/* * Kernel-based Virtual Machine driver for Linux * * AMD SVM support * * Copyright (C) 2006 Qumranet, Inc. * * Authors: * Yaniv Kamay * Avi Kivity * * This work is licensed under the terms of the GNU GPL, version 2. See * the COPYING file in the top-level directory. * */ #include #include #include #include #include #include "kvm_svm.h" #include "x86_emulate.h" MODULE_AUTHOR("Qumranet"); MODULE_LICENSE("GPL"); #define IOPM_ALLOC_ORDER 2 #define MSRPM_ALLOC_ORDER 1 #define DB_VECTOR 1 #define UD_VECTOR 6 #define GP_VECTOR 13 #define DR7_GD_MASK (1 << 13) #define DR6_BD_MASK (1 << 13) #define CR4_DE_MASK (1UL << 3) #define SEG_TYPE_LDT 2 #define SEG_TYPE_BUSY_TSS16 3 #define KVM_EFER_LMA (1 << 10) #define KVM_EFER_LME (1 << 8) unsigned long iopm_base; unsigned long msrpm_base; struct kvm_ldttss_desc { u16 limit0; u16 base0; unsigned base1 : 8, type : 5, dpl : 2, p : 1; unsigned limit1 : 4, zero0 : 3, g : 1, base2 : 8; u32 base3; u32 zero1; } __attribute__((packed)); struct svm_cpu_data { int cpu; uint64_t asid_generation; uint32_t max_asid; uint32_t next_asid; struct kvm_ldttss_desc *tss_desc; struct page *save_area; }; static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data); struct svm_init_data { int cpu; int r; }; static u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000}; #define NUM_MSR_MAPS (sizeof(msrpm_ranges) / sizeof(*msrpm_ranges)) #define MSRS_RANGE_SIZE 2048 #define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2) #define MAX_INST_SIZE 15 static unsigned get_addr_size(struct kvm_vcpu *vcpu) { struct vmcb_save_area *sa = &vcpu->svm->vmcb->save; u16 cs_attrib; if (!(sa->cr0 & CR0_PE_MASK) || (sa->rflags & X86_EFLAGS_VM)) return 2; cs_attrib = sa->cs.attrib; return (cs_attrib & SVM_SELECTOR_L_MASK) ? 8 : (cs_attrib & SVM_SELECTOR_DB_MASK) ? 4 : 2; } static inline u8 pop_irq(struct kvm_vcpu *vcpu) { int word_index = __ffs(vcpu->irq_summary); int bit_index = __ffs(vcpu->irq_pending[word_index]); int irq = word_index * BITS_PER_LONG + bit_index; clear_bit(bit_index, &vcpu->irq_pending[word_index]); if (!vcpu->irq_pending[word_index]) clear_bit(word_index, &vcpu->irq_summary); return irq; } static inline void push_irq(struct kvm_vcpu *vcpu, u8 irq) { set_bit(irq, vcpu->irq_pending); set_bit(irq / BITS_PER_LONG, &vcpu->irq_summary); } static inline void clgi(void) { asm volatile (SVM_CLGI); } static inline void stgi(void) { asm volatile (SVM_STGI); } static inline void invlpga(unsigned long addr, u32 asid) { asm volatile (SVM_INVLPGA :: "a"(addr), "c"(asid)); } static inline unsigned long kvm_read_cr2(void) { unsigned long cr2; asm volatile ("mov %%cr2, %0" : "=r" (cr2)); return cr2; } static inline void kvm_write_cr2(unsigned long val) { asm volatile ("mov %0, %%cr2" :: "r" (val)); } static inline unsigned long read_dr6(void) { unsigned long dr6; asm volatile ("mov %%dr6, %0" : "=r" (dr6)); return dr6; } static inline void write_dr6(unsigned long val) { asm volatile ("mov %0, %%dr6" :: "r" (val)); } static inline unsigned long read_dr7(void) { unsigned long dr7; asm volatile ("mov %%dr7, %0" : "=r" (dr7)); return dr7; } static inline void write_dr7(unsigned long val) { asm volatile ("mov %0, %%dr7" :: "r" (val)); } static inline void force_new_asid(struct kvm_vcpu *vcpu) { vcpu->svm->asid_generation--; } static inline void flush_guest_tlb(struct kvm_vcpu *vcpu) { force_new_asid(vcpu); } static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer) { if (!(efer & KVM_EFER_LMA)) efer &= ~KVM_EFER_LME; vcpu->svm->vmcb->save.efer = efer | MSR_EFER_SVME_MASK; vcpu->shadow_efer = efer; } static void svm_inject_gp(struct kvm_vcpu *vcpu, unsigned error_code) { vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_VALID_ERR | SVM_EVTINJ_TYPE_EXEPT | GP_VECTOR; vcpu->svm->vmcb->control.event_inj_err = error_code; } static void inject_ud(struct kvm_vcpu *vcpu) { vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT | UD_VECTOR; } static void inject_db(struct kvm_vcpu *vcpu) { vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT | DB_VECTOR; } static int is_page_fault(uint32_t info) { info &= SVM_EVTINJ_VEC_MASK | SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; return info == (PF_VECTOR | SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_EXEPT); } static int is_external_interrupt(u32 info) { info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID; return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR); } static void skip_emulated_instruction(struct kvm_vcpu *vcpu) { if (!vcpu->svm->next_rip) { printk(KERN_DEBUG "%s: NOP\n", __FUNCTION__); return; } if (vcpu->svm->next_rip - vcpu->svm->vmcb->save.rip > 15) { printk(KERN_ERR "%s: ip 0x%llx next 0x%llx\n", __FUNCTION__, vcpu->svm->vmcb->save.rip, vcpu->svm->next_rip); } vcpu->rip = vcpu->svm->vmcb->save.rip = vcpu->svm->next_rip; vcpu->svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK; vcpu->interrupt_window_open = 1; } static int has_svm(void) { uint32_t eax, ebx, ecx, edx; if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD) { printk(KERN_INFO "has_svm: not amd\n"); return 0; } cpuid(0x80000000, &eax, &ebx, &ecx, &edx); if (eax < SVM_CPUID_FUNC) { printk(KERN_INFO "has_svm: can't execute cpuid_8000000a\n"); return 0; } cpuid(0x80000001, &eax, &ebx, &ecx, &edx); if (!