// SPDX-License-Identifier: GPL-2.0 /* * Toshiba TC90522 Demodulator * * Copyright (C) 2014 Akihiro Tsukada */ /* * NOTICE: * This driver is incomplete and lacks init/config of the chips, * as the necessary info is not disclosed. * It assumes that users of this driver (such as a PCI bridge of * DTV receiver cards) properly init and configure the chip * via I2C *before* calling this driver's init() function. * * Currently, PT3 driver is the only one that uses this driver, * and contains init/config code in its firmware. * Thus some part of the code might be dependent on PT3 specific config. */ #include #include #include #include #include "tc90522.h" #define TC90522_I2C_THRU_REG 0xfe #define TC90522_MODULE_IDX(addr) (((u8)(addr) & 0x02U) >> 1) struct tc90522_state { struct tc90522_config cfg; struct dvb_frontend fe; struct i2c_client *i2c_client; struct i2c_adapter tuner_i2c; bool lna; }; struct reg_val { u8 reg; u8 val; }; static int reg_write(struct tc90522_state *state, const struct reg_val *regs, int num) { int i, ret; struct i2c_msg msg; ret = 0; msg.addr = state->i2c_client->addr; msg.flags = 0; msg.len = 2; for (i = 0; i < num; i++) { msg.buf = (u8 *)®s[i]; ret = i2c_transfer(state->i2c_client->adapter, &msg, 1); if (ret == 0) ret = -EIO; if (ret < 0) return ret; } return 0; } static int reg_read(struct tc90522_state *state, u8 reg, u8 *val, u8 len) { struct i2c_msg msgs[2] = { { .addr = state->i2c_client->addr, .flags = 0, .buf = ®, .len = 1, }, { .addr = state->i2c_client->addr, .flags = I2C_M_RD, .buf = val, .len = len, }, }; int ret; ret = i2c_transfer(state->i2c_client->adapter, msgs, ARRAY_SIZE(msgs)); if (ret == ARRAY_SIZE(msgs)) ret = 0; else if (ret >= 0) ret = -EIO; return ret; } static struct tc90522_state *cfg_to_state(struct tc90522_config *c) { return container_of(c, struct tc90522_state, cfg); } static int tc90522s_set_tsid(struct dvb_frontend *fe) { struct reg_val set_tsid[] = { { 0x8f, 00 }, { 0x90, 00 } }; set_tsid[0].val = (fe->dtv_property_cache.stream_id & 0xff00) >> 8; set_tsid[1].val = fe->dtv_property_cache.stream_id & 0xff; return reg_write(fe->demodulator_priv, set_tsid, ARRAY_SIZE(set_tsid)); } static int tc90522t_set_layers(struct dvb_frontend *fe) { struct reg_val rv; u8 laysel; laysel = ~fe->dtv_property_cache.isdbt_layer_enabled & 0x07; laysel = (laysel & 0x01) << 2 | (laysel & 0x02) | (laysel & 0x04) >> 2; rv.reg = 0x71; rv.val = laysel; return reg_write(fe->demodulator_priv, &rv, 1); } /* frontend ops */ static int tc90522s_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct tc90522_state *state; int ret; u8 reg; state = fe->demodulator_priv; ret = reg_read(state, 0xc3, ®, 1); if (ret < 0) return ret; *status = 0; if (reg & 0x80) /* input level under min ? */ return 0; *status |= FE_HAS_SIGNAL; if (reg & 0x60) /* carrier? */ return 0; *status |= FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC; if (reg & 0x10) return 0; if (reg_read(state, 0xc5, ®, 1) < 0 || !