/* * Linux-DVB Driver for DiBcom's second generation DiB7000P (PC). * * Copyright (C) 2005-6 DiBcom (http://www.dibcom.fr/) * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation, version 2. */ #include #include #include "dvb_frontend.h" #include "dib7000p.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB7000P:"); printk(args); } } while (0) struct dib7000p_state { struct dvb_frontend demod; struct dib7000p_config cfg; u8 i2c_addr; struct i2c_adapter *i2c_adap; struct dibx000_i2c_master i2c_master; u16 wbd_ref; u8 current_band; fe_bandwidth_t current_bandwidth; struct dibx000_agc_config *current_agc; u32 timf; u16 gpio_dir; u16 gpio_val; }; enum dib7000p_power_mode { DIB7000P_POWER_ALL = 0, DIB7000P_POWER_INTERFACE_ONLY, }; static u16 dib7000p_read_word(struct dib7000p_state *state, u16 reg) { u8 wb[2] = { reg >> 8, reg & 0xff }; u8 rb[2]; struct i2c_msg msg[2] = { { .addr = state->i2c_addr >> 1, .flags = 0, .buf = wb, .len = 2 }, { .addr = state->i2c_addr >> 1, .flags = I2C_M_RD, .buf = rb, .len = 2 }, }; if (i2c_transfer(state->i2c_adap, msg, 2) != 2) dprintk("i2c read error on %d\n",reg); return (rb[0] << 8) | rb[1]; } static int dib7000p_write_word(struct dib7000p_state *state, u16 reg, u16 val) { u8 b[4] = { (reg >> 8) & 0xff, reg & 0xff, (val >> 8) & 0xff, val & 0xff, }; struct i2c_msg msg = { .addr = state->i2c_addr >> 1, .flags = 0, .buf = b, .len = 4 }; return i2c_transfer(state->i2c_adap, &msg, 1) != 1 ? -EREMOTEIO : 0; } static int dib7000p_set_output_mode(struct dib7000p_state *state, int mode) { int ret = 0; u16 outreg, fifo_threshold, smo_mode; outreg = 0; fifo_threshold = 1792; smo_mode = (dib7000p_read_word(state, 235) & 0x0010) | (1 << 1); dprintk("-I- Setting output mode for demod %p to %d\n", &state->demod, mode); switch (mode) { case OUTMODE_MPEG2_PAR_GATED_CLK: // STBs with parallel gated clock outreg = (1 << 10); /* 0x0400 */ break; case OUTMODE_MPEG2_PAR_CONT_CLK: // STBs with parallel continues clock outreg = (1 << 10) | (1 << 6); /* 0x0440 */ break; case OUTMODE_MPEG2_SERIAL: // STBs with serial input outreg = (1 << 10) | (2 << 6) | (0 << 1); /* 0x0480 */ break; case OUTMODE_DIVERSITY: if (state->cfg.hostbus_diversity) outreg = (1 << 10) | (4 << 6); /* 0x0500 */ else outreg = (1 << 11); break; case OUTMODE_MPEG2_FIFO: // e.g. USB feeding smo_mode |= (3 << 1); fifo_threshold = 512; outreg = (1 << 10) | (5 << 6); break; case OUTMODE_HIGH_Z: // disable outreg = 0; break; default: dprintk("Unhandled output_mode passed to be set for demod %p\n",&state->demod); break; } if (state->cfg.output_mpeg2_in_188_bytes) smo_mode |= (1 << 5) ; ret |= dib7000p_write_word(state, 235, smo_mode); ret |= dib7000p_write_word(state, 236, fifo_threshold); /* synchronous fread */ ret |= dib7000p_write_word(state, 1286, outreg); /* P_Div_active */ return ret; } static int dib7000p_set_power_mode(struct dib7000p_state *state, enum dib7000p_power_mode mode) { /* by default everything is powered off */ u16 reg_774 = 0xffff, reg_775 = 0xffff, reg_776 = 0x0007, reg_899 = 0x0003, reg_1280 = (0xfe00) | (dib7000p_read_word(state, 1280) & 0x01ff); /* now, depending on the requested mode, we power on */ switch (mode) { /* power up everything in the demod */ case DIB7000P_POWER_ALL: reg_774 = 0x0000; reg_775 = 0x0000; reg_776 = 0x0; reg_899 = 0x0; reg_1280 &= 0x01ff; break; /* just leave power on the control-interfaces: GPIO and (I2C or SDIO) */ case DIB7000P_POWER_INTERFACE_ONLY: /* TODO power up either SDIO or I2C */ reg_1280 &= ~((1 << 14) | (1 << 13) | (1 << 12) | (1 << 10)); break; /* TODO following stuff is just converted from the