(ecx & (1 << SVM_CPUID_FEATURE_SHIFT))) { printk(KERN_DEBUG "has_svm: svm not available\n"); return 0; } return 1; } static void svm_hardware_disable(void *garbage) { struct svm_cpu_data *svm_data = per_cpu(svm_data, raw_smp_processor_id()); if (svm_data) { uint64_t efer; wrmsrl(MSR_VM_HSAVE_PA, 0); rdmsrl(MSR_EFER, efer); wrmsrl(MSR_EFER, efer & ~MSR_EFER_SVME_MASK); per_cpu(svm_data, raw_smp_processor_id()) = NULL; __free_page(svm_data->save_area); kfree(svm_data); } } static void svm_hardware_enable(void *garbage) { struct svm_cpu_data *svm_data; uint64_t efer; #ifdef CONFIG_X86_64 struct desc_ptr gdt_descr; #else struct Xgt_desc_struct gdt_descr; #endif struct desc_struct *gdt; int me = raw_smp_processor_id(); if (!has_svm()) { printk(KERN_ERR "svm_cpu_init: err EOPNOTSUPP on %d\n", me); return; } svm_data = per_cpu(svm_data, me); if (!svm_data) { printk(KERN_ERR "svm_cpu_init: svm_data is NULL on %d\n", me); return; } svm_data->asid_generation = 1; svm_data->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1; svm_data->next_asid = svm_data->max_asid + 1; asm volatile ( "sgdt %0" : "=m"(gdt_descr) ); gdt = (struct desc_struct *)gdt_descr.address; svm_data->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS); rdmsrl(MSR_EFER, efer); wrmsrl(MSR_EFER, efer | MSR_EFER_SVME_MASK); wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(svm_data->save_area) << PAGE_SHIFT); } static int svm_cpu_init(int cpu) { struct svm_cpu_data *svm_data; int r; svm_data = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL); if (!svm_data) return -ENOMEM; svm_data->cpu = cpu; svm_data->save_area = alloc_page(GFP_KERNEL); r = -ENOMEM; if (!svm_data->save_area) goto err_1; per_cpu(svm_data, cpu) = svm_data; return 0; err_1: kfree(svm_data); return r; } static int set_msr_interception(u32 *msrpm, unsigned msr, int read, int write) { int i; for (i = 0; i < NUM_MSR_MAPS; i++) { if (msr >= msrpm_ranges[i] && msr < msrpm_ranges[i] + MSRS_IN_RANGE) { u32 msr_offset = (i * MSRS_IN_RANGE + msr - msrpm_ranges[i]) * 2; u32 *base = msrpm + (msr_offset / 32); u32 msr_shift = msr_offset % 32; u32 mask = ((write) ? 0 : 2) | ((read) ? 0 : 1); *base = (*base & ~(0x3 << msr_shift)) | (mask << msr_shift); return 1; } } printk(KERN_DEBUG "%s: not found 0x%x\n", __FUNCTION__, msr); return 0; } static __init int svm_hardware_setup(void) { int cpu; struct page *iopm_pages; struct page *msrpm_pages; void *msrpm_va; int r; kvm_emulator_want_group7_invlpg(); iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER); if (!iopm_pages) return -ENOMEM; memset(page_address(iopm_pages), 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER)); iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT; msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER); r = -ENOMEM; if (!msrpm_pages) goto err_1; msrpm_va = page_address(msrpm_pages); memset(msrpm_va, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER)); msrpm_base = page_to_pfn(msrpm_pages) << PAGE_SHIFT; #ifdef CONFIG_X86_64 set_msr_interception(msrpm_va, MSR_GS_BASE, 1, 1); set_msr_interception(msrpm_va, MSR_FS_BASE, 1, 1); set_msr_interception(msrpm_va, MSR_KERNEL_GS_BASE, 1, 1); set_msr_interception(msrpm_va, MSR_LSTAR, 1, 1); set_msr_interception(msrpm_va, MSR_CSTAR, 1, 1); set_msr_interception(msrpm_va, MSR_SYSCALL_MASK, 1, 1); #endif set_msr_interception(msrpm_va, MSR_K6_STAR, 1, 1); set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_CS, 1, 1); set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_ESP, 1, 1); set_msr_interception(msrpm_va, MSR_IA32_SYSENTER_EIP, 1, 1); for_each_online_cpu(cpu) { r = svm_cpu_init(cpu); if (r) goto err_2; } return 0; err_2: __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER); msrpm_base = 0; err_1: __free_pages(iopm_pages, IOPM_ALLOC_ORDER); iopm_base = 0; return r; } static __exit void svm_hardware_unsetup(void) { __free_pages(pfn_to_page(msrpm_base >> PAGE_SHIFT), MSRPM_ALLOC_ORDER); __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER); iopm_base = msrpm_base = 0; } static void init_seg(struct vmcb_seg *seg) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */ seg->limit = 0xffff; seg->base = 0; } static void init_sys_seg(struct vmcb_seg *seg, uint32_t type) { seg->selector = 0; seg->attrib = SVM_SELECTOR_P_MASK | type; seg->limit = 0xffff; seg->base = 0; } static int svm_vcpu_setup(struct kvm_vcpu *vcpu) { return 0; } static void init_vmcb(struct vmcb *vmcb) { struct vmcb_control_area *control = &vmcb->control; struct vmcb_save_area *save = &vmcb->save; u64 tsc; control->intercept_cr_read = INTERCEPT_CR0_MASK | INTERCEPT_CR3_MASK | INTERCEPT_CR4_MASK; control->intercept_cr_write = INTERCEPT_CR0_MASK | INTERCEPT_CR3_MASK | INTERCEPT_CR4_MASK; control->intercept_dr_read = INTERCEPT_DR0_MASK | INTERCEPT_DR1_MASK | INTERCEPT_DR2_MASK | INTERCEPT_DR3_MASK; control->intercept_dr_write = INTERCEPT_DR0_MASK | INTERCEPT_DR1_MASK | INTERCEPT_DR2_MASK | INTERCEPT_DR3_MASK | INTERCEPT_DR5_MASK | INTERCEPT_DR7_MASK; control->intercept_exceptions = 1 << PF_VECTOR; control->intercept = (1ULL << INTERCEPT_INTR) | (1ULL << INTERCEPT_NMI) | /* * selective cr0 intercept bug? * 0: 0f 22 d8 mov %eax,%cr3 * 3: 0f 20 c0 mov %cr0,%eax * 6: 0d 00 00 00 80 or $0x80000000,%eax * b: 0f 22 c0 mov %eax,%cr0 * set cr3 ->interception * get cr0 ->interception * set cr0 -> no interception */ /* (1ULL << INTERCEPT_SELECTIVE_CR0) | */ (1ULL << INTERCEPT_CPUID) | (1ULL << INTERCEPT_HLT) | (1ULL << INTERCEPT_INVLPGA) | (1ULL << INTERCEPT_IOIO_PROT) | (1ULL << INTERCEPT_MSR_PROT) | (1ULL << INTERCEPT_TASK_SWITCH) | (1ULL << INTERCEPT_SHUTDOWN) | (1ULL << INTERCEPT_VMRUN) | (1ULL << INTERCEPT_VMMCALL) | (1ULL << INTERCEPT_VMLOAD) | (1ULL << INTERCEPT_VMSAVE) | (1ULL << INTERCEPT_STGI) | (1ULL << INTERCEPT_CLGI) | (1ULL << INTERCEPT_SKINIT); control->iopm_base_pa = iopm_base; control->msrpm_base_pa = msrpm_base; rdtscll(tsc); control->tsc_offset = -tsc; control->int_ctl = V_INTR_MASKING_MASK; init_seg(&save->es); init_seg(&save->ss); init_seg(&save->ds); init_seg(&save->fs); init_seg(&save->gs); save->cs.selector = 0xf000; /* Executable/Readable Code Segment */ save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK; save->cs.limit = 0xffff; save->cs.base = 0xffff0000; save->gdtr.limit = 0xffff; save->idtr.limit = 0xffff; init_sys_seg(&save->ldtr, SEG_TYPE_LDT); init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16); save->efer = MSR_EFER_SVME_MASK; save->dr6 = 0xffff0ff0; save->dr7 = 0x400; save->rflags = 2; save->rip = 0x0000fff0; /* * cr0 val on cpu init should be 0x60000010, we enable cpu * cache by default. the orderly way is to enable cache in bios. */ save->cr0 = 0x00000010 | CR0_PG_MASK; save->cr4 = CR4_PAE_MASK; /* rdx = ?? */ } static int svm_create_vcpu(struct kvm_vcpu *vcpu) { struct page *page; int r; r = -ENOMEM; vcpu->svm = kzalloc(sizeof *vcpu->svm, GFP_KERNEL); if (!vcpu->svm) goto out1; page = alloc_page(GFP_KERNEL); if (!page) goto out2; vcpu->svm->vmcb = page_address(page); memset(vcpu->svm->vmcb, 0, PAGE_SIZE); vcpu->svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT; vcpu->svm->cr0 = 0x00000010; vcpu->svm->asid_generation = 0; memset(vcpu->svm->db_regs, 0, sizeof(vcpu->svm->db_regs)); init_vmcb(vcpu->svm->vmcb); fx_init(vcpu); return 0; out2: kfree(vcpu->svm); out1: return r; } static void svm_free_vcpu(struct kvm_vcpu *vcpu) { if (!vcpu->svm) return; if (vcpu->svm->vmcb) __free_page(pfn_to_page(vcpu->svm->vmcb_pa >> PAGE_SHIFT)); kfree(vcpu->svm); } static struct kvm_vcpu *svm_vcpu_load(struct kvm_vcpu *vcpu) { get_cpu(); return vcpu; } static void svm_vcpu_put(struct kvm_vcpu *vcpu) { put_cpu(); } static void svm_cache_regs(struct kvm_vcpu *vcpu) { vcpu->regs[VCPU_REGS_RAX] = vcpu->svm->vmcb->save.rax; vcpu->regs[VCPU_REGS_RSP] = vcpu->svm->vmcb->save.rsp; vcpu->rip = vcpu->svm->vmcb->save.rip; } static void svm_decache_regs(struct kvm_vcpu *vcpu) { vcpu->svm->vmcb->save.rax = vcpu->regs[VCPU_REGS_RAX]; vcpu->svm->vmcb->save.rsp = vcpu->regs[VCPU_REGS_RSP]; vcpu->svm->vmcb->save.rip = vcpu->rip; } static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu) { return vcpu->svm->vmcb->save.rflags; } static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) { vcpu->svm->vmcb->save.rflags = rflags; } static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg) { struct vmcb_save_area *save = &vcpu->svm->vmcb->save; switch (seg) { case VCPU_SREG_CS: return &save->cs; case VCPU_SREG_DS: return &save->ds; case VCPU_SREG_ES: return &save->es; case VCPU_SREG_FS: return &save->fs; case VCPU_SREG_GS: return &save->gs; case VCPU_SREG_SS: return &save->ss; case VCPU_SREG_TR: return &save->tr; case VCPU_SREG_LDTR: return &save->ldtr; } BUG(); return NULL; } static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); return s->base; } static void svm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); var->base = s->base; var->limit = s->limit; var->selector = s->selector; var->type = s->attrib & SVM_SELECTOR_TYPE_MASK; var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1; var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1; var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1; var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1; var->unusable = !var->present; } static void svm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) { struct vmcb_seg *s = svm_seg(vcpu, VCPU_SREG_CS); *db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1; *l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1; } static void svm_get_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { dt->limit = vcpu->svm->vmcb->save.idtr.limit; dt->base = vcpu->svm->vmcb->save.idtr.base; } static void svm_set_idt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { vcpu->svm->vmcb->save.idtr.limit = dt->limit; vcpu->svm->vmcb->save.idtr.base = dt->base ; } static void svm_get_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { dt->limit = vcpu->svm->vmcb->save.gdtr.limit; dt->base = vcpu->svm->vmcb->save.gdtr.base; } static void svm_set_gdt(struct kvm_vcpu *vcpu, struct descriptor_table *dt) { vcpu->svm->vmcb->save.gdtr.limit = dt->limit; vcpu->svm->vmcb->save.gdtr.base = dt->base ; } static void svm_decache_cr0_cr4_guest_bits(struct kvm_vcpu *vcpu) { } static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) { #ifdef CONFIG_X86_64 if (vcpu->shadow_efer & KVM_EFER_LME) { if (!is_paging(vcpu) && (cr0 & CR0_PG_MASK)) { vcpu->shadow_efer |= KVM_EFER_LMA; vcpu->svm->vmcb->save.efer |= KVM_EFER_LMA | KVM_EFER_LME; } if (is_paging(vcpu) && !