(reg & 0x03)) return 0; *status |= FE_HAS_LOCK; return 0; } static int tc90522t_read_status(struct dvb_frontend *fe, enum fe_status *status) { struct tc90522_state *state; int ret; u8 reg; state = fe->demodulator_priv; ret = reg_read(state, 0x96, ®, 1); if (ret < 0) return ret; *status = 0; if (reg & 0xe0) { *status = FE_HAS_SIGNAL | FE_HAS_CARRIER | FE_HAS_VITERBI | FE_HAS_SYNC | FE_HAS_LOCK; return 0; } ret = reg_read(state, 0x80, ®, 1); if (ret < 0) return ret; if (reg & 0xf0) return 0; *status |= FE_HAS_SIGNAL | FE_HAS_CARRIER; if (reg & 0x0c) return 0; *status |= FE_HAS_SYNC | FE_HAS_VITERBI; if (reg & 0x02) return 0; *status |= FE_HAS_LOCK; return 0; } static const enum fe_code_rate fec_conv_sat[] = { FEC_NONE, /* unused */ FEC_1_2, /* for BPSK */ FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, /* for QPSK */ FEC_2_3, /* for 8PSK. (trellis code) */ }; static int tc90522s_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct tc90522_state *state; struct dtv_fe_stats *stats; int ret, i; int layers; u8 val[10]; u32 cndat; state = fe->demodulator_priv; c->delivery_system = SYS_ISDBS; c->symbol_rate = 28860000; layers = 0; ret = reg_read(state, 0xe6, val, 5); if (ret == 0) { u8 v; c->stream_id = val[0] << 8 | val[1]; /* high/single layer */ v = (val[2] & 0x70) >> 4; c->modulation = (v == 7) ? PSK_8 : QPSK; c->fec_inner = fec_conv_sat[v]; c->layer[0].fec = c->fec_inner; c->layer[0].modulation = c->modulation; c->layer[0].segment_count = val[3] & 0x3f; /* slots */ /* low layer */ v = (val[2] & 0x07); c->layer[1].fec = fec_conv_sat[v]; if (v == 0) /* no low layer */ c->layer[1].segment_count = 0; else c->layer[1].segment_count = val[4] & 0x3f; /* slots */ /* * actually, BPSK if v==1, but not defined in * enum fe_modulation */ c->layer[1].modulation = QPSK; layers = (v > 0) ? 2 : 1; } /* statistics */ stats = &c->strength; stats->len = 0; /* let the connected tuner set RSSI property cache */ if (fe->ops.tuner_ops.get_rf_strength) { u16 dummy; fe->ops.tuner_ops.get_rf_strength(fe, &dummy); } stats = &c->cnr; stats->len = 1; stats->stat[0].scale = FE_SCALE_NOT_AVAILABLE; cndat = 0; ret = reg_read(state, 0xbc, val, 2); if (ret == 0) cndat = val[0] << 8 | val[1]; if (cndat >= 3000) { u32 p, p4; s64 cn; cndat -= 3000; /* cndat: 4.12 fixed point float */ /* * cnr[mdB] = -1634.6 * P^5 + 14341 * P^4 - 50259 * P^3 * + 88977 * P^2 - 89565 * P + 58857 * (P = sqrt(cndat) / 64) */ /* p := sqrt(cndat) << 8 = P << 14, 2.14 fixed point float */ /* cn = cnr << 3 */ p = int_sqrt(cndat << 16); p4 = cndat * cndat; cn = div64_s64(-16346LL * p4 * p, 10) >> 35; cn += (14341LL * p4) >> 21; cn -= (50259LL * cndat * p) >> 23; cn += (88977LL * cndat) >> 9; cn -= (89565LL * p) >> 11; cn += 58857 << 3; stats->stat[0].svalue = cn >> 3; stats->stat[0].scale = FE_SCALE_DECIBEL; } /* per-layer post viterbi BER (or PER? config dependent?) */ stats = &c->post_bit_error; memset(stats, 0, sizeof(*stats)); stats->len = layers; ret = reg_read(state, 0xeb, val, 10); if (ret < 0) for (i = 0; i < layers; i++) stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE; else { for (i = 0; i < layers; i++) { stats->stat[i].scale = FE_SCALE_COUNTER; stats->stat[i].uvalue = val[i * 5] << 16 | val[i * 