dib7000-driver - check when is used what */ } dib7000p_write_word(state, 774, reg_774); dib7000p_write_word(state, 775, reg_775); dib7000p_write_word(state, 776, reg_776); dib7000p_write_word(state, 899, reg_899); dib7000p_write_word(state, 1280, reg_1280); return 0; } static void dib7000p_set_adc_state(struct dib7000p_state *state, enum dibx000_adc_states no) { u16 reg_908 = dib7000p_read_word(state, 908), reg_909 = dib7000p_read_word(state, 909); switch (no) { case DIBX000_SLOW_ADC_ON: reg_909 |= (1 << 1) | (1 << 0); dib7000p_write_word(state, 909, reg_909); reg_909 &= ~(1 << 1); break; case DIBX000_SLOW_ADC_OFF: reg_909 |= (1 << 1) | (1 << 0); break; case DIBX000_ADC_ON: reg_908 &= 0x0fff; reg_909 &= 0x0003; break; case DIBX000_ADC_OFF: // leave the VBG voltage on reg_908 |= (1 << 14) | (1 << 13) | (1 << 12); reg_909 |= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2); break; case DIBX000_VBG_ENABLE: reg_908 &= ~(1 << 15); break; case DIBX000_VBG_DISABLE: reg_908 |= (1 << 15); break; default: break; } // dprintk("908: %x, 909: %x\n", reg_908, reg_909); dib7000p_write_word(state, 908, reg_908); dib7000p_write_word(state, 909, reg_909); } static int dib7000p_set_bandwidth(struct dvb_frontend *demod, u8 BW_Idx) { struct dib7000p_state *state = demod->demodulator_priv; u32 timf; // store the current bandwidth for later use state->current_bandwidth = BW_Idx; if (state->timf == 0) { dprintk("-D- Using default timf\n"); timf = state->cfg.bw->timf; } else { dprintk("-D- Using updated timf\n"); timf = state->timf; } timf = timf * (BW_INDEX_TO_KHZ(BW_Idx) / 100) / 80; dprintk("timf: %d\n",timf); dib7000p_write_word(state, 23, (timf >> 16) & 0xffff); dib7000p_write_word(state, 24, (timf ) & 0xffff); return 0; } static int dib7000p_sad_calib(struct dib7000p_state *state) { /* internal */ // dib7000p_write_word(state, 72, (3 << 14) | (1 << 12) | (524 << 0)); // sampling clock of the SAD is written in set_bandwidth dib7000p_write_word(state, 73, (0 << 1) | (0 << 0)); dib7000p_write_word(state, 74, 776); // 0.625*3.3 / 4096 /* do the calibration */ dib7000p_write_word(state, 73, (1 << 0)); dib7000p_write_word(state, 73, (0 << 0)); msleep(1); return 0; } static void dib7000p_reset_pll(struct dib7000p_state *state) { struct dibx000_bandwidth_config *bw = &state->cfg.bw[0]; dib7000p_write_word(state, 903, (bw->pll_prediv << 5) | (((bw->pll_ratio >> 6) & 0x3) << 3) | (bw->pll_range << 1) | bw->pll_reset); dib7000p_write_word(state, 900, ((bw->pll_ratio & 0x3f) << 9) | (bw->pll_bypass << 15) | (bw->modulo << 7) | (bw->ADClkSrc << 6) | (bw->IO_CLK_en_core << 5) | (bw->bypclk_div << 2) | (bw->enable_refdiv << 1) | (0 << 0)); dib7000p_write_word(state, 18, ((bw->internal*1000) >> 16) & 0xffff); dib7000p_write_word(state, 19, (bw->internal*1000 ) & 0xffff); dib7000p_write_word(state, 21, (bw->ifreq >> 16) & 0xffff); dib7000p_write_word(state, 22, (bw->ifreq ) & 0xffff); dib7000p_write_word(state, 72, bw->sad_cfg); } static int dib7000p_reset_gpio(struct dib7000p_state *st) { /* reset the GPIOs */ dprintk("-D- gpio dir: %x: gpio val: %x, gpio pwm pos: %x\n",st->gpio_dir, st->gpio_val,st->cfg.gpio_pwm_pos); dib7000p_write_word(st, 1029, st->gpio_dir); dib7000p_write_word(st, 1030, st->gpio_val); /* TODO 1031 is P_gpio_od */ dib7000p_write_word(st, 1032, st->cfg.gpio_pwm_pos); dib7000p_write_word(st, 1037, st->cfg.pwm_freq_div); return 0; } static int dib7000p_demod_reset(struct dib7000p_state *state) { dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_adc_state(state, DIBX000_VBG_ENABLE); /* restart all parts */ dib7000p_write_word(state, 770, 