/* * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner. * * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of the * License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. * * * This code is more or less generated from another driver, please * excuse some codingstyle oddities. * */ #include #include #include "dvb_frontend.h" #include "dib0090.h" #include "dibx000_common.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(args...) do { \ if (debug) { \ printk(KERN_DEBUG "DiB0090: "); \ printk(args); \ printk("\n"); \ } \ } while (0) #define CONFIG_SYS_ISDBT #define CONFIG_BAND_CBAND #define CONFIG_BAND_VHF #define CONFIG_BAND_UHF #define CONFIG_DIB0090_USE_PWM_AGC #define EN_LNA0 0x8000 #define EN_LNA1 0x4000 #define EN_LNA2 0x2000 #define EN_LNA3 0x1000 #define EN_MIX0 0x0800 #define EN_MIX1 0x0400 #define EN_MIX2 0x0200 #define EN_MIX3 0x0100 #define EN_IQADC 0x0040 #define EN_PLL 0x0020 #define EN_TX 0x0010 #define EN_BB 0x0008 #define EN_LO 0x0004 #define EN_BIAS 0x0001 #define EN_IQANA 0x0002 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */ #define EN_CRYSTAL 0x0002 #define EN_UHF 0x22E9 #define EN_VHF 0x44E9 #define EN_LBD 0x11E9 #define EN_SBD 0x44E9 #define EN_CAB 0x88E9 #define pgm_read_word(w) (*w) struct dc_calibration; struct dib0090_tuning { u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ u8 switch_trim; u8 lna_tune; u8 lna_bias; u16 v2i; u16 mix; u16 load; u16 tuner_enable; }; struct dib0090_pll { u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ u8 vco_band; u8 hfdiv_code; u8 hfdiv; u8 topresc; }; struct dib0090_state { struct i2c_adapter *i2c; struct dvb_frontend *fe; const struct dib0090_config *config; u8 current_band; u16 revision; enum frontend_tune_state tune_state; u32 current_rf; u16 wbd_offset; s16 wbd_target; /* in dB */ s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */ s16 current_gain; /* keeps the currently programmed gain */ u8 agc_step; /* new binary search */ u16 gain[2]; /* for channel monitoring */ const u16 *rf_ramp; const u16 *bb_ramp; /* for the software AGC ramps */ u16 bb_1_def; u16 rf_lt_def; u16 gain_reg[4]; /* for the captrim/dc-offset search */ s8 step; s16 adc_diff; s16 min_adc_diff; s8 captrim; s8 fcaptrim; const struct dc_calibration *dc; u16 bb6, bb7; const struct dib0090_tuning *current_tune_table_index; const struct dib0090_pll *current_pll_table_index; u8 tuner_is_tuned; u8 agc_freeze; u8 reset; }; static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg) { u8 b[2]; struct i2c_msg msg[2] = { {.addr = state->config->i2c_address, .flags = 0, .buf = ®, .len = 1}, {.addr = state->config->i2c_address, .flags = I2C_M_RD, .buf = b, .len = 2}, }; if (i2c_transfer(state->i2c, msg, 2) != 2) { printk(KERN_WARNING "DiB0090 I2C read failed\n"); return 0; } return (b[0] << 8) | b[1]; } static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val) { u8 b[3] = { reg & 0xff, val >> 8, val & 0xff }; struct i2c_msg msg = {.addr = state->config->i2c_address, .flags = 0, .buf = b, .len = 3 }; if (i2c_transfer(state->i2c, &msg, 1) != 1) { printk(KERN_WARNING "DiB0090 I2C write failed\n"); return -EREMOTEIO; } return 0; } #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0) #define ADC_TARGET -220 #define GAIN_ALPHA 5 #define WBD_ALPHA 6 #define LPF 100 static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c) { do { dib0090_write_reg(state, r++, *b++); } while (--c); } static u16 dib0090_identify(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; u16 v; v = dib0090_read_reg(state, 0x1a); #ifdef FIRMWARE_FIREFLY /* pll is not locked locked */ if (!(v & 0x800)) dprintk("FE%d : Identification : pll is not yet locked", fe->id); #endif /* without PLL lock info */ v &= 0x3ff; dprintk("P/V: %04x:", v); if ((v >> 8) & 0xf) dprintk("FE%d : Product ID = 0x%x : KROSUS", fe->id, (v >> 8) & 0xf); else return 0xff; v &= 0xff; if (((v >> 5) & 0x7) == 0x1) dprintk("FE%d : MP001 : 9090/8096", fe->id); else if (((v >> 5) & 0x7) == 0x4) dprintk("FE%d : MP005 : Single Sband", fe->id); else if (((v >> 5) & 0x7) == 0x6) dprintk("FE%d : MP008 : diversity VHF-UHF-LBAND", fe->id); else if (((v >> 5) & 0x7) == 0x7) dprintk("FE%d : MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND", fe->id); else return 0xff; /* revision only */ if ((v & 0x1f) == 0x3) dprintk("FE%d : P1-D/E/F detected", fe->id); else if ((v & 0x1f) == 0x1) dprintk("FE%d : P1C