5 + 1] << 8 | val[i * 5 + 2]; } } stats = &c->post_bit_count; memset(stats, 0, sizeof(*stats)); stats->len = layers; if (ret < 0) for (i = 0; i < layers; i++) stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE; else { for (i = 0; i < layers; i++) { stats->stat[i].scale = FE_SCALE_COUNTER; stats->stat[i].uvalue = val[i * 5 + 3] << 8 | val[i * 5 + 4]; stats->stat[i].uvalue *= 204 * 8; } } return 0; } static const enum fe_transmit_mode tm_conv[] = { TRANSMISSION_MODE_2K, TRANSMISSION_MODE_4K, TRANSMISSION_MODE_8K, 0 }; static const enum fe_code_rate fec_conv_ter[] = { FEC_1_2, FEC_2_3, FEC_3_4, FEC_5_6, FEC_7_8, 0, 0, 0 }; static const enum fe_modulation mod_conv[] = { DQPSK, QPSK, QAM_16, QAM_64, 0, 0, 0, 0 }; static int tc90522t_get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *c) { struct tc90522_state *state; struct dtv_fe_stats *stats; int ret, i; int layers; u8 val[15], mode; u32 cndat; state = fe->demodulator_priv; c->delivery_system = SYS_ISDBT; c->bandwidth_hz = 6000000; mode = 1; ret = reg_read(state, 0xb0, val, 1); if (ret == 0) { mode = (val[0] & 0xc0) >> 6; c->transmission_mode = tm_conv[mode]; c->guard_interval = (val[0] & 0x30) >> 4; } ret = reg_read(state, 0xb2, val, 6); layers = 0; if (ret == 0) { u8 v; c->isdbt_partial_reception = val[0] & 0x01; c->isdbt_sb_mode = (val[0] & 0xc0) == 0x40; /* layer A */ v = (val[2] & 0x78) >> 3; if (v == 0x0f) c->layer[0].segment_count = 0; else { layers++; c->layer[0].segment_count = v; c->layer[0].fec = fec_conv_ter[(val[1] & 0x1c) >> 2]; c->layer[0].modulation = mod_conv[(val[1] & 0xe0) >> 5]; v = (val[1] & 0x03) << 1 | (val[2] & 0x80) >> 7; c->layer[0].interleaving = v; } /* layer B */ v = (val[3] & 0x03) << 2 | (val[4] & 0xc0) >> 6; if (v == 0x0f) c->layer[1].segment_count = 0; else { layers++; c->layer[1].segment_count = v; c->layer[1].fec = fec_conv_ter[(val[3] & 0xe0) >> 5]; c->layer[1].modulation = mod_conv[(val[2] & 0x07)]; c->layer[1].interleaving = (val[3] & 0x1c) >> 2; } /* layer C */ v = (val[5] & 0x1e) >> 1; if (v == 0x0f) c->layer[2].segment_count = 0; else { layers++; c->layer[2].segment_count = v; c->layer[2].fec = fec_conv_ter[(val[4] & 0x07)]; c->layer[2].modulation = mod_conv[(val[4] & 0x38) >> 3]; c->layer[2].interleaving = (val[5] & 0xe0) >> 5; } } /* statistics */ stats = &c->strength; stats->len = 0; /* let the connected tuner set RSSI property cache */ if (fe->ops.tuner_ops.get_rf_strength) { u16 dummy; fe->ops.tuner_ops.get_rf_strength(fe, &dummy); } stats = &c->cnr; stats->len = 1; stats->stat[0].scale = FE_SCALE_NOT_AVAILABLE; cndat = 0; ret = reg_read(state, 0x8b, val, 3); if (ret == 0) cndat = val[0] << 16 | val[1] << 8 | val[2]; if (cndat != 0) { u32 p, tmp; s64 cn; /* * cnr[mdB] = 0.024 P^4 - 1.6 P^3 + 39.8 P^2 + 549.1 P + 3096.5 * (P = 10log10(5505024/cndat)) */ /* cn = cnr << 3 (61.3 fixed point float */ /* p = 10log10(5505024/cndat) << 24 (8.24 fixed point float)*/ p = intlog10(5505024) - intlog10(cndat); p *= 10; cn = 24772; cn += div64_s64(43827LL * p, 10) >> 24; tmp = p >> 8; cn += div64_s64(3184LL * tmp * tmp, 10) >> 32; tmp = p >> 