(cr0 & CR0_PG_MASK) ) { vcpu->shadow_efer &= ~KVM_EFER_LMA; vcpu->svm->vmcb->save.efer &= ~(KVM_EFER_LMA | KVM_EFER_LME); } } #endif vcpu->svm->cr0 = cr0; vcpu->svm->vmcb->save.cr0 = cr0 | CR0_PG_MASK; vcpu->cr0 = cr0; } static void svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) { vcpu->cr4 = cr4; vcpu->svm->vmcb->save.cr4 = cr4 | CR4_PAE_MASK; } static void svm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg) { struct vmcb_seg *s = svm_seg(vcpu, seg); s->base = var->base; s->limit = var->limit; s->selector = var->selector; if (var->unusable) s->attrib = 0; else { s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK); s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT; s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT; s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT; s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT; s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT; s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT; s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT; } if (seg == VCPU_SREG_CS) vcpu->svm->vmcb->save.cpl = (vcpu->svm->vmcb->save.cs.attrib >> SVM_SELECTOR_DPL_SHIFT) & 3; } /* FIXME: vcpu->svm->vmcb->control.int_ctl &= ~V_TPR_MASK; vcpu->svm->vmcb->control.int_ctl |= (sregs->cr8 & V_TPR_MASK); */ static int svm_guest_debug(struct kvm_vcpu *vcpu, struct kvm_debug_guest *dbg) { return -EOPNOTSUPP; } static void load_host_msrs(struct kvm_vcpu *vcpu) { int i; for ( i = 0; i < NR_HOST_SAVE_MSRS; i++) wrmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]); } static void save_host_msrs(struct kvm_vcpu *vcpu) { int i; for ( i = 0; i < NR_HOST_SAVE_MSRS; i++) rdmsrl(host_save_msrs[i], vcpu->svm->host_msrs[i]); } static void new_asid(struct kvm_vcpu *vcpu, struct svm_cpu_data *svm_data) { if (svm_data->next_asid > svm_data->max_asid) { ++svm_data->asid_generation; svm_data->next_asid = 1; vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID; } vcpu->cpu = svm_data->cpu; vcpu->svm->asid_generation = svm_data->asid_generation; vcpu->svm->vmcb->control.asid = svm_data->next_asid++; } static void svm_invlpg(struct kvm_vcpu *vcpu, gva_t address) { invlpga(address, vcpu->svm->vmcb->control.asid); // is needed? } static unsigned long svm_get_dr(struct kvm_vcpu *vcpu, int dr) { return vcpu->svm->db_regs[dr]; } static void svm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long value, int *exception) { *exception = 0; if (vcpu->svm->vmcb->save.dr7 & DR7_GD_MASK) { vcpu->svm->vmcb->save.dr7 &= ~DR7_GD_MASK; vcpu->svm->vmcb->save.dr6 |= DR6_BD_MASK; *exception = DB_VECTOR; return; } switch (dr) { case 0 ... 3: vcpu->svm->db_regs[dr] = value; return; case 4 ... 5: if (vcpu->cr4 & CR4_DE_MASK) { *exception = UD_VECTOR; return; } case 7: { if (value & ~((1ULL << 32) - 1)) { *exception = GP_VECTOR; return; } vcpu->svm->vmcb->save.dr7 = value; return; } default: printk(KERN_DEBUG "%s: unexpected dr %u\n", __FUNCTION__, dr); *exception = UD_VECTOR; return; } } static int pf_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u32 exit_int_info = vcpu->svm->vmcb->control.exit_int_info; u64 fault_address; u32 error_code; enum emulation_result er; int r; if (is_external_interrupt(exit_int_info)) push_irq(vcpu, exit_int_info & SVM_EVTINJ_VEC_MASK); spin_lock(&vcpu->kvm->lock); fault_address = vcpu->svm->vmcb->control.exit_info_2; error_code = vcpu->svm->vmcb->control.exit_info_1; r = kvm_mmu_page_fault(vcpu, fault_address, error_code); if (r < 0) { spin_unlock(&vcpu->kvm->lock); return r; } if (!r) { spin_unlock(&vcpu->kvm->lock); return 1; } er = emulate_instruction(vcpu, kvm_run, fault_address, error_code); spin_unlock(&vcpu->kvm->lock); switch (er) { case EMULATE_DONE: return 1; case EMULATE_DO_MMIO: ++kvm_stat.mmio_exits; kvm_run->exit_reason = KVM_EXIT_MMIO; return 0; case EMULATE_FAIL: vcpu_printf(vcpu, "%s: emulate fail\n", __FUNCTION__); break; default: BUG(); } kvm_run->exit_reason = KVM_EXIT_UNKNOWN; return 0; } static int shutdown_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { /* * VMCB is undefined after a SHUTDOWN intercept * so reinitialize it. */ memset(vcpu->svm->vmcb, 0, PAGE_SIZE); init_vmcb(vcpu->svm->vmcb); kvm_run->exit_reason = KVM_EXIT_SHUTDOWN; return 0; } static int io_get_override(struct kvm_vcpu *vcpu, struct vmcb_seg **seg, int *addr_override) { u8 inst[MAX_INST_SIZE]; unsigned ins_length; gva_t rip; int i; rip = vcpu->svm->vmcb->save.rip; ins_length = vcpu->svm->next_rip - rip; rip += vcpu->svm->vmcb->save.cs.base; if (ins_length > MAX_INST_SIZE) printk(KERN_DEBUG "%s: inst length err, cs base 0x%llx rip 0x%llx " "next rip 0x%llx ins_length %u\n", __FUNCTION__, vcpu->svm->vmcb->save.cs.base, vcpu->svm->vmcb->save.rip, vcpu->svm->vmcb->control.exit_info_2, ins_length); if (kvm_read_guest(vcpu, rip, ins_length, inst) != ins_length) /* #PF */ return 0; *addr_override = 0; *seg = NULL; for (i = 0; i < ins_length; i++) switch (inst[i]) { case 0xf0: case 0xf2: case 0xf3: case 0x66: continue; case 0x67: *addr_override = 1; continue; case 0x2e: *seg = &vcpu->svm->vmcb->save.cs; continue; case 0x36: *seg = &vcpu->svm->vmcb->save.ss; continue; case 0x3e: *seg = &vcpu->svm->vmcb->save.ds; continue; case 0x26: *seg = &vcpu->svm->vmcb->save.es; continue; case 0x64: *seg = &vcpu->svm->vmcb->save.fs; continue; case 0x65: *seg = &vcpu->svm->vmcb->save.gs; continue; default: return 1; } printk(KERN_DEBUG "%s: unexpected\n", __FUNCTION__); return 0; } static unsigned long io_adress(struct kvm_vcpu *vcpu, int ins, u64 *address) { unsigned long addr_mask; unsigned long *reg; struct vmcb_seg *seg; int addr_override; struct vmcb_save_area *save_area = &vcpu->svm->vmcb->save; u16 cs_attrib = save_area->cs.attrib; unsigned addr_size = get_addr_size(vcpu); if (!io_get_override(vcpu, &seg, &addr_override)) return 0; if (addr_override) addr_size = (addr_size == 2) ? 4: (addr_size >> 1); if (ins) { reg = &vcpu->regs[VCPU_REGS_RDI]; seg = &vcpu->svm->vmcb->save.es; } else { reg = &vcpu->regs[VCPU_REGS_RSI]; seg = (seg) ? seg : &vcpu->svm->vmcb->save.ds; } addr_mask = ~0ULL >> (64 - (addr_size * 8)); if ((cs_attrib & SVM_SELECTOR_L_MASK) && !(vcpu->svm->vmcb->save.rflags & X86_EFLAGS_VM)) { *address = (*reg & addr_mask); return addr_mask; } if (!(seg->attrib & SVM_SELECTOR_P_SHIFT)) { svm_inject_gp(vcpu, 0); return 0; } *address = (*reg & addr_mask) + seg->base; return addr_mask; } static int io_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u32 io_info = vcpu->svm->vmcb->control.exit_info_1; //address size bug? int _in = io_info & SVM_IOIO_TYPE_MASK; ++kvm_stat.io_exits; vcpu->svm->next_rip = vcpu->svm->vmcb->control.exit_info_2; kvm_run->exit_reason = KVM_EXIT_IO; kvm_run->io.port = io_info >> 16; kvm_run->io.direction = (_in) ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; kvm_run->io.size = ((io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT); kvm_run->io.string = (io_info & SVM_IOIO_STR_MASK) != 0; kvm_run->io.rep = (io_info & SVM_IOIO_REP_MASK) != 0; if (kvm_run->io.string) { unsigned addr_mask; addr_mask = io_adress(vcpu, _in, &kvm_run->io.address); if (!addr_mask) { printk(KERN_DEBUG "%s: get io address failed\n", __FUNCTION__); return 1; } if (kvm_run->io.rep) { kvm_run->io.count = vcpu->regs[VCPU_REGS_RCX] & addr_mask; kvm_run->io.string_down = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_DF) != 0; } } else { kvm_run->io.value = vcpu->svm->vmcb->save.rax; } return 0; } static int nop_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { return 1; } static int halt_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 1; skip_emulated_instruction(vcpu); if (vcpu->irq_summary) return 1; kvm_run->exit_reason = KVM_EXIT_HLT; ++kvm_stat.halt_exits; return 0; } static int invalid_op_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { inject_ud(vcpu); return 1; } static int task_switch_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { printk(KERN_DEBUG "%s: task swiche is unsupported\n", __FUNCTION__); kvm_run->exit_reason = KVM_EXIT_UNKNOWN; return 0; } static int cpuid_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2; kvm_run->exit_reason = KVM_EXIT_CPUID; return 0; } static int emulate_on_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { if (emulate_instruction(vcpu, NULL, 0, 0) != EMULATE_DONE) printk(KERN_ERR "%s: failed\n", __FUNCTION__); return 1; } static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data) { switch (ecx) { case MSR_IA32_TIME_STAMP_COUNTER: { u64 tsc; rdtscll(tsc); *data = vcpu->svm->vmcb->control.tsc_offset + tsc; break; } case MSR_K6_STAR: *data = vcpu->svm->vmcb->save.star; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: *data = vcpu->svm->vmcb->save.lstar; break; case MSR_CSTAR: *data = vcpu->svm->vmcb->save.cstar; break; case MSR_KERNEL_GS_BASE: *data = vcpu->svm->vmcb->save.kernel_gs_base; break; case MSR_SYSCALL_MASK: *data = vcpu->svm->vmcb->save.sfmask; break; #endif case MSR_IA32_SYSENTER_CS: *data = vcpu->svm->vmcb->save.sysenter_cs; break; case MSR_IA32_SYSENTER_EIP: *data = vcpu->svm->vmcb->save.sysenter_eip; break; case MSR_IA32_SYSENTER_ESP: *data = vcpu->svm->vmcb->save.sysenter_esp; break; default: return kvm_get_msr_common(vcpu, ecx, data); } return 0; } static int rdmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u32 ecx = vcpu->regs[VCPU_REGS_RCX]; u64 data; if (svm_get_msr(vcpu, ecx, &data)) svm_inject_gp(vcpu, 0); else { vcpu->svm->vmcb->save.rax = data & 0xffffffff; vcpu->regs[VCPU_REGS_RDX] = data >> 32; vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2; skip_emulated_instruction(vcpu); } return 1; } static int svm_set_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 data) { switch (ecx) { case MSR_IA32_TIME_STAMP_COUNTER: { u64 tsc; rdtscll(tsc); vcpu->svm->vmcb->control.tsc_offset = data - tsc; break; } case MSR_K6_STAR: vcpu->svm->vmcb->save.star = data; break; #ifdef CONFIG_X86_64 case MSR_LSTAR: vcpu->svm->vmcb->save.lstar = data; break; case MSR_CSTAR: vcpu->svm->vmcb->save.cstar = data; break; case MSR_KERNEL_GS_BASE: vcpu->svm->vmcb->save.kernel_gs_base = data; break; case MSR_SYSCALL_MASK: vcpu->svm->vmcb->save.sfmask = data; break; #endif case MSR_IA32_SYSENTER_CS: vcpu->svm->vmcb->save.sysenter_cs = data; break; case MSR_IA32_SYSENTER_EIP: vcpu->svm->vmcb->save.sysenter_eip = data; break; case MSR_IA32_SYSENTER_ESP: vcpu->svm->vmcb->save.sysenter_esp = data; break; default: return kvm_set_msr_common(vcpu, ecx, data); } return 0; } static int wrmsr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u32 ecx = vcpu->regs[VCPU_REGS_RCX]; u64 data = (vcpu->svm->vmcb->save.rax & -1u) | ((u64)(vcpu->regs[VCPU_REGS_RDX] & -1u) << 32); vcpu->svm->next_rip = vcpu->svm->vmcb->save.rip + 2; if (svm_set_msr(vcpu, ecx, data)) svm_inject_gp(vcpu, 0); else skip_emulated_instruction(vcpu); return 1; } static int msr_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { if (vcpu->svm->vmcb->control.exit_info_1) return wrmsr_interception(vcpu, kvm_run); else return rdmsr_interception(vcpu, kvm_run); } static int interrupt_window_interception(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { /* * If the user space waits to inject interrupts, exit as soon as * possible */ if (kvm_run->request_interrupt_window && !vcpu->irq_summary) { ++kvm_stat.irq_window_exits; kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; return 0; } return 1; } static int (*svm_exit_handlers[])(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) = { [SVM_EXIT_READ_CR0] = emulate_on_interception, [SVM_EXIT_READ_CR3] = emulate_on_interception, [SVM_EXIT_READ_CR4] = emulate_on_interception, /* for now: */ [SVM_EXIT_WRITE_CR0] = emulate_on_interception, [SVM_EXIT_WRITE_CR3] = emulate_on_interception, [SVM_EXIT_WRITE_CR4] = emulate_on_interception, [SVM_EXIT_READ_DR0] = emulate_on_interception, [SVM_EXIT_READ_DR1] = emulate_on_interception, [SVM_EXIT_READ_DR2] = emulate_on_interception, [SVM_EXIT_READ_DR3] = emulate_on_interception, [SVM_EXIT_WRITE_DR0] = emulate_on_interception, [SVM_EXIT_WRITE_DR1] = emulate_on_interception, [SVM_EXIT_WRITE_DR2] = emulate_on_interception, [SVM_EXIT_WRITE_DR3] = emulate_on_interception, [SVM_EXIT_WRITE_DR5] = emulate_on_interception, [SVM_EXIT_WRITE_DR7] = emulate_on_interception, [SVM_EXIT_EXCP_BASE + PF_VECTOR] = pf_interception, [SVM_EXIT_INTR] = nop_on_interception, [SVM_EXIT_NMI] = nop_on_interception, [SVM_EXIT_SMI] = nop_on_interception, [SVM_EXIT_INIT] = nop_on_interception, [SVM_EXIT_VINTR] = interrupt_window_interception, /* [SVM_EXIT_CR0_SEL_WRITE] = emulate_on_interception, */ [SVM_EXIT_CPUID] = cpuid_interception, [SVM_EXIT_HLT] = halt_interception, [SVM_EXIT_INVLPG] = emulate_on_interception, [SVM_EXIT_INVLPGA] = invalid_op_interception, [SVM_EXIT_IOIO] = io_interception, [SVM_EXIT_MSR] = msr_interception, [SVM_EXIT_TASK_SWITCH] = task_switch_interception, [SVM_EXIT_SHUTDOWN] = shutdown_interception, [SVM_EXIT_VMRUN] = invalid_op_interception, [SVM_EXIT_VMMCALL] = invalid_op_interception, [SVM_EXIT_VMLOAD] = invalid_op_interception, [SVM_EXIT_VMSAVE] = invalid_op_interception, [SVM_EXIT_STGI] = invalid_op_interception, [SVM_EXIT_CLGI] = invalid_op_interception, [SVM_EXIT_SKINIT] = invalid_op_interception, }; static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u32 exit_code = vcpu->svm->vmcb->control.exit_code; kvm_run->exit_type = KVM_EXIT_TYPE_VM_EXIT; if (is_external_interrupt(vcpu->svm->vmcb->control.exit_int_info) && exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR) printk(KERN_ERR "%s: unexpected exit_ini_info 0x%x " "exit_code 0x%x\n", __FUNCTION__, vcpu->svm->vmcb->control.exit_int_info, exit_code); if (exit_code >= sizeof(svm_exit_handlers) / sizeof(*svm_exit_handlers) || svm_exit_handlers[exit_code] == 0) { kvm_run->exit_reason = KVM_EXIT_UNKNOWN; printk(KERN_ERR "%s: 0x%x @ 0x%llx cr0 0x%lx rflags 0x%llx\n", __FUNCTION__, exit_code, vcpu->svm->vmcb->save.rip, vcpu->cr0, vcpu->svm->vmcb->save.rflags); return 0; } return svm_exit_handlers[exit_code](vcpu, kvm_run); } static void reload_tss(struct kvm_vcpu *vcpu) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); svm_data->tss_desc->type = 9; //available 32/64-bit TSS load_TR_desc(); } static void pre_svm_run(struct kvm_vcpu *vcpu) { int cpu = raw_smp_processor_id(); struct svm_cpu_data *svm_data = per_cpu(svm_data, cpu); vcpu->svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING; if (vcpu->cpu != cpu || vcpu->svm->asid_generation != svm_data->asid_generation) new_asid(vcpu, svm_data); } static inline void kvm_do_inject_irq(struct kvm_vcpu *vcpu) { struct vmcb_control_area *control; control = &vcpu->svm->vmcb->control; control->int_vector = pop_irq(vcpu); control->int_ctl &= ~V_INTR_PRIO_MASK; control->int_ctl |= V_IRQ_MASK | ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT); } static void kvm_reput_irq(struct kvm_vcpu *vcpu) { struct vmcb_control_area *control = &vcpu->svm->vmcb->control; if (control->int_ctl & V_IRQ_MASK) { control->int_ctl &= ~V_IRQ_MASK; push_irq(vcpu, control->int_vector); } vcpu->interrupt_window_open = !