detected", fe->id); else if ((v & 0x1f) == 0x0) { #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT dprintk("FE%d : P1-A/B detected: using previous driver - support will be removed soon", fe->id); dib0090_p1b_register(fe); #else dprintk("FE%d : P1-A/B detected: driver is deactivated - not available", fe->id); return 0xff; #endif } return v; } static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) { struct dib0090_state *state = fe->tuner_priv; HARD_RESET(state); dib0090_write_reg(state, 0x24, EN_PLL); dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */ /* adcClkOutRatio=8->7, release reset */ dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0); if (cfg->clkoutdrive != 0) dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (cfg->clkoutdrive << 5) | (cfg-> clkouttobamse << 4) | (0 << 2) | (0)); else dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 10) | (1 << 9) | (0 << 8) | (7 << 5) | (cfg-> clkouttobamse << 4) | (0 << 2) | (0)); /* enable pll, de-activate reset, ratio: 2/1 = 60MHz */ dib0090_write_reg(state, 0x21, (cfg->io.pll_bypass << 15) | (1 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)); } static int dib0090_wakeup(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; if (state->config->sleep) state->config->sleep(fe, 0); return 0; } static int dib0090_sleep(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; if (state->config->sleep) state->config->sleep(fe, 1); return 0; } extern void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast) { struct dib0090_state *state = fe->tuner_priv; if (fast) dib0090_write_reg(state, 0x04, 0); else dib0090_write_reg(state, 0x04, 1); } EXPORT_SYMBOL(dib0090_dcc_freq); static const u16 rf_ramp_pwm_cband[] = { 0, /* max RF gain in 10th of dB */ 0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ 0, /* ramp_max = maximum X used on the ramp */ (0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */ (0 << 10) | 0, /* 0x2d, LNA 1 */ (0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */ (0 << 10) | 0, /* 0x2f, LNA 2 */ (0 << 10) | 0, /* 0x30, LNA 3 = 0dB */ (0 << 10) | 0, /* 0x31, LNA 3 */ (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */ (0 << 10) | 0, /* GAIN_4_2, LNA 4 */ }; static const u16 rf_ramp_vhf[] = { 412, /* max RF gain in 10th of dB */ 132, 307, 127, /* LNA1, 13.2dB */ 105, 412, 255, /* LNA2, 10.5dB */ 50, 50, 127, /* LNA3, 5dB */ 125, 175, 127, /* LNA4, 12.5dB */ 0, 0, 127, /* CBAND, 0dB */ }; static const u16 rf_ramp_uhf[] = { 412, /* max RF gain in 10th of dB */ 132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */ 105, 412, 255, /* LNA2 : 10.5 dB */ 50, 50, 127, /* LNA3 : 5.0 dB */ 125, 175, 127, /* LNA4 : 12.5 dB */ 0, 0, 127, /* CBAND : 0.0 dB */ }; static const u16 rf_ramp_cband[] = { 332, /* max RF gain in 10th of dB */ 132, 252, 127, /* LNA1, dB */ 80, 332, 255, /* LNA2, dB */ 0, 0, 127, /* LNA3, dB */ 0, 0, 127, /* LNA4, dB */ 120, 120, 127, /* LT1 CBAND */ }; static const u16 rf_ramp_pwm_vhf[] = { 404, /* max RF gain in 10th of dB */ 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ 1011, /* ramp_max = maximum X used on the ramp */ (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */ (0 << 10) | 756, /* 0x2d, LNA 1 */ (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */ (0 << 10) | 1011, /* 0x2f, LNA 2 */ (16 << 10) | 290, /* 0x30, LNA 3 = 5dB */ (0 << 10) | 417, /* 0x31, LNA 3 */ (7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */ (0 << 10) | 290, /* GAIN_4_2, LNA 4 */ }; static const u16 rf_ramp_pwm_uhf[] = { 404, /* max RF gain in 10th of dB */ 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ 1011, /* ramp_max = maximum X used on the ramp */ (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */ (0 << 10) | 756, /* 0x2d, LNA 1 */ (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */ (0 << 10) | 1011, /* 0x2f, LNA 2 */ (16 << 10) | 0, /* 0x30, LNA 3 = 5dB */ (0 << 10) | 127, /* 0x31, LNA 3 */ (7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */ (0 << 10) | 417, /* GAIN_4_2, LNA 4 */ }; static const u16 bb_ramp_boost[] = { 550, /* max BB gain in 10th of dB */ 260, 260, 26, /* BB1, 26dB */ 290, 550, 29, /* BB2, 29dB */ }; static const u16 bb_ramp_pwm_normal[] = { 500, /* max RF gain in 10th of dB */ 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */ 400, (2 << 9) | 0, /* 0x35 = 21dB */ (0 << 9) | 168, /* 0x36 */ (2 << 9) | 168, /* 0x37 = 29dB */ (0 << 