13; cn -= div64_s64(128LL * tmp * tmp * tmp, 10) >> 33; tmp = p >> 18; cn += div64_s64(192LL * tmp * tmp * tmp * tmp, 1000) >> 24; stats->stat[0].svalue = cn >> 3; stats->stat[0].scale = FE_SCALE_DECIBEL; } /* per-layer post viterbi BER (or PER? config dependent?) */ stats = &c->post_bit_error; memset(stats, 0, sizeof(*stats)); stats->len = layers; ret = reg_read(state, 0x9d, val, 15); if (ret < 0) for (i = 0; i < layers; i++) stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE; else { for (i = 0; i < layers; i++) { stats->stat[i].scale = FE_SCALE_COUNTER; stats->stat[i].uvalue = val[i * 3] << 16 | val[i * 3 + 1] << 8 | val[i * 3 + 2]; } } stats = &c->post_bit_count; memset(stats, 0, sizeof(*stats)); stats->len = layers; if (ret < 0) for (i = 0; i < layers; i++) stats->stat[i].scale = FE_SCALE_NOT_AVAILABLE; else { for (i = 0; i < layers; i++) { stats->stat[i].scale = FE_SCALE_COUNTER; stats->stat[i].uvalue = val[9 + i * 2] << 8 | val[9 + i * 2 + 1]; stats->stat[i].uvalue *= 204 * 8; } } return 0; } static const struct reg_val reset_sat = { 0x03, 0x01 }; static const struct reg_val reset_ter = { 0x01, 0x40 }; static int tc90522_set_frontend(struct dvb_frontend *fe) { struct tc90522_state *state; int ret; state = fe->demodulator_priv; if (fe->ops.tuner_ops.set_params) ret = fe->ops.tuner_ops.set_params(fe); else ret = -ENODEV; if (ret < 0) goto failed; if (fe->ops.delsys[0] == SYS_ISDBS) { ret = tc90522s_set_tsid(fe); if (ret < 0) goto failed; ret = reg_write(state, &reset_sat, 1); } else { ret = tc90522t_set_layers(fe); if (ret < 0) goto failed; ret = reg_write(state, &reset_ter, 1); } if (ret < 0) goto failed; return 0; failed: dev_warn(&state->tuner_i2c.dev, "(%s) failed. [adap%d-fe%d]\n", __func__, fe->dvb->num, fe->id); return ret; } static int tc90522_get_tune_settings(struct dvb_frontend *fe, struct dvb_frontend_tune_settings *settings) { if (fe->ops.delsys[0] == SYS_ISDBS) { settings->min_delay_ms = 250; settings->step_size = 1000; settings->max_drift = settings->step_size * 2; } else { settings->min_delay_ms = 400; settings->step_size = 142857; settings->max_drift = settings->step_size; } return 0; } static int tc90522_set_if_agc(struct dvb_frontend *fe, bool on) { struct reg_val agc_sat[] = { { 0x0a, 0x00 }, { 0x10, 0x30 }, { 0x11, 0x00 }, { 0x03, 0x01 }, }; struct reg_val agc_ter[] = { { 0x25, 0x00 }, { 0x23, 0x4c }, { 0x01, 0x40 }, }; struct tc90522_state *state; struct reg_val *rv; int num; state = fe->demodulator_priv; if (fe->ops.delsys[0] == SYS_ISDBS) { agc_sat[0].val = on ? 0xff : 0x00; agc_sat[1].val |= 0x80; agc_sat[1].val |= on ? 0x01 : 0x00; agc_sat[2].val |= on ? 0x40 : 0x00; rv = agc_sat; num = ARRAY_SIZE(agc_sat); } else { agc_ter[0].val = on ? 0x40 : 0x00; agc_ter[1].val |= on ? 