(control->int_state & SVM_INTERRUPT_SHADOW_MASK); } static void do_interrupt_requests(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { struct vmcb_control_area *control = &vcpu->svm->vmcb->control; vcpu->interrupt_window_open = (!(control->int_state & SVM_INTERRUPT_SHADOW_MASK) && (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF)); if (vcpu->interrupt_window_open && vcpu->irq_summary) /* * If interrupts enabled, and not blocked by sti or mov ss. Good. */ kvm_do_inject_irq(vcpu); /* * Interrupts blocked. Wait for unblock. */ if (!vcpu->interrupt_window_open && (vcpu->irq_summary || kvm_run->request_interrupt_window)) { control->intercept |= 1ULL << INTERCEPT_VINTR; } else control->intercept &= ~(1ULL << INTERCEPT_VINTR); } static void post_kvm_run_save(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { kvm_run->ready_for_interrupt_injection = (vcpu->interrupt_window_open && vcpu->irq_summary == 0); kvm_run->if_flag = (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF) != 0; kvm_run->cr8 = vcpu->cr8; kvm_run->apic_base = vcpu->apic_base; } /* * Check if userspace requested an interrupt window, and that the * interrupt window is open. * * No need to exit to userspace if we already have an interrupt queued. */ static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { return (!vcpu->irq_summary && kvm_run->request_interrupt_window && vcpu->interrupt_window_open && (vcpu->svm->vmcb->save.rflags & X86_EFLAGS_IF)); } static void save_db_regs(unsigned long *db_regs) { asm volatile ("mov %%dr0, %0" : "=r"(db_regs[0])); asm volatile ("mov %%dr1, %0" : "=r"(db_regs[1])); asm volatile ("mov %%dr2, %0" : "=r"(db_regs[2])); asm volatile ("mov %%dr3, %0" : "=r"(db_regs[3])); } static void load_db_regs(unsigned long *db_regs) { asm volatile ("mov %0, %%dr0" : : "r"(db_regs[0])); asm volatile ("mov %0, %%dr1" : : "r"(db_regs[1])); asm volatile ("mov %0, %%dr2" : : "r"(db_regs[2])); asm volatile ("mov %0, %%dr3" : : "r"(db_regs[3])); } static int svm_vcpu_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) { u16 fs_selector; u16 gs_selector; u16 ldt_selector; int r; again: if (!vcpu->mmio_read_completed) do_interrupt_requests(vcpu, kvm_run); clgi(); pre_svm_run(vcpu); save_host_msrs(vcpu); fs_selector = read_fs(); gs_selector = read_gs(); ldt_selector = read_ldt(); vcpu->svm->host_cr2 = kvm_read_cr2(); vcpu->svm->host_dr6 = read_dr6(); vcpu->svm->host_dr7 = read_dr7(); vcpu->svm->vmcb->save.cr2 = vcpu->cr2; if (vcpu->svm->vmcb->save.dr7 & 0xff) { write_dr7(0); save_db_regs(vcpu->svm->host_db_regs); load_db_regs(vcpu->svm->db_regs); } fx_save(vcpu->host_fx_image); fx_restore(vcpu->guest_fx_image); asm volatile ( #ifdef CONFIG_X86_64 "push %%rbx; push %%rcx; push %%rdx;" "push %%rsi; push %%rdi; push %%rbp;" "push %%r8; push %%r9; push %%r10; push %%r11;" "push %%r12; push %%r13; push %%r14; push %%r15;" #else "push %%ebx; push %%ecx; push %%edx;" "push %%esi; push %%edi; push %%ebp;" #endif #ifdef CONFIG_X86_64 "mov %c[rbx](%[vcpu]), %%rbx \n\t" "mov %c[rcx](%[vcpu]), %%rcx \n\t" "mov %c[rdx](%[vcpu]), %%rdx \n\t" "mov %c[rsi](%[vcpu]), %%rsi \n\t" "mov %c[rdi](%[vcpu]), %%rdi \n\t" "mov %c[rbp](%[vcpu]), %%rbp \n\t" "mov %c[r8](%[vcpu]), %%r8 \n\t" "mov %c[r9](%[vcpu]), %%r9 \n\t" "mov %c[r10](%[vcpu]), %%r10 \n\t" "mov %c[r11](%[vcpu]), %%r11 \n\t" "mov %c[r12](%[vcpu]), %%r12 \n\t" "mov %c[r13](%[vcpu]), %%r13 \n\t" "mov %c[r14](%[vcpu]), %%r14 \n\t" "mov %c[r15](%[vcpu]), %%r15 \n\t" #else "mov %c[rbx](%[vcpu]), %%ebx \n\t" "mov %c[rcx](%[vcpu]), %%ecx \n\t" "mov %c[rdx](%[vcpu]), %%edx \n\t" "mov %c[rsi](%[vcpu]), %%esi \n\t" "mov %c[rdi](%[vcpu]), %%edi \n\t" "mov %c[rbp](%[vcpu]), %%ebp \n\t" #endif #ifdef CONFIG_X86_64 /* Enter guest mode */ "push %%rax \n\t" "mov %c[svm](%[vcpu]), %%rax \n\t" "mov %c[vmcb](%%rax), %%rax \n\t" SVM_VMLOAD "\n\t" SVM_VMRUN "\n\t" SVM_VMSAVE "\n\t" "pop %%rax \n\t" #else /* Enter guest mode */ "push %%eax \n\t" "mov %c[svm](%[vcpu]), %%eax \n\t" "mov %c[vmcb](%%eax), %%eax \n\t" SVM_VMLOAD "\n\t" SVM_VMRUN "\n\t" SVM_VMSAVE "\n\t" "pop %%eax \n\t" #endif /* Save guest registers, load host registers */ #ifdef CONFIG_X86_64 "mov %%rbx, %c[rbx](%[vcpu]) \n\t" "mov %%rcx, %c[rcx](%[vcpu]) \n\t" "mov %%rdx, %c[rdx](%[vcpu]) \n\t" "mov %%rsi, %c[rsi](%[vcpu]) \n\t" "mov %%rdi, %c[rdi](%[vcpu]) \n\t" "mov %%rbp, %c[rbp](%[vcpu]) \n\t" "mov %%r8, %c[r8](%[vcpu]) \n\t" "mov %%r9, %c[r9](%[vcpu]) \n\t" "mov %%r10, %c[r10](%[vcpu]) \n\t" "mov %%r11, %c[r11](%[vcpu]) \n\t" "mov %%r12, %c[r12](%[vcpu]) \n\t" "mov %%r13, %c[r13](%[vcpu]) \n\t" "mov %%r14, %c[r14](%[vcpu]) \n\t" "mov %%r15, %c[r15](%[vcpu]) \n\t" "pop %%r15; pop %%r14; pop %%r13; pop %%r12;" "pop %%r11; pop %%r10; pop %%r9; pop %%r8;" "pop %%rbp; pop %%rdi; pop %%rsi;" "pop %%rdx; pop %%rcx; pop %%rbx; \n\t" #else "mov %%ebx, %c[rbx](%[vcpu]) \n\t" "mov %%ecx, %c[rcx](%[vcpu]) \n\t" "mov %%edx, %c[rdx](%[vcpu]) \n\t" "mov %%esi, %c[rsi](%[vcpu]) \n\t" "mov %%edi, %c[rdi](%[vcpu]) \n\t" "mov %%ebp, %c[rbp](%[vcpu]) \n\t" "pop %%ebp; pop %%edi; pop %%esi;" "pop %%edx; pop %%ecx; pop %%ebx; \n\t" #endif : : [vcpu]"a"(vcpu), [svm]"i"(offsetof(struct kvm_vcpu, svm)), [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)), [rbx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBX])), [rcx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RCX])), [rdx]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDX])), [rsi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RSI])), [rdi]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RDI])), [rbp]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_RBP])) #ifdef CONFIG_X86_64 ,[r8 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R8 ])), [r9 ]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R9 ])), [r10]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R10])), [r11]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R11])), [r12]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R12])), [r13]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R13])), [r14]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R14])), [r15]"i"(offsetof(struct kvm_vcpu, regs[VCPU_REGS_R15])) #endif : "cc", "memory" ); fx_save(vcpu->guest_fx_image); fx_restore(vcpu->host_fx_image); if ((vcpu->svm->vmcb->save.dr7 & 0xff)) load_db_regs(vcpu->svm->host_db_regs); vcpu->cr2 = vcpu->svm->vmcb->save.cr2; write_dr6(vcpu->svm->host_dr6); write_dr7(vcpu->svm->host_dr7); kvm_write_cr2(vcpu->svm->host_cr2); load_fs(fs_selector); load_gs(gs_selector); load_ldt(ldt_selector); load_host_msrs(vcpu); reload_tss(vcpu); /* * Profile KVM exit RIPs: */ if (unlikely(prof_on == KVM_PROFILING)) profile_hit(KVM_PROFILING, (void *)(unsigned long)vcpu->svm->vmcb->save.rip); stgi(); kvm_reput_irq(vcpu); vcpu->svm->next_rip = 0; if (vcpu->svm->vmcb->control.exit_code == SVM_EXIT_ERR) { kvm_run->exit_type = KVM_EXIT_TYPE_FAIL_ENTRY; kvm_run->exit_reason = vcpu->svm->vmcb->control.exit_code; post_kvm_run_save(vcpu, kvm_run); return 0; } r = handle_exit(vcpu, kvm_run); if (r > 0) { if (signal_pending(current)) { ++kvm_stat.signal_exits; post_kvm_run_save(vcpu, kvm_run); return -EINTR; } if (dm_request_for_irq_injection(vcpu, kvm_run)) { ++kvm_stat.request_irq_exits; post_kvm_run_save(vcpu, kvm_run); return -EINTR; } kvm_resched(vcpu); goto again; } post_kvm_run_save(vcpu, kvm_run); return r; } static void svm_flush_tlb(struct kvm_vcpu *vcpu) { force_new_asid(vcpu); } static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root) { vcpu->svm->vmcb->save.cr3 = root; force_new_asid(vcpu); } static void svm_inject_page_fault(struct kvm_vcpu *vcpu, unsigned long addr, uint32_t err_code) { uint32_t exit_int_info = vcpu->svm->vmcb->control.exit_int_info; ++kvm_stat.pf_guest; if (is_page_fault(exit_int_info)) { vcpu->svm->vmcb->control.event_inj_err = 0; vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_VALID_ERR | SVM_EVTINJ_TYPE_EXEPT | DF_VECTOR; return; } vcpu->cr2 = addr; vcpu->svm->vmcb->save.cr2 = addr; vcpu->svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_VALID_ERR | SVM_EVTINJ_TYPE_EXEPT | PF_VECTOR; vcpu->svm->vmcb->control.event_inj_err = err_code; } static int is_disabled(void) { return 0; } static struct kvm_arch_ops svm_arch_ops = { .cpu_has_kvm_support = has_svm, .disabled_by_bios = is_disabled, .hardware_setup = svm_hardware_setup, .hardware_unsetup = svm_hardware_unsetup, .hardware_enable = svm_hardware_enable, .hardware_disable = svm_hardware_disable, .vcpu_create = svm_create_vcpu, .vcpu_free = svm_free_vcpu, .vcpu_load = svm_vcpu_load, .vcpu_put = svm_vcpu_put, .set_guest_debug = svm_guest_debug, .get_msr = svm_get_msr, .set_msr = svm_set_msr, .get_segment_base = svm_get_segment_base, .get_segment = svm_get_segment, .set_segment = svm_set_segment, .get_cs_db_l_bits = svm_get_cs_db_l_bits, .decache_cr0_cr4_guest_bits = svm_decache_cr0_cr4_guest_bits, .set_cr0 = svm_set_cr0, .set_cr0_no_modeswitch = svm_set_cr0, .set_cr3 = svm_set_cr3, .set_cr4 = svm_set_cr4, .set_efer = svm_set_efer, .get_idt = svm_get_idt, .set_idt = svm_set_idt, .get_gdt = svm_get_gdt, .set_gdt = svm_set_gdt, .get_dr = svm_get_dr, .set_dr = svm_set_dr, .cache_regs = svm_cache_regs, .decache_regs = svm_decache_regs, .get_rflags = svm_get_rflags, .set_rflags = svm_set_rflags, .invlpg = svm_invlpg, .tlb_flush = svm_flush_tlb, .inject_page_fault = svm_inject_page_fault, .inject_gp = svm_inject_gp, .run = svm_vcpu_run, .skip_emulated_instruction = skip_emulated_instruction, .vcpu_setup = svm_vcpu_setup, }; static int __init svm_init(void) { return kvm_init_arch(&svm_arch_ops, THIS_MODULE); } static void __exit svm_exit(void) { kvm_exit_arch(); } module_init(svm_init) module_exit(svm_exit)