9) | 400, /* 0x38 */ }; struct slope { int16_t range; int16_t slope; }; static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val) { u8 i; u16 rest; u16 ret = 0; for (i = 0; i < num; i++) { if (val > slopes[i].range) rest = slopes[i].range; else rest = val; ret += (rest * slopes[i].slope) / slopes[i].range; val -= rest; } return ret; } static const struct slope dib0090_wbd_slopes[3] = { {66, 120}, /* -64,-52: offset - 65 */ {600, 170}, /* -52,-35: 65 - 665 */ {170, 250}, /* -45,-10: 665 - 835 */ }; static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd) { wbd &= 0x3ff; if (wbd < state->wbd_offset) wbd = 0; else wbd -= state->wbd_offset; /* -64dB is the floor */ return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd); } static void dib0090_wbd_target(struct dib0090_state *state, u32 rf) { u16 offset = 250; /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */ if (state->current_band == BAND_VHF) offset = 650; #ifndef FIRMWARE_FIREFLY if (state->current_band == BAND_VHF) offset = state->config->wbd_vhf_offset; if (state->current_band == BAND_CBAND) offset = state->config->wbd_cband_offset; #endif state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset); dprintk("wbd-target: %d dB", (u32) state->wbd_target); } static const int gain_reg_addr[4] = { 0x08, 0x0a, 0x0f, 0x01 }; static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force) { u16 rf, bb, ref; u16 i, v, gain_reg[4] = { 0 }, gain; const u16 *g; if (top_delta < -511) top_delta = -511; if (top_delta > 511) top_delta = 511; if (force) { top_delta *= (1 << WBD_ALPHA); gain_delta *= (1 << GAIN_ALPHA); } if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */ state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; else state->rf_gain_limit += top_delta; if (state->rf_gain_limit < 0) /*underflow */ state->rf_gain_limit = 0; /* use gain as a temporary variable and correct current_gain */ gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA; if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */ state->current_gain = gain; else state->current_gain += gain_delta; /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */ if (state->current_gain < 0) state->current_gain = 0; /* now split total gain to rf and bb gain */ gain = state->current_gain >> GAIN_ALPHA; /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */ if (gain > (state->rf_gain_limit >> WBD_ALPHA)) { rf = state->rf_gain_limit >> WBD_ALPHA; bb = gain - rf; if (bb > state->bb_ramp[0]) bb = state->bb_ramp[0]; } else { /* high signal level -> all gains put on RF */ rf = gain; bb = 0; } state->gain[0] = rf; state->gain[1] = bb; /* software ramp */ /* Start with RF gains */ g = state->rf_ramp + 1; /* point on RF LNA1 max gain */ ref = rf; for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */ if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */ v = 0; /* force the gain to write for the current amp to be null */ else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */ v = g[2]; /* force this amp to be full gain */ else /* compute the value to set to this amp because we are somewhere in his range */ v = ((ref - (g[1] - g[0])) * g[2]) / g[0]; if (i == 0) /* LNA 1 reg mapping */ gain_reg[0] = v; else if (i == 1) /* LNA 2 reg mapping */ gain_reg[0] |= v << 7; else if (i == 2) /* LNA 3 reg mapping */ gain_reg[1] = v; else if (i == 3) /* LNA 4 reg mapping */ gain_reg[1] |= v << 7; else if (i == 4) /* CBAND LNA reg mapping */ gain_reg[2] = v | state->rf_lt_def; else if (i == 5) /* BB gain 1 reg mapping */ gain_reg[3] = v << 3; else if (i == 6) /* BB gain 2 reg mapping */ gain_reg[3] |= v << 8; g += 3; /* go to next gain bloc */ /* When RF is finished, start with BB */ if (i == 4) { g = state->bb_ramp + 1; /* point on BB gain 1 max gain */ ref = bb; } } gain_reg[3] |= state->bb_1_def; gain_reg[3] |= ((bb % 10) * 100) / 125; #ifdef DEBUG_AGC dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb, gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]); #endif /* Write the amplifier regs */ for (i = 0; i < 4; i++) { v = gain_reg[i]; if (force || state->gain_reg[i] != v) { state->gain_reg[i] = v; dib0090_write_reg(state, gain_reg_addr[i], v); } } } static void dib0090_set_boost(struct dib0090_state *state, int onoff) { state->bb_1_def &= 0xdfff; state->bb_1_def |= onoff << 13; } static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg) { state->rf_ramp = cfg; } static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg) { state->rf_ramp = cfg; dib0090_write_reg(state, 0x2a, 0xffff); dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a)); dib0090_write_regs(state, 0x2c, cfg + 3, 6); dib0090_write_regs(state, 0x3e, cfg + 9, 2); } static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg) { state->bb_ramp = cfg; dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ } static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg) { state->bb_ramp = cfg; dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ dib0090_write_reg(state, 0x33, 0xffff); dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33)); dib0090_write_regs(state, 0x35, cfg + 3, 4); } void dib0090_pwm_gain_reset(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; /* reset the AGC */ if (state->config->use_pwm_agc) { #ifdef CONFIG_BAND_SBAND if (state->current_band == BAND_SBAND) { dib0090_set_rframp_pwm(state, rf_ramp_pwm_sband); dib0090_set_bbramp_pwm(state, bb_ramp_pwm_boost); } else #endif #ifdef CONFIG_BAND_CBAND if (state->current_band == BAND_CBAND) { dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband); dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); } else #endif #ifdef CONFIG_BAND_VHF if (state->current_band == BAND_VHF) { dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf); dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); } else #endif { dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf); dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); } if (state->rf_ramp[0] != 0) dib0090_write_reg(state, 0x32, (3 << 11)); else dib0090_write_reg(state, 0x32, (0 << 11)); dib0090_write_reg(state, 0x39, (1 << 10)); } } EXPORT_SYMBOL(dib0090_pwm_gain_reset); int dib0090_gain_control(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; enum frontend_tune_state *tune_state = &state->tune_state; int ret = 10; u16 wbd_val = 0; u8 apply_gain_immediatly = 1; s16 wbd_error = 0, adc_error = 0; if (*tune_state == CT_AGC_START) { state->agc_freeze = 0; dib0090_write_reg(state, 0x04, 0x0); #ifdef CONFIG_BAND_SBAND if (state->current_band == BAND_SBAND) { dib0090_set_rframp(state, rf_ramp_sband); dib0090_set_bbramp(state, bb_ramp_boost); } else #endif #ifdef CONFIG_BAND_VHF if (state->current_band == BAND_VHF) { dib0090_set_rframp(state, rf_ramp_vhf); dib0090_set_bbramp(state, bb_ramp_boost); } else #endif #ifdef CONFIG_BAND_CBAND if (state->current_band == BAND_CBAND) { dib0090_set_rframp(state, rf_ramp_cband); dib0090_set_bbramp(state, bb_ramp_boost); } else #endif { dib0090_set_rframp(state, rf_ramp_uhf); dib0090_set_bbramp(state, bb_ramp_boost); } dib0090_write_reg(state, 0x32, 0); dib0090_write_reg(state, 0x39, 0); dib0090_wbd_target(state, state->current_rf); state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA; *tune_state = CT_AGC_STEP_0; } else if (!state->agc_freeze) { s16 wbd; int adc; wbd_val = dib0090_read_reg(state, 0x1d); /* read and calc the wbd power */ wbd = dib0090_wbd_to_db(state, wbd_val); wbd_error = state->wbd_target - wbd; if (*tune_state == CT_AGC_STEP_0) { if (wbd_error < 0 && state->rf_gain_limit > 0) { #ifdef CONFIG_BAND_CBAND /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */ u8 ltg2 = (state->rf_lt_def >> 10) & 0x7; if (state->current_band == BAND_CBAND && ltg2) { ltg2 >>= 1; state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */ } #endif } else { state->agc_step = 0; *tune_state = CT_AGC_STEP_1; } } else { /* calc the adc power */ adc = state->config->get_adc_power(fe); adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */ adc_error = (s16) (((s32) ADC_TARGET) - adc); #ifdef CONFIG_STANDARD_DAB if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) adc_error += 130; #endif #ifdef CONFIG_STANDARD_DVBT if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT && (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16)) adc_error += 60; #endif #ifdef CONFIG_SYS_ISDBT if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count > 0) && ((state->fe->dtv_property_cache.layer[0].modulation == QAM_64) || (state->fe->dtv_property_cache.layer[0]. modulation == QAM_16))) || ((state->fe->dtv_property_cache.layer[1].segment_count > 0) && ((state->fe->dtv_property_cache.layer[1].modulation == QAM_64) || (state->fe->dtv_property_cache.layer[1]. modulation == QAM_16))) || ((state->fe->dtv_property_cache.layer[2].segment_count > 