0x00 : 0x01; rv = agc_ter; num = ARRAY_SIZE(agc_ter); } return reg_write(state, rv, num); } static const struct reg_val sleep_sat = { 0x17, 0x01 }; static const struct reg_val sleep_ter = { 0x03, 0x90 }; static int tc90522_sleep(struct dvb_frontend *fe) { struct tc90522_state *state; int ret; state = fe->demodulator_priv; if (fe->ops.delsys[0] == SYS_ISDBS) ret = reg_write(state, &sleep_sat, 1); else { ret = reg_write(state, &sleep_ter, 1); if (ret == 0 && fe->ops.set_lna && fe->dtv_property_cache.lna == LNA_AUTO) { fe->dtv_property_cache.lna = 0; ret = fe->ops.set_lna(fe); fe->dtv_property_cache.lna = LNA_AUTO; } } if (ret < 0) dev_warn(&state->tuner_i2c.dev, "(%s) failed. [adap%d-fe%d]\n", __func__, fe->dvb->num, fe->id); return ret; } static const struct reg_val wakeup_sat = { 0x17, 0x00 }; static const struct reg_val wakeup_ter = { 0x03, 0x80 }; static int tc90522_init(struct dvb_frontend *fe) { struct tc90522_state *state; int ret; /* * Because the init sequence is not public, * the parent device/driver should have init'ed the device before. * just wake up the device here. */ state = fe->demodulator_priv; if (fe->ops.delsys[0] == SYS_ISDBS) ret = reg_write(state, &wakeup_sat, 1); else { ret = reg_write(state, &wakeup_ter, 1); if (ret == 0 && fe->ops.set_lna && fe->dtv_property_cache.lna == LNA_AUTO) { fe->dtv_property_cache.lna = 1; ret = fe->ops.set_lna(fe); fe->dtv_property_cache.lna = LNA_AUTO; } } if (ret < 0) { dev_warn(&state->tuner_i2c.dev, "(%s) failed. [adap%d-fe%d]\n", __func__, fe->dvb->num, fe->id); return ret; } /* prefer 'all-layers' to 'none' as a default */ if (fe->dtv_property_cache.isdbt_layer_enabled == 0) fe->dtv_property_cache.isdbt_layer_enabled = 7; return tc90522_set_if_agc(fe, true); } /* * tuner I2C adapter functions */ static int tc90522_master_xfer(struct i2c_adapter *adap, struct i2c_msg *msgs, int num) { struct tc90522_state *state; struct i2c_msg *new_msgs; int i, j; int ret, rd_num; u8 wbuf[256]; u8 *p, *bufend; if (num <= 0) return -EINVAL; rd_num = 0; for (i = 0; i < num; i++) if (msgs[i].flags & I2C_M_RD) rd_num++; new_msgs = kmalloc_array(num + rd_num, sizeof(*new_msgs), GFP_KERNEL); if (!new_msgs) return -ENOMEM; state = i2c_get_adapdata(adap); p = wbuf; bufend = wbuf + sizeof(wbuf); for (i = 0, j = 0; i < num; i++, j++) { new_msgs[j].addr = state->i2c_client->addr; new_msgs[j].flags = msgs[i].flags; if (msgs[i].flags & I2C_M_RD) { new_msgs[j].flags &= ~I2C_M_RD; if (p + 2 > bufend) break; p[0] = TC90522_I2C_THRU_REG; p[1] = msgs[i].addr << 1 | 0x01; new_msgs[j].buf = p; new_msgs[j].len = 2; p += 2; j++; new_msgs[j].addr = state->i2c_client->addr; new_msgs[j].flags = msgs[i].flags; new_msgs[j].buf = msgs[i].buf; new_msgs[j].len = msgs[i].len; continue; } if (p + msgs[i].len + 2 > bufend) break; p[0] = TC90522_I2C_THRU_REG; p[1] = msgs[i].addr << 1; memcpy(p + 2, msgs[i].buf, msgs[i].len); new_msgs[j].buf = p; new_msgs[j].len = msgs[i].len + 2; p += new_msgs[j].len; } if (i < num) { ret = -ENOMEM; } else if (!state->cfg.split_tuner_read_i2c || rd_num == 0) { ret = i2c_transfer(state->i2c_client->adapter, new_msgs, j); } else { /* * Split transactions at each I2C_M_RD message. * Some of the parent device require this, * such as Friio (see. dvb-usb-gl861). */ int from, to; ret = 0; from = 0; do { int r; to = from + 1; while (to < j && !