0xffff); dib7000p_write_word(state, 771, 0xffff); dib7000p_write_word(state, 772, 0x001f); dib7000p_write_word(state, 898, 0x0003); /* except i2c, sdio, gpio - control interfaces */ dib7000p_write_word(state, 1280, 0x01fc - ((1 << 7) | (1 << 6) | (1 << 5)) ); dib7000p_write_word(state, 770, 0); dib7000p_write_word(state, 771, 0); dib7000p_write_word(state, 772, 0); dib7000p_write_word(state, 898, 0); dib7000p_write_word(state, 1280, 0); /* default */ dib7000p_reset_pll(state); if (dib7000p_reset_gpio(state) != 0) dprintk("-E- GPIO reset was not successful.\n"); if (dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) != 0) dprintk("-E- OUTPUT_MODE could not be resetted.\n"); /* unforce divstr regardless whether i2c enumeration was done or not */ dib7000p_write_word(state, 1285, dib7000p_read_word(state, 1285) & ~(1 << 1) ); dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); return 0; } static void dib7000p_restart_agc(struct dib7000p_state *state) { // P_restart_iqc & P_restart_agc dib7000p_write_word(state, 770, 0x0c00); dib7000p_write_word(state, 770, 0x0000); } static void dib7000p_update_lna(struct dib7000p_state *state) { int i; u16 dyn_gain; // when there is no LNA to program return immediatly if (state->cfg.update_lna == NULL) return; for (i = 0; i < 5; i++) { // read dyn_gain here (because it is demod-dependent and not tuner) dyn_gain = dib7000p_read_word(state, 394); if (state->cfg.update_lna(&state->demod,dyn_gain)) { // LNA has changed dib7000p_restart_agc(state); msleep(5); } else break; } } static void dib7000p_pll_clk_cfg(struct dib7000p_state *state) { u16 tmp = 0; tmp = dib7000p_read_word(state, 903); dib7000p_write_word(state, 903, (tmp | 0x1)); //pwr-up pll tmp = dib7000p_read_word(state, 900); dib7000p_write_word(state, 900, (tmp & 0x7fff) | (1 << 6)); //use High freq clock } static void dib7000p_update_timf_freq(struct dib7000p_state *state) { u32 timf = (dib7000p_read_word(state, 427) << 16) | dib7000p_read_word(state, 428); state->timf = timf * 80 / (BW_INDEX_TO_KHZ(state->current_bandwidth) / 100); dib7000p_write_word(state, 23, (u16) (timf >> 16)); dib7000p_write_word(state, 24, (u16) (timf & 0xffff)); dprintk("-D- Updated timf_frequency: %d (default: %d)\n",state->timf, state->cfg.bw->timf); } static void dib7000p_set_channel(struct dib7000p_state *state, struct dibx000_ofdm_channel *ch, u8 seq) { u16 tmp, est[4]; // reg_26, reg_32, reg_33, reg_187, reg_188, reg_189, reg_190, reg_207, reg_208; /* nfft, guard, qam, alpha */ dib7000p_write_word(state, 0, (ch->nfft << 7) | (ch->guard << 5) | (ch->nqam << 3) | (ch->vit_alpha)); dib7000p_write_word(state, 5, (seq << 4) | 1); /* do not force tps, search list 0 */ /* P_dintl_native, P_dintlv_inv, P_vit_hrch, P_vit_code_rate, P_vit_select_hp */ tmp = (ch->intlv_native << 6) | (ch->vit_hrch << 4) | (ch->vit_select_hp & 0x1); if (ch->vit_hrch == 0 || ch->vit_select_hp == 1) tmp |= (ch->vit_code_rate_hp << 1); else tmp |= (ch->vit_code_rate_lp << 1); dib7000p_write_word(state, 208, tmp); /* P_dvsy_sync_wait */ switch (ch->nfft) { case 1: tmp = 256; break; case 2: tmp = 128; break; case 0: default: tmp = 64; break; } tmp *= ((1 << (ch->guard)) * 3 / 2); // add 50% SFN margin tmp <<= 4; /* deactive the possibility of diversity reception if extended interleave */ /* P_dvsy_sync_mode = 0, P_dvsy_sync_enable=1, P_dvcb_comb_mode=2 */ if (ch->intlv_native || ch->nfft == 1) tmp |= (1 << 2) | (2 << 0); dib7000p_write_word(state, 207, tmp); dib7000p_write_word(state, 26, 0x6680); // timf(6xxx) dib7000p_write_word(state, 29, 0x1273); // isi inh1273 on1073 dib7000p_write_word(state, 