0) && ((state->fe->dtv_property_cache.layer[2].modulation == QAM_64) || (state->fe->dtv_property_cache.layer[2]. modulation == QAM_16))) ) ) adc_error += 60; #endif if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */ if (ABS(adc_error) < 50 || state->agc_step++ > 5) { #ifdef CONFIG_STANDARD_DAB if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) { dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */ dib0090_write_reg(state, 0x04, 0x0); } else #endif { dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32)); dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */ } *tune_state = CT_AGC_STOP; } } else { /* everything higher than or equal to CT_AGC_STOP means tracking */ ret = 100; /* 10ms interval */ apply_gain_immediatly = 0; } } #ifdef DEBUG_AGC dprintk ("FE: %d, tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm", (u32) fe->id, (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val, (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA)); #endif } /* apply gain */ if (!state->agc_freeze) dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly); return ret; } EXPORT_SYMBOL(dib0090_gain_control); void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt) { struct dib0090_state *state = fe->tuner_priv; if (rf) *rf = state->gain[0]; if (bb) *bb = state->gain[1]; if (rf_gain_limit) *rf_gain_limit = state->rf_gain_limit; if (rflt) *rflt = (state->rf_lt_def >> 10) & 0x7; } EXPORT_SYMBOL(dib0090_get_current_gain); u16 dib0090_get_wbd_offset(struct dvb_frontend *tuner) { struct dib0090_state *st = tuner->tuner_priv; return st->wbd_offset; } EXPORT_SYMBOL(dib0090_get_wbd_offset); static const u16 dib0090_defaults[] = { 25, 0x01, 0x0000, 0x99a0, 0x6008, 0x0000, 0x8acb, 0x0000, 0x0405, 0x0000, 0x0000, 0x0000, 0xb802, 0x0300, 0x2d12, 0xbac0, 0x7c00, 0xdbb9, 0x0954, 0x0743, 0x8000, 0x0001, 0x0040, 0x0100, 0x0000, 0xe910, 0x149e, 1, 0x1c, 0xff2d, 1, 0x39, 0x0000, 1, 0x1b, EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL, 2, 0x1e, 0x07FF, 0x0007, 1, 0x24, EN_UHF | EN_CRYSTAL, 2, 0x3c, 0x3ff, 0x111, 0 }; static int dib0090_reset(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; u16 l, r, *n; dib0090_reset_digital(fe, state->config); state->revision = dib0090_identify(fe); /* Revision definition */ if (state->revision == 0xff) return -EINVAL; #ifdef EFUSE else if ((state->revision & 0x1f) >= 3) /* Update the efuse : Only available for KROSUS > P1C */ dib0090_set_EFUSE(state); #endif #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT if (!(state->revision & 0x1)) /* it is P1B - reset is already done */ return 0; #endif /* Upload the default values */ n = (u16 *) dib0090_defaults; l = pgm_read_word(n++); while (l) { r = pgm_read_word(n++); do { /* DEBUG_TUNER */ /* dprintk("%d, %d, %d", l, r, pgm_read_word(n)); */ dib0090_write_reg(state, r, pgm_read_word(n++)); r++; } while (--l); l = pgm_read_word(n++); } /* Congigure in function of the crystal */ if (state->config->io.clock_khz >= 24000) l = 1; else l = 2; dib0090_write_reg(state, 0x14, l); dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1); state->reset = 3; /* enable iq-offset-calibration and wbd-calibration when tuning next time */ return 0; } #define steps(u) (((u) > 15) ? ((u)-16) : (u)) #define INTERN_WAIT 10 static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state) { int ret = INTERN_WAIT * 10; switch (*tune_state) { case CT_TUNER_STEP_2: /* Turns to positive */ dib0090_write_reg(state, 0x1f, 0x7); *tune_state = CT_TUNER_STEP_3; break; case CT_TUNER_STEP_3: state->adc_diff = dib0090_read_reg(state, 0x1d); /* Turns to negative */ dib0090_write_reg(state, 0x1f, 0x4); *tune_state = CT_TUNER_STEP_4; break; case CT_TUNER_STEP_4: state->adc_diff -= dib0090_read_reg(state, 0x1d); *tune_state = CT_TUNER_STEP_5; ret = 0; break; default: break; } return ret; } struct dc_calibration { uint8_t addr; uint8_t offset; uint8_t pga:1; uint16_t bb1; uint8_t i:1; }; static const struct dc_calibration dc_table[] = { /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1}, {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0}, /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1}, {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0}, {0}, }; static void dib0090_set_trim(struct dib0090_state *state) { u16 *val; if (state->dc->addr == 0x07) val = &state->bb7; else val = &state->bb6; *val &= ~(0x1f << state->dc->offset); *val |= state->step << state->dc->offset; dib0090_write_reg(state, state->dc->addr, *val); } static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) { int ret = 0; switch (*tune_state) { case CT_TUNER_START: /* init */ dprintk("Internal DC calibration"); /* the LNA is off */ dib0090_write_reg(state, 0x24, 0x02ed); /* force vcm2 = 0.8V */ state->bb6 = 0; state->bb7 = 0x040d; state->dc = dc_table; *tune_state = CT_TUNER_STEP_0; /* fall through */ case CT_TUNER_STEP_0: dib0090_write_reg(state, 0x01, state->dc->bb1); dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7)); state->step = 0; state->min_adc_diff = 1023; *tune_state = CT_TUNER_STEP_1; ret = 50; break; case CT_TUNER_STEP_1: dib0090_set_trim(state); *tune_state = CT_TUNER_STEP_2; break; case CT_TUNER_STEP_2: case CT_TUNER_STEP_3: case CT_TUNER_STEP_4: ret = dib0090_get_offset(state, tune_state); break; case CT_TUNER_STEP_5: /* found an offset */ dprintk("FE%d: IQC read=%d, current=%x", state->fe->id, (u32) state->adc_diff, state->step); /* first turn for this frequency */ if (state->step == 0) { if (state->dc->pga && state->adc_diff < 0) state->step = 0x10; if (state->dc->pga == 0 && state->adc_diff > 0) state->step = 0x10; } state->adc_diff = ABS(state->adc_diff); if (state->adc_diff < state->min_adc_diff && steps(state->step) < 15) { /* stop search when the delta to 0 is increasing */ state->step++; state->min_adc_diff = state->adc_diff; *tune_state = CT_TUNER_STEP_1; } else { /* the minimum was what we have seen in the step before */ state->step--; dib0090_set_trim(state); dprintk("FE%d: BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->fe->id, state->dc->addr, state->adc_diff, state->step); state->dc++; if (state->dc->addr == 0) /* done */ *tune_state = CT_TUNER_STEP_6; else *tune_state = CT_TUNER_STEP_0; } break; case CT_TUNER_STEP_6: dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008); dib0090_write_reg(state, 0x1f, 0x7); *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ state->reset &= ~0x1; default: break; } return ret; } static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) { switch (*tune_state) { case CT_TUNER_START: /* WBD-mode=log, Bias=2, Gain=6, Testmode=1, en=1, WBDMUX=1 */ dib0090_write_reg(state, 0x10, 0xdb09 | (1 << 10)); dib0090_write_reg(state, 0x24, EN_UHF & 0x0fff); *tune_state = CT_TUNER_STEP_0; return 90; /* wait for the WBDMUX to switch and for the ADC to sample */ case CT_TUNER_STEP_0: state->wbd_offset = dib0090_read_reg(state, 0x1d); dprintk("WBD calibration offset = %d", state->wbd_offset); *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ state->reset &= ~0x2; break; default: break; } return 0; } static void dib0090_set_bandwidth(struct dib0090_state *state) { u16 tmp; if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000) tmp = (3 << 14); else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000) tmp = (2 << 14); else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000) tmp = (1 << 14); else tmp = (0 << 14); state->bb_1_def &= 0x3fff; state->bb_1_def |= tmp; dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */ } static const struct dib0090_pll dib0090_pll_table[] = { #ifdef CONFIG_BAND_CBAND {56000, 0, 9, 48, 6}, {70000, 1, 9, 48, 6}, {87000, 0, 8, 32, 4}, {105000, 1, 8, 32, 4}, {115000, 0, 7, 24, 6}, {140000, 1, 7, 24, 6}, {170000, 0, 6, 16, 4}, #endif #ifdef CONFIG_BAND_VHF {200000, 1, 6, 16, 4}, {230000, 0, 5, 12, 6}, {280000, 1, 5, 12, 6}, {340000, 0, 4, 8, 4}, {380000, 1, 4, 8, 4}, {450000, 0, 3, 6, 6}, #endif #ifdef CONFIG_BAND_UHF {580000, 1, 3, 6, 6}, {700000, 0, 2, 4, 4}, {860000, 1, 2, 4, 4}, #endif #ifdef CONFIG_BAND_LBAND {1800000, 1, 0, 2, 4}, #endif #ifdef CONFIG_BAND_SBAND {2900000, 0, 14, 1, 4}, #endif }; static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = { #ifdef CONFIG_BAND_CBAND {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, #endif #ifdef CONFIG_BAND_UHF {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, #endif #ifdef CONFIG_BAND_LBAND {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, #endif #ifdef CONFIG_BAND_SBAND {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, #endif }; static const struct dib0090_tuning dib0090_tuning_table[] = { #ifdef CONFIG_BAND_CBAND {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, #endif #ifdef CONFIG_BAND_VHF {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, #endif #ifdef CONFIG_BAND_UHF {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, #endif #ifdef CONFIG_BAND_LBAND {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, #endif #ifdef CONFIG_BAND_SBAND {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, #endif }; #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */ static int dib0090_tune(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; const struct dib0090_tuning *tune = state->current_tune_table_index; const struct dib0090_pll *pll = state->current_pll_table_index; enum frontend_tune_state *tune_state = &state->tune_state; u32 rf; u16 lo4 = 0xe900, lo5, lo6, Den; u32 FBDiv, Rest, FREF, VCOF_kHz = 0; u16 tmp, adc; int8_t step_sign; int ret = 10; /* 1ms is the default delay most of the time */ u8 c, i; state->current_band = (u8) BAND_OF_FREQUENCY(fe->dtv_property_cache.frequency / 1000); rf = fe->dtv_property_cache.frequency / 1000 + (state->current_band == BAND_UHF ? state->config->freq_offset_khz_uhf : state->config->freq_offset_khz_vhf); /* in any case we first need to do a reset if needed */ if (state->reset & 0x1) return dib0090_dc_offset_calibration(state, tune_state); else if (state->reset & 0x2) return dib0090_wbd_calibration(state, tune_state); /************************* VCO ***************************/ /* Default values for FG */ /* from these are needed : */ /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */ #ifdef CONFIG_SYS_ISDBT if (state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1) rf += 850; #endif if (state->current_rf != rf) { state->tuner_is_tuned = 0; tune = dib0090_tuning_table; tmp = (state->revision >> 5) & 0x7; if (tmp == 0x4 || tmp == 0x7) { /* CBAND tuner version for VHF */ if (state->current_band == BAND_FM || state->current_band == BAND_VHF) { /* Force CBAND */ state->current_band = BAND_CBAND; tune = dib0090_tuning_table_fm_vhf_on_cband; } } pll = dib0090_pll_table; /* Look for the interval */ while (rf > tune->max_freq) tune++; while (rf > pll->max_freq) pll++; state->current_tune_table_index = tune; state->current_pll_table_index = pll; } if (*tune_state == CT_TUNER_START) { if (state->tuner_is_tuned == 0) state->current_rf = 0; if (state->current_rf != rf) { dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim)); /* external loop filter, otherwise: * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4; * lo6 = 0x0e34 */ if (pll->vco_band) lo5 = 0x049e; else if (state->config->analog_output) lo5 = 0x041d; else lo5 = 0x041c; lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */ if (!state->config->io.pll_int_loop_filt) lo6 = 0xff28; else lo6 = (state->config->io.pll_int_loop_filt << 3); VCOF_kHz = (pll->hfdiv * rf) * 2; FREF = state->config->io.clock_khz; FBDiv = (VCOF_kHz / pll->topresc / FREF); Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF; if (Rest < LPF) Rest = 0; else if (Rest < 2 * LPF) Rest = 2 * LPF; else if (Rest > (FREF - LPF)) { Rest = 0; FBDiv += 1; } else if (Rest > (FREF - 2 * LPF)) Rest = FREF - 2 * LPF; Rest = (Rest * 6528) / (FREF / 10); Den = 1; dprintk(" ***** ******* Rest value = %d", Rest); if (Rest > 0) { if (state->config->analog_output) lo6 |= (1 << 2) | 2; else lo6 |= (1 << 2) | 1; Den = 255; } #ifdef CONFIG_BAND_SBAND if (state->current_band == BAND_SBAND) lo6 &= 0xfffb; #endif dib0090_write_reg(state, 0x15, (u16) FBDiv); dib0090_write_reg(state, 0x16, (Den << 8) | 1); dib0090_write_reg(state, 0x17, (u16) Rest); dib0090_write_reg(state, 0x19, lo5); dib0090_write_reg(state, 0x1c, lo6); lo6 = tune->tuner_enable; if (state->config->analog_output) lo6 = (lo6 & 0xff9f) | 0x2; dib0090_write_reg(state, 0x24, lo6 | EN_LO #ifdef CONFIG_DIB0090_USE_PWM_AGC | state->config->use_pwm_agc * EN_CRYSTAL #endif ); state->current_rf = rf; /* prepare a complete captrim */ state->step = state->captrim = state->fcaptrim = 64; } else { /* we are already tuned to this frequency - the configuration is correct */ /* do a minimal captrim even if the frequency has not changed */ state->step = 4; state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f; } state->adc_diff = 3000; dib0090_write_reg(state, 0x10, 0x2B1); dib0090_write_reg(state, 0x1e, 0x0032); ret = 20; *tune_state = CT_TUNER_STEP_1; } else if (*tune_state == CT_TUNER_STEP_0) { /* nothing */ } else if (*tune_state == CT_TUNER_STEP_1) { state->step /= 2; dib0090_write_reg(state, 0x18, lo4 | state->captrim); *tune_state = CT_TUNER_STEP_2; } else