(new_msgs[to].flags & I2C_M_RD)) to++; r = i2c_transfer(state->i2c_client->adapter, &new_msgs[from], to - from); ret = (r <= 0) ? r : ret + r; from = to; } while (from < j && ret > 0); } if (ret >= 0 && ret < j) ret = -EIO; kfree(new_msgs); return (ret == j) ? num : ret; } static u32 tc90522_functionality(struct i2c_adapter *adap) { return I2C_FUNC_I2C; } static const struct i2c_algorithm tc90522_tuner_i2c_algo = { .master_xfer = &tc90522_master_xfer, .functionality = &tc90522_functionality, }; /* * I2C driver functions */ static const struct dvb_frontend_ops tc90522_ops_sat = { .delsys = { SYS_ISDBS }, .info = { .name = "Toshiba TC90522 ISDB-S module", .frequency_min_hz = 950 * MHz, .frequency_max_hz = 2150 * MHz, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_HIERARCHY_AUTO, }, .init = tc90522_init, .sleep = tc90522_sleep, .set_frontend = tc90522_set_frontend, .get_tune_settings = tc90522_get_tune_settings, .get_frontend = tc90522s_get_frontend, .read_status = tc90522s_read_status, }; static const struct dvb_frontend_ops tc90522_ops_ter = { .delsys = { SYS_ISDBT }, .info = { .name = "Toshiba TC90522 ISDB-T module", .frequency_min_hz = 470 * MHz, .frequency_max_hz = 770 * MHz, .frequency_stepsize_hz = 142857, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .init = tc90522_init, .sleep = tc90522_sleep, .set_frontend = tc90522_set_frontend, .get_tune_settings = tc90522_get_tune_settings, .get_frontend = tc90522t_get_frontend, .read_status = tc90522t_read_status, }; static int tc90522_probe(struct i2c_client *client, const struct i2c_device_id *id) { struct tc90522_state *state; struct tc90522_config *cfg; const struct dvb_frontend_ops *ops; struct i2c_adapter *adap; int ret; state = kzalloc(sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; state->i2c_client = client; cfg = client->dev.platform_data; memcpy(&state->cfg, cfg, sizeof(state->cfg)); cfg->fe = state->cfg.fe = &state->fe; ops = id->driver_data == 0 ? &tc90522_ops_sat : &tc90522_ops_ter; memcpy(&state->fe.ops, ops, sizeof(*ops)); state->fe.demodulator_priv = state; adap = &state->tuner_i2c; adap->owner = THIS_MODULE; adap->algo = &tc90522_tuner_i2c_algo; adap->dev.parent = &client->dev; strscpy(adap->name, "tc90522_sub", sizeof(adap->name)); i2c_set_adapdata(adap, state); ret = i2c_add_adapter(adap); if (ret < 0) goto free_state; cfg->tuner_i2c = state->cfg.tuner_i2c = adap; i2c_set_clientdata(client, &state->cfg); dev_info(&client->dev, "Toshiba TC90522 attached.\n"); return 0; free_state: kfree(state); return ret; } static int tc90522_remove(struct i2c_client *client) { struct tc90522_state *state; state = cfg_to_state(i2c_get_clientdata(client)); i2c_del_adapter(&state->tuner_i2c); kfree(state); return 0; } static const struct i2c_device_id tc90522_id[] = { { TC90522_I2C_DEV_SAT, 0 }, { TC90522_I2C_DEV_TER, 1 }, {} }; MODULE_DEVICE_TABLE(i2c, tc90522_id); static struct i2c_driver tc90522_driver = { .driver = { .name = "tc90522", }, .probe = tc90522_probe, .remove = tc90522_remove, .id_table = tc90522_id, }; module_i2c_driver(tc90522_driver); MODULE_DESCRIPTION("Toshiba TC90522 frontend"); MODULE_AUTHOR("Akihiro TSUKADA"); MODULE_LICENSE("GPL");