32, 0x0003); // pha_off_max(xxx3) dib7000p_write_word(state, 33, 0x0005); // sfreq(xxx5) /* channel estimation fine configuration */ switch (ch->nqam) { case 2: est[0] = 0x0148; /* P_adp_regul_cnt 0.04 */ est[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.001 */ break; case 1: est[0] = 0x023d; /* P_adp_regul_cnt 0.07 */ est[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */ est[2] = 0x00a4; /* P_adp_regul_ext 0.02 */ est[3] = 0xfff0; /* P_adp_noise_ext -0.002 */ break; default: est[0] = 0x099a; /* P_adp_regul_cnt 0.3 */ est[1] = 0xffae; /* P_adp_noise_cnt -0.01 */ est[2] = 0x0333; /* P_adp_regul_ext 0.1 */ est[3] = 0xfff8; /* P_adp_noise_ext -0.002 */ break; } for (tmp = 0; tmp < 4; tmp++) dib7000p_write_word(state, 187 + tmp, est[tmp]); // set power-up level: interf+analog+AGC dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_adc_state(state, DIBX000_ADC_ON); dib7000p_pll_clk_cfg(state); msleep(7); // AGC initialization if (state->cfg.agc_control) state->cfg.agc_control(&state->demod, 1); dib7000p_restart_agc(state); // wait AGC rough lock time msleep(5); dib7000p_update_lna(state); // wait AGC accurate lock time msleep(7); if (state->cfg.agc_control) state->cfg.agc_control(&state->demod, 0); } static int dib7000p_autosearch_start(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) { struct dib7000p_state *state = demod->demodulator_priv; struct dibx000_ofdm_channel auto_ch; u32 value; INIT_OFDM_CHANNEL(&auto_ch); auto_ch.RF_kHz = ch->RF_kHz; auto_ch.Bw = ch->Bw; auto_ch.nqam = 2; auto_ch.guard = 0; auto_ch.nfft = 1; auto_ch.vit_alpha = 1; auto_ch.vit_select_hp = 1; auto_ch.vit_code_rate_hp = 2; auto_ch.vit_code_rate_lp = 3; auto_ch.vit_hrch = 0; auto_ch.intlv_native = 1; dib7000p_set_channel(state, &auto_ch, 7); // always use the setting for 8MHz here lock_time for 7,6 MHz are longer value = 30 * state->cfg.bw->internal; dib7000p_write_word(state, 6, (u16) ((value >> 16) & 0xffff)); // lock0 wait time dib7000p_write_word(state, 7, (u16) (value & 0xffff)); // lock0 wait time value = 100 * state->cfg.bw->internal; dib7000p_write_word(state, 8, (u16) ((value >> 16) & 0xffff)); // lock1 wait time dib7000p_write_word(state, 9, (u16) (value & 0xffff)); // lock1 wait time value = 500 * state->cfg.bw->internal; dib7000p_write_word(state, 10, (u16) ((value >> 16) & 0xffff)); // lock2 wait time dib7000p_write_word(state, 11, (u16) (value & 0xffff)); // lock2 wait time value = dib7000p_read_word(state, 0); dib7000p_write_word(state, 0, (1 << 9) | value); dib7000p_read_word(state, 1284); dib7000p_write_word(state, 0, (u16) value); return 0; } static int dib7000p_autosearch_is_irq(struct dvb_frontend *demod) { struct dib7000p_state *state = demod->demodulator_priv; u16 irq_pending = dib7000p_read_word(state, 1284); if (irq_pending & 0x1) // failed return 1; if (irq_pending & 0x2) // succeeded return 2; return 0; // still pending } static int dib7000p_tune(struct dvb_frontend *demod, struct dibx000_ofdm_channel *ch) { struct dib7000p_state *state = demod->demodulator_priv; u16 tmp = 0; if (ch != NULL) dib7000p_set_channel(state, ch, 0); else return -EINVAL; // restart demod dib7000p_write_word(state, 770, 0x4000); dib7000p_write_word(state, 770, 0x0000); msleep(45); /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3, P_ctrl_inh_cor4=1, P_ctrl_alpha_cor4=3 */ dib7000p_write_word(state, 29, (0 << 14) | (4 << 10) | (0 << 9) | (3 << 5) | (1 << 4) | (0x3)); // never achieved a lock with that bandwidth so far - wait for osc-freq to update if (state->timf == 0) msleep(200); /* offset loop parameters */ /* P_timf_alpha, P_corm_alpha=6, P_corm_thres=0x80 */ tmp = (6 << 8) | 0x80; switch (ch->nfft) { case 0: tmp |= (7 << 12); break; case 1: tmp |= (9 << 12); break; case 2: tmp |= (8 << 12); break; } dib7000p_write_word(state, 26, tmp); /* timf_a(6xxx) */ /* P_ctrl_freeze_pha_shift=0, P_ctrl_pha_off_max */ tmp = (0 << 4); switch (ch->nfft) { case 0: tmp |= 0x6; break; case 1: tmp |= 0x8; break; case 2: tmp |= 0x7; break; } dib7000p_write_word(state, 32, tmp); /* P_ctrl_sfreq_inh=0, P_ctrl_sfreq_step */ tmp = (0 << 4); switch (ch->nfft) { case 0: tmp |= 0x6; break; case 1: tmp |= 0x8; break; case 2: tmp |= 0x7; break; } dib7000p_write_word(state, 33, tmp); tmp = dib7000p_read_word(state,509); if (!((tmp >> 6) & 0x1)) { /* restart the fec */ tmp = dib7000p_read_word(state,771); dib7000p_write_word(state, 771, tmp | (1 << 1)); dib7000p_write_word(state, 771, tmp); msleep(10); tmp = dib7000p_read_word(state,509); } // we achieved a lock - it's time to update the osc freq if ((tmp >> 6) & 0x1) dib7000p_update_timf_freq(state); return 0; } static int dib7000p_init(struct dvb_frontend *demod) { struct dibx000_agc_config *agc; struct dib7000p_state *state = demod->demodulator_priv; int ret = 0; // Demodulator default configuration agc = state->cfg.agc; dib7000p_set_power_mode(state, DIB7000P_POWER_ALL); dib7000p_set_adc_state(state, DIBX000_SLOW_ADC_ON); /* AGC */ ret |= dib7000p_write_word(state, 75 , agc->setup ); ret |= dib7000p_write_word(state, 76 , agc->inv_gain ); ret |= dib7000p_write_word(state, 77 , agc->time_stabiliz ); ret |= dib7000p_write_word(state, 100, (agc->alpha_level << 12) | agc->thlock); // Demod AGC loop configuration ret |= dib7000p_write_word(state, 101, (agc->alpha_mant << 5) | agc->alpha_exp); ret |= dib7000p_write_word(state, 102, (agc->beta_mant << 6) | agc->beta_exp); /* AGC continued */ dprintk("-D- WBD: ref: %d, sel: %d, active: %d, alpha: %d\n", state->wbd_ref != 0 ? state->wbd_ref : agc->wbd_ref, agc->wbd_sel, !agc->perform_agc_softsplit, agc->wbd_sel); if (state->wbd_ref != 0) ret |= dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | state->wbd_ref); else ret |= dib7000p_write_word(state, 105, (agc->wbd_inv << 12) | agc->wbd_ref); ret |= dib7000p_write_word(state, 106, (agc->wbd_sel << 13) | (agc->wbd_alpha << 9) | (agc->perform_agc_softsplit << 8) ); ret |= dib7000p_write_word(state, 107, agc->agc1_max); ret |= dib7000p_write_word(state, 108, agc->agc1_min); ret |= dib7000p_write_word(state, 109, agc->agc2_max); ret |= dib7000p_write_word(state, 110, agc->agc2_min); ret |= dib7000p_write_word(state, 111, (agc->agc1_pt1 << 8) | agc->agc1_pt2 ); ret |= dib7000p_write_word(state, 112, agc->agc1_pt3); ret |= dib7000p_write_word(state, 113, (agc->agc1_slope1 << 8) | agc->agc1_slope2); ret |= dib7000p_write_word(state, 114, (agc->agc2_pt1 << 8) | agc->agc2_pt2); ret |= dib7000p_write_word(state, 115, (agc->agc2_slope1 << 8) | agc->agc2_slope2); /* disable power smoothing */ ret |= dib7000p_write_word(state, 145, 0); ret |= dib7000p_write_word(state, 146, 0); ret |= dib7000p_write_word(state, 147, 0); ret |= dib7000p_write_word(state, 148, 0); ret |= dib7000p_write_word(state, 149, 0); ret |= dib7000p_write_word(state, 150, 0); ret |= dib7000p_write_word(state, 151, 0); ret |= dib7000p_write_word(state, 152, 0); // P_timf_alpha=6, P_corm_alpha=6, P_corm_thres=128 default: 6,4,26 ret |= dib7000p_write_word(state, 26 ,0x6680); // P_palf_filter_on=1, P_palf_filter_freeze=0, P_palf_alpha_regul=16 ret |= dib7000p_write_word(state, 142,0x0410); // P_fft_freq_dir=1, P_fft_nb_to_cut=0 ret |= dib7000p_write_word(state, 154,1 << 13); // P_pha3_thres, default 