// SPDX-License-Identifier: GPL-2.0-only /* * drivers/media/i2c/ccs/ccs-reg-access.c * * Generic driver for MIPI CCS/SMIA/SMIA++ compliant camera sensors * * Copyright (C) 2020 Intel Corporation * Copyright (C) 2011--2012 Nokia Corporation * Contact: Sakari Ailus */ #include #include #include #include "ccs.h" #include "ccs-limits.h" static uint32_t float_to_u32_mul_1000000(struct i2c_client *client, uint32_t phloat) { int32_t exp; uint64_t man; if (phloat >= 0x80000000) { dev_err(&client->dev, "this is a negative number\n"); return 0; } if (phloat == 0x7f800000) return ~0; /* Inf. */ if ((phloat & 0x7f800000) == 0x7f800000) { dev_err(&client->dev, "NaN or other special number\n"); return 0; } /* Valid cases begin here */ if (phloat == 0) return 0; /* Valid zero */ if (phloat > 0x4f800000) return ~0; /* larger than 4294967295 */ /* * Unbias exponent (note how phloat is now guaranteed to * have 0 in the high bit) */ exp = ((int32_t)phloat >> 23) - 127; /* Extract mantissa, add missing '1' bit and it's in MHz */ man = ((phloat & 0x7fffff) | 0x800000) * 1000000ULL; if (exp < 0) man >>= -exp; else man <<= exp; man >>= 23; /* Remove mantissa bias */ return man & 0xffffffff; } /* * Read a 8/16/32-bit i2c register. The value is returned in 'val'. * Returns zero if successful, or non-zero otherwise. */ static int ____ccs_read_addr(struct ccs_sensor *sensor, u16 reg, u16 len, u32 *val) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); struct i2c_msg msg; unsigned char data_buf[sizeof(u32)] = { 0 }; unsigned char offset_buf[sizeof(u16)]; int r; if (len > sizeof(data_buf)) return -EINVAL; msg.addr = client->addr; msg.flags = 0; msg.len = sizeof(offset_buf); msg.buf = offset_buf; put_unaligned_be16(reg, offset_buf); r = i2c_transfer(client->adapter, &msg, 1); if (r != 1) { if (r >= 0) r = -EBUSY; goto err; } msg.len = len; msg.flags = I2C_M_RD; msg.buf = &data_buf[sizeof(data_buf) - len]; r = i2c_transfer(client->adapter, &msg, 1); if (r != 1) { if (r >= 0) r = -EBUSY; goto err; } *val = get_unaligned_be32(data_buf); return 0; err: dev_err(&client->dev, "read from offset 0x%x error %d\n", reg, r); return r; } /* Read a register using 8-bit access only. */ static int ____ccs_read_addr_8only(struct ccs_sensor *sensor, u16 reg, u16 len, u32 *val) { unsigned int i; int rval; *val = 0; for (i = 0; i < len; i++) { u32 val8; rval = ____ccs_read_addr(sensor, reg + i, 1, &val8); if (rval < 0) return rval; *val |= val8 << ((len - i - 1) << 3); } return 0; } unsigned int ccs_reg_width(u32 reg) { if (reg & CCS_FL_16BIT) return sizeof(uint16_t); if (reg & CCS_FL_32BIT) return sizeof(uint32_t); return sizeof(uint8_t); } static u32 ireal32_to_u32_mul_1000000(struct i2c_client *client, u32 val) { if (val >> 10 > U32_MAX / 15625) { dev_warn(&client->dev, "value %u overflows!\n", val); return U32_MAX; } return ((val >> 10) * 15625) + (val & GENMASK(9, 0)) * 15625 / 1024; } u32 ccs_reg_conv(struct ccs_sensor *sensor, u32 reg, u32 val) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); if (reg & CCS_FL_FLOAT_IREAL) { if (CCS_LIM(sensor, CLOCK_CAPA_TYPE_CAPABILITY) & CCS_CLOCK_CAPA_TYPE_CAPABILITY_IREAL) val = ireal32_to_u32_mul_1000000(client, val); else val = float_to_u32_mul_1000000(client, val); } else if (reg & CCS_FL_IREAL) { val = ireal32_to_u32_mul_1000000(client, val); } return val; } /* * Read a 8/16/32-bit i2c register. The value is returned in 'val'. * Returns zero if successful, or non-zero otherwise. */ static int __ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val, bool only8, bool conv) { unsigned int len = ccs_reg_width(reg); int rval; if (!only8) rval = ____ccs_read_addr(sensor, CCS_REG_ADDR(reg), len, val); else rval = ____ccs_read_addr_8only(sensor, CCS_REG_ADDR(reg), len, val); if (rval < 0) return rval; if (!conv) return 0; *val = ccs_reg_conv(sensor, reg, *val); return 0; } static int __ccs_read_data(struct ccs_reg *regs, size_t num_regs, u32 reg, u32 *val) { unsigned int width = ccs_reg_width(reg); size_t i; for (i = 0; i < num_regs; i++, regs++) { uint8_t *data; if (regs->addr + regs->len < CCS_REG_ADDR(reg) + width) continue; if (regs->addr > CCS_REG_ADDR(reg)) break; data = ®s->value[CCS_REG_ADDR(reg) - regs->addr]; switch (width) { case sizeof(uint8_t): *val = *data; break; case sizeof(uint16_t): *val = get_unaligned_be16(data); break; case sizeof(uint32_t): *val = get_unaligned_be32(data); break; default: WARN_ON(1); return -EINVAL; } return 0; } return -ENOENT; } static int ccs_read_data(struct ccs_sensor *sensor, u32 reg, u32 *val) { if (!