// SPDX-License-Identifier: GPL-2.0 /* * Driver for MT9M001 CMOS Image Sensor from Micron * * Copyright (C) 2008, Guennadi Liakhovetski */ #include #include #include #include #include #include #include #include #include #include #include #include #include /* * mt9m001 i2c address 0x5d */ /* mt9m001 selected register addresses */ #define MT9M001_CHIP_VERSION 0x00 #define MT9M001_ROW_START 0x01 #define MT9M001_COLUMN_START 0x02 #define MT9M001_WINDOW_HEIGHT 0x03 #define MT9M001_WINDOW_WIDTH 0x04 #define MT9M001_HORIZONTAL_BLANKING 0x05 #define MT9M001_VERTICAL_BLANKING 0x06 #define MT9M001_OUTPUT_CONTROL 0x07 #define MT9M001_SHUTTER_WIDTH 0x09 #define MT9M001_FRAME_RESTART 0x0b #define MT9M001_SHUTTER_DELAY 0x0c #define MT9M001_RESET 0x0d #define MT9M001_READ_OPTIONS1 0x1e #define MT9M001_READ_OPTIONS2 0x20 #define MT9M001_GLOBAL_GAIN 0x35 #define MT9M001_CHIP_ENABLE 0xF1 #define MT9M001_MAX_WIDTH 1280 #define MT9M001_MAX_HEIGHT 1024 #define MT9M001_MIN_WIDTH 48 #define MT9M001_MIN_HEIGHT 32 #define MT9M001_COLUMN_SKIP 20 #define MT9M001_ROW_SKIP 12 #define MT9M001_DEFAULT_HBLANK 9 #define MT9M001_DEFAULT_VBLANK 25 /* MT9M001 has only one fixed colorspace per pixelcode */ struct mt9m001_datafmt { u32 code; enum v4l2_colorspace colorspace; }; /* Find a data format by a pixel code in an array */ static const struct mt9m001_datafmt *mt9m001_find_datafmt( u32 code, const struct mt9m001_datafmt *fmt, int n) { int i; for (i = 0; i < n; i++) if (fmt[i].code == code) return fmt + i; return NULL; } static const struct mt9m001_datafmt mt9m001_colour_fmts[] = { /* * Order important: first natively supported, * second supported with a GPIO extender */ {MEDIA_BUS_FMT_SBGGR10_1X10, V4L2_COLORSPACE_SRGB}, {MEDIA_BUS_FMT_SBGGR8_1X8, V4L2_COLORSPACE_SRGB}, }; static const struct mt9m001_datafmt mt9m001_monochrome_fmts[] = { /* Order important - see above */ {MEDIA_BUS_FMT_Y10_1X10, V4L2_COLORSPACE_JPEG}, {MEDIA_BUS_FMT_Y8_1X8, V4L2_COLORSPACE_JPEG}, }; struct mt9m001 { struct v4l2_subdev