0x3000 ret |= dib7000p_write_word(state, 168,0x0ccd); // P_cti_use_cpe=0, P_cti_use_prog=0, P_cti_win_len=16, default: 0x0010 //ret |= dib7000p_write_word(state, 169,0x0010); // P_cspu_regul=512, P_cspu_win_cut=15, default: 0x2005 ret |= dib7000p_write_word(state, 183,0x200f); // P_adp_regul_cnt=573, default: 410 ret |= dib7000p_write_word(state, 187,0x023d); // P_adp_noise_cnt= ret |= dib7000p_write_word(state, 188,0x00a4); // P_adp_regul_ext ret |= dib7000p_write_word(state, 189,0x00a4); // P_adp_noise_ext ret |= dib7000p_write_word(state, 190,0x7ff0); // P_adp_fil ret |= dib7000p_write_word(state, 191,0x3ccc); ret |= dib7000p_write_word(state, 222,0x0010); // P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard ret |= dib7000p_write_word(state, 235,0x0062); // P_iqc_alpha_pha, P_iqc_alpha_amp_dcc_alpha, ... if(state->cfg.tuner_is_baseband) ret |= dib7000p_write_word(state, 36,0x0755); else ret |= dib7000p_write_word(state, 36,0x1f55); // auto search configuration ret |= dib7000p_write_word(state, 2 ,0x0004); ret |= dib7000p_write_word(state, 3 ,0x1000); /* Equal Lock */ ret |= dib7000p_write_word(state, 4 ,0x0814); ret |= dib7000p_write_word(state, 6 ,0x001b); ret |= dib7000p_write_word(state, 7 ,0x7740); ret |= dib7000p_write_word(state, 8 ,0x005b); ret |= dib7000p_write_word(state, 9 ,0x8d80); ret |= dib7000p_write_word(state, 10 ,0x01c9); ret |= dib7000p_write_word(state, 11 ,0xc380); ret |= dib7000p_write_word(state, 12 ,0x0000); ret |= dib7000p_write_word(state, 13 ,0x0080); ret |= dib7000p_write_word(state, 14 ,0x0000); ret |= dib7000p_write_word(state, 15 ,0x0090); ret |= dib7000p_write_word(state, 16 ,0x0001); ret |= dib7000p_write_word(state, 17 ,0xd4c0); // P_clk_cfg1 ret |= dib7000p_write_word(state, 901, 0x0006); // P_divclksel=3 P_divbitsel=1 ret |= dib7000p_write_word(state, 902, (3 << 10) | (1 << 6)); // Tuner IO bank: max drive (14mA) + divout pads max drive ret |= dib7000p_write_word(state, 905, 0x2c8e); ret |= dib7000p_set_bandwidth(&state->demod, BANDWIDTH_8_MHZ); dib7000p_sad_calib(state); return ret; } static int dib7000p_sleep(struct dvb_frontend *demod) { struct dib7000p_state *state = demod->demodulator_priv; return dib7000p_set_output_mode(state, OUTMODE_HIGH_Z) | dib7000p_set_power_mode(state, DIB7000P_POWER_INTERFACE_ONLY); } static int dib7000p_identify(struct dib7000p_state *st) { u16 value; dprintk("-I- DiB7000PC: checking demod on I2C address: %d (%x)\n", st->i2c_addr, st->i2c_addr); if ((value = dib7000p_read_word(st, 768)) != 0x01b3) { dprintk("-E- DiB7000PC: wrong Vendor ID (read=0x%x)\n",value); return -EREMOTEIO; } if ((value = dib7000p_read_word(st, 769)) != 0x4000) { dprintk("-E- DiB7000PC: wrong Device ID (%x)\n",value); return -EREMOTEIO; } return 0; } static int dib7000p_get_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { struct dib7000p_state *state = fe->demodulator_priv; u16 tps = dib7000p_read_word(state,463); fep->inversion = INVERSION_AUTO; fep->u.ofdm.bandwidth = state->current_bandwidth; switch ((tps >> 8) & 0x3) { case 0: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_2K; break; case 1: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_8K; break; /* case 2: fep->u.ofdm.transmission_mode = TRANSMISSION_MODE_4K; break; */ } switch (tps & 0x3) { case 0: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_32; break; case 1: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_16; break; case 2: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_8; break; case 3: fep->u.ofdm.guard_interval = GUARD_INTERVAL_1_4; break; } switch ((tps >> 14) & 0x3) { case 0: fep->u.ofdm.constellation = QPSK; break; case 1: fep->u.ofdm.constellation = QAM_16; break; case 2: default: fep->u.ofdm.constellation = QAM_64; break; } /* as long as the frontend_param structure is fixed for hierarchical transmission I refuse to use it */ /* (tps >> 13) & 0x1 == hrch is used, (tps >> 10) & 0x7 == alpha */ fep->u.ofdm.hierarchy_information = HIERARCHY_NONE; switch ((tps >> 5) & 0x7) { case 1: fep->u.ofdm.code_rate_HP = FEC_1_2; break; case 2: fep->u.ofdm.code_rate_HP = FEC_2_3; break; case 3: fep->u.ofdm.code_rate_HP = FEC_3_4; break; case 5: fep->u.ofdm.code_rate_HP = FEC_5_6; break; case 7: default: fep->u.ofdm.code_rate_HP = FEC_7_8; break; } switch ((tps >> 2) & 0x7) { case 1: fep->u.ofdm.code_rate_LP = FEC_1_2; break; case 2: fep->u.ofdm.code_rate_LP = FEC_2_3; break; case 3: fep->u.ofdm.code_rate_LP = FEC_3_4; break; case 5: fep->u.ofdm.code_rate_LP = FEC_5_6; break; case 7: default: fep->u.ofdm.code_rate_LP = FEC_7_8; break; } /* native interleaver: (dib7000p_read_word(state, 464) >> 5) & 0x1 */ return 0; } static int dib7000p_set_frontend(struct dvb_frontend* fe, struct dvb_frontend_parameters *fep) { struct dib7000p_state *state = fe->demodulator_priv; struct dibx000_ofdm_channel ch; INIT_OFDM_CHANNEL(&ch); FEP2DIB(fep,&ch); state->current_bandwidth = fep->u.ofdm.bandwidth; dib7000p_set_bandwidth(fe, fep->u.ofdm.bandwidth); if (fe->ops.tuner_ops.set_params) fe->ops.tuner_ops.set_params(fe, fep); if (fep->u.ofdm.transmission_mode == TRANSMISSION_MODE_AUTO || fep->u.ofdm.guard_interval == GUARD_INTERVAL_AUTO || fep->u.ofdm.constellation == QAM_AUTO || fep->u.ofdm.code_rate_HP == FEC_AUTO) { int i = 800, found; dib7000p_autosearch_start(fe, &ch); do { msleep(1); found = dib7000p_autosearch_is_irq(fe); } while (found == 0 && i--); dprintk("autosearch returns: %d\n",found); if (found == 0 || found == 1) return 0; // no channel found dib7000p_get_frontend(fe, fep); FEP2DIB(fep, &ch); } /* make this a config parameter */ dib7000p_set_output_mode(state, OUTMODE_MPEG2_FIFO); return dib7000p_tune(fe, &ch); } static int dib7000p_read_status(struct dvb_frontend *fe, fe_status_t *stat) { struct dib7000p_state *state = fe->demodulator_priv; u16 lock = dib7000p_read_word(state, 509); *stat = 0; if (lock & 0x8000) *stat |= FE_HAS_SIGNAL; if (lock & 0x3000) *stat |= FE_HAS_CARRIER; if (lock & 0x0100) *stat |= FE_HAS_VITERBI; if (lock & 0x0010) *stat |= FE_HAS_SYNC; if (lock & 0x0008) *stat |= FE_HAS_LOCK; return 0; } static int dib7000p_read_ber(struct dvb_frontend *fe, u32 *ber) { struct dib7000p_state *state = fe->demodulator_priv; *ber = (dib7000p_read_word(state, 500) << 16) | dib7000p_read_word(state, 501); return 0; } static int dib7000p_read_unc_blocks(struct dvb_frontend *fe, u32 *unc) { struct dib7000p_state *state = fe->demodulator_priv; *unc = dib7000p_read_word(state, 506); return 0; } static int dib7000p_read_signal_strength(struct dvb_frontend *fe, u16 *strength) { struct dib7000p_state *state = fe->demodulator_priv; u16 val = dib7000p_read_word(state, 394); *strength = 65535 - val; return 0; } static int dib7000p_read_snr(struct dvb_frontend* fe, u16 *snr) { *snr = 0x0000; return 0; } static int dib7000p_fe_get_tune_settings(struct dvb_frontend* fe, struct dvb_frontend_tune_settings *tune) { tune->min_delay_ms = 1000; return 0; } static void dib7000p_release(struct dvb_frontend *demod) { struct dib7000p_state *st = demod->demodulator_priv; dibx000_exit_i2c_master(&st->i2c_master); kfree(st); } int dib7000pc_detection(struct i2c_adapter *i2c_adap) { u8 tx[2], rx[2]; struct i2c_msg msg[2] = { { .addr = 18 >> 1, .flags = 