platform_driver ipmmu_driver = { .driver = { .owner = THIS_MODULE, .name = "ipmmu-vmsa", }, .probe = ipmmu_probe, .remove = ipmmu_remove, }; static int __init ipmmu_init(void) { int ret; ret = platform_driver_register(&ipmmu_driver); if (ret < 0) return ret; if (!iommu_present(&platform_bus_type)) bus_set_iommu(&platform_bus_type, &ipmmu_ops); return 0; } static void __exit ipmmu_exit(void) { return platform_driver_unregister(&ipmmu_driver); } subsys_initcall(ipmmu_init); module_exit(ipmmu_exit); MODULE_DESCRIPTION("IOMMU API for Renesas VMSA-compatible IPMMU"); MODULE_AUTHOR("Laurent Pinchart "); MODULE_LICENSE("GPL v2");