if (*tune_state == CT_TUNER_STEP_2) { adc = dib0090_read_reg(state, 0x1d); dprintk("FE %d CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) fe->id, (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024); if (adc >= 400) { adc -= 400; step_sign = -1; } else { adc = 400 - adc; step_sign = 1; } if (adc < state->adc_diff) { dprintk("FE %d CAPTRIM=%d is closer to target (%d/%d)", (u32) fe->id, (u32) state->captrim, (u32) adc, (u32) state->adc_diff); state->adc_diff = adc; state->fcaptrim = state->captrim; } state->captrim += step_sign * state->step; if (state->step >= 1) *tune_state = CT_TUNER_STEP_1; else *tune_state = CT_TUNER_STEP_3; ret = 15; } else if (*tune_state == CT_TUNER_STEP_3) { /*write the final cptrim config */ dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim); #ifdef CONFIG_TUNER_DIB0090_CAPTRIM_MEMORY state->memory[state->memory_index].cap = state->fcaptrim; #endif *tune_state = CT_TUNER_STEP_4; } else if (*tune_state == CT_TUNER_STEP_4) { dib0090_write_reg(state, 0x1e, 0x07ff); dprintk("FE %d Final Captrim: %d", (u32) fe->id, (u32) state->fcaptrim); dprintk("FE %d HFDIV code: %d", (u32) fe->id, (u32) pll->hfdiv_code); dprintk("FE %d VCO = %d", (u32) fe->id, (u32) pll->vco_band); dprintk("FE %d VCOF in kHz: %d ((%d*%d) << 1))", (u32) fe->id, (u32) ((pll->hfdiv * rf) * 2), (u32) pll->hfdiv, (u32) rf); dprintk("FE %d REFDIV: %d, FREF: %d", (u32) fe->id, (u32) 1, (u32) state->config->io.clock_khz); dprintk("FE %d FBDIV: %d, Rest: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17)); dprintk("FE %d Num: %d, Den: %d, SD: %d", (u32) fe->id, (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8), (u32) dib0090_read_reg(state, 0x1c) & 0x3); c = 4; i = 3; #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND) if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) { c = 2; i = 2; } #endif dib0090_write_reg(state, 0x10, (c << 13) | (i << 11) | (WBD #ifdef CONFIG_DIB0090_USE_PWM_AGC | (state->config->use_pwm_agc << 1) #endif )); dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | (tune->lna_bias << 0)); dib0090_write_reg(state, 0x0c, tune->v2i); dib0090_write_reg(state, 0x0d, tune->mix); dib0090_write_reg(state, 0x0e, tune->load); *tune_state = CT_TUNER_STEP_5; } else if (*tune_state == CT_TUNER_STEP_5) { /* initialize the lt gain register */ state->rf_lt_def = 0x7c00; dib0090_write_reg(state, 0x0f, state->rf_lt_def); dib0090_set_bandwidth(state); state->tuner_is_tuned = 1; *tune_state = CT_TUNER_STOP; } else ret = FE_CALLBACK_TIME_NEVER; return ret; } static int dib0090_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; return 0; } enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; return state->tune_state; } EXPORT_SYMBOL(dib0090_get_tune_state); int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) { struct dib0090_state *state = fe->tuner_priv; state->tune_state = tune_state; return 0; } EXPORT_SYMBOL(dib0090_set_tune_state); static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency) { struct dib0090_state *state = fe->tuner_priv; *frequency = 1000 * state->current_rf; return 0; } static int dib0090_set_params(struct dvb_frontend *fe, struct dvb_frontend_parameters *p) { struct dib0090_state *state = fe->tuner_priv; uint32_t ret; state->tune_state = CT_TUNER_START; do { ret = dib0090_tune(fe); if (ret != FE_CALLBACK_TIME_NEVER) msleep(ret / 10); else break; } while (state->tune_state != CT_TUNER_STOP); return 0; } static const struct dvb_tuner_ops dib0090_ops = { .info = { .name = "DiBcom DiB0090", .frequency_min = 45000000, .frequency_max = 860000000, .frequency_step = 1000, }, .release = dib0090_release, .init = dib0090_wakeup, .sleep = dib0090_sleep, .set_params = dib0090_set_params, .get_frequency = dib0090_get_frequency, }; struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) { struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL); if (st == NULL) return NULL; st->config = config; st->i2c = i2c; st->fe = fe; fe->tuner_priv = st; if (dib0090_reset(fe) != 0) goto free_mem; printk(KERN_INFO "DiB0090: successfully identified\n"); memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops)); return fe; free_mem: kfree(st); fe->tuner_priv = NULL; return NULL; } EXPORT_SYMBOL(dib0090_register); MODULE_AUTHOR("Patrick Boettcher "); MODULE_AUTHOR("Olivier Grenie "); MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner"); MODULE_LICENSE("GPL");