0, .buf = tx, .len = 2 }, { .addr = 18 >> 1, .flags = I2C_M_RD, .buf = rx, .len = 2 }, }; tx[0] = 0x03; tx[1] = 0x00; if (i2c_transfer(i2c_adap, msg, 2) == 2) if (rx[0] == 0x01 && rx[1] == 0xb3) { dprintk("-D- DiB7000PC detected\n"); return 1; } msg[0].addr = msg[1].addr = 0x40; if (i2c_transfer(i2c_adap, msg, 2) == 2) if (rx[0] == 0x01 && rx[1] == 0xb3) { dprintk("-D- DiB7000PC detected\n"); return 1; } dprintk("-D- DiB7000PC not detected\n"); return 0; } EXPORT_SYMBOL(dib7000pc_detection); struct i2c_adapter * dib7000p_get_i2c_master(struct dvb_frontend *demod, enum dibx000_i2c_interface intf, int gating) { struct dib7000p_state *st = demod->demodulator_priv; return dibx000_get_i2c_adapter(&st->i2c_master, intf, gating); } EXPORT_SYMBOL(dib7000p_get_i2c_master); int dib7000p_i2c_enumeration(struct i2c_adapter *i2c, int no_of_demods, u8 default_addr, struct dib7000p_config cfg[]) { struct dib7000p_state st = { .i2c_adap = i2c }; int k = 0; u8 new_addr = 0; for (k = no_of_demods-1; k >= 0; k--) { st.cfg = cfg[k]; /* designated i2c address */ new_addr = (0x40 + k) << 1; st.i2c_addr = new_addr; if (dib7000p_identify(&st) != 0) { st.i2c_addr = default_addr; if (dib7000p_identify(&st) != 0) { dprintk("DiB7000P #%d: not identified\n", k); return -EIO; } } /* start diversity to pull_down div_str - just for i2c-enumeration */ dib7000p_set_output_mode(&st, OUTMODE_DIVERSITY); /* set new i2c address and force divstart */ dib7000p_write_word(&st, 1285, (new_addr << 2) | 0x2); dprintk("IC %d initialized (to i2c_address 0x%x)\n", k, new_addr); } for (k = 0; k < no_of_demods; k++) { st.cfg = cfg[k]; st.i2c_addr = (0x40 + k) << 1; // unforce divstr dib7000p_write_word(&st, 1285, st.i2c_addr << 2); /* deactivate div - it was just for i2c-enumeration */ dib7000p_set_output_mode(&st, OUTMODE_HIGH_Z); } return 0; } EXPORT_SYMBOL(dib7000p_i2c_enumeration); static struct dvb_frontend_ops dib7000p_ops; struct dvb_frontend * dib7000p_attach(struct i2c_adapter *i2c_adap, u8 i2c_addr, struct dib7000p_config *cfg) { struct dvb_frontend *demod; struct dib7000p_state *st; st = kzalloc(sizeof(struct dib7000p_state), GFP_KERNEL); if (st == NULL) return NULL; memcpy(&st->cfg, cfg, sizeof(struct dib7000p_config)); st->i2c_adap = i2c_adap; st->i2c_addr = i2c_addr; st->gpio_val = cfg->gpio_val; st->gpio_dir = cfg->gpio_dir; demod = &st->demod; demod->demodulator_priv = st; memcpy(&st->demod.ops, &dib7000p_ops, sizeof(struct dvb_frontend_ops)); if (dib7000p_identify(st) != 0) goto error; dibx000_init_i2c_master(&st->i2c_master, DIB7000P, st->i2c_adap, st->i2c_addr); dib7000p_demod_reset(st); return demod; error: kfree(st); return NULL; } EXPORT_SYMBOL(dib7000p_attach); static struct dvb_frontend_ops dib7000p_ops = { .info = { .name = "DiBcom 7000PC", .type = FE_OFDM, .frequency_min = 44250000, .frequency_max = 867250000, .frequency_stepsize = 62500, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_QAM_16 | FE_CAN_QAM_64 | FE_CAN_QAM_AUTO | FE_CAN_TRANSMISSION_MODE_AUTO | FE_CAN_GUARD_INTERVAL_AUTO | FE_CAN_RECOVER | FE_CAN_HIERARCHY_AUTO, }, .release = dib7000p_release, .init = dib7000p_init, .sleep = dib7000p_sleep, .set_frontend = dib7000p_set_frontend, .get_tune_settings = dib7000p_fe_get_tune_settings, .get_frontend = dib7000p_get_frontend, .read_status = dib7000p_read_status, .read_ber = dib7000p_read_ber, .read_signal_strength = dib7000p_read_signal_strength, .read_snr = dib7000p_read_snr, .read_ucblocks = dib7000p_read_unc_blocks, }; MODULE_AUTHOR("Patrick Boettcher "); MODULE_DESCRIPTION("Driver for the DiBcom 7000PC COFDM demodulator"); MODULE_LICENSE("GPL");