__ccs_read_data(sensor->sdata.sensor_read_only_regs, sensor->sdata.num_sensor_read_only_regs, reg, val)) return 0; return __ccs_read_data(sensor->mdata.module_read_only_regs, sensor->mdata.num_module_read_only_regs, reg, val); } static int ccs_read_addr_raw(struct ccs_sensor *sensor, u32 reg, u32 *val, bool force8, bool quirk, bool conv, bool data) { int rval; if (data) { rval = ccs_read_data(sensor, reg, val); if (!rval) return 0; } if (quirk) { *val = 0; rval = ccs_call_quirk(sensor, reg_access, false, ®, val); if (rval == -ENOIOCTLCMD) return 0; if (rval < 0) return rval; if (force8) return __ccs_read_addr(sensor, reg, val, true, conv); } return __ccs_read_addr(sensor, reg, val, ccs_needs_quirk(sensor, CCS_QUIRK_FLAG_8BIT_READ_ONLY), conv); } int ccs_read_addr(struct ccs_sensor *sensor, u32 reg, u32 *val) { return ccs_read_addr_raw(sensor, reg, val, false, true, true, true); } int ccs_read_addr_8only(struct ccs_sensor *sensor, u32 reg, u32 *val) { return ccs_read_addr_raw(sensor, reg, val, true, true, true, true); } int ccs_read_addr_noconv(struct ccs_sensor *sensor, u32 reg, u32 *val) { return ccs_read_addr_raw(sensor, reg, val, false, true, false, true); } static int ccs_write_retry(struct i2c_client *client, struct i2c_msg *msg) { unsigned int retries; int r; for (retries = 0; retries < 10; retries++) { /* * Due to unknown reason sensor stops responding. This * loop is a temporaty solution until the root cause * is found. */ r = i2c_transfer(client->adapter, msg, 1); if (r != 1) { usleep_range(1000, 2000); continue; } if (retries) dev_err(&client->dev, "sensor i2c stall encountered. retries: %d\n", retries); return 0; } return r; } int ccs_write_addr_no_quirk(struct ccs_sensor *sensor, u32 reg, u32 val) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); struct i2c_msg msg; unsigned char data[6]; unsigned int len = ccs_reg_width(reg); int r; if (len > sizeof(data) - 2) return -EINVAL; msg.addr = client->addr; msg.flags = 0; /* Write */ msg.len = 2 + len; msg.buf = data; put_unaligned_be16(CCS_REG_ADDR(reg), data); put_unaligned_be32(val << (8 * (sizeof(val) - len)), data + 2); dev_dbg(&client->dev, "writing reg 0x%4.4x value 0x%*.*x (%u)\n", CCS_REG_ADDR(reg), ccs_reg_width(reg) << 1, ccs_reg_width(reg) << 1, val, val); r = ccs_write_retry(client, &msg); if (r) dev_err(&client->dev, "wrote 0x%x to offset 0x%x error %d\n", val, CCS_REG_ADDR(reg), r); return r; } /* * Write to a 8/16-bit register. * Returns zero if successful, or non-zero otherwise. */ int ccs_write_addr(struct ccs_sensor *sensor, u32 reg, u32 val) { int rval; rval = ccs_call_quirk(sensor, reg_access, true, ®, &val); if (rval == -ENOIOCTLCMD) return 0; if (rval < 0) return rval; return ccs_write_addr_no_quirk(sensor, reg, val); } #define MAX_WRITE_LEN 32U int ccs_write_data_regs(struct ccs_sensor *sensor, struct ccs_reg *regs, size_t num_regs) { struct i2c_client *client = v4l2_get_subdevdata(&sensor->src->sd); unsigned char buf[2 + MAX_WRITE_LEN]; struct i2c_msg msg = { .addr = client->addr, .buf = buf, }; size_t i; for (i = 0; i < num_regs; i++, regs++) { unsigned char *regdata = regs->value; unsigned int j; for (j = 0; j < regs->len; j += msg.len - 2, regdata += msg.len - 2) { int rval; msg.len = min(regs->len - j, MAX_WRITE_LEN); put_unaligned_be16(regs->addr + j, buf); memcpy(buf + 2, regdata, msg.len); msg.len += 2; rval = ccs_write_retry(client, &msg); if (rval) { dev_err(&client->dev, "error writing %u octets to address 0x%4.4x\n", msg.len, regs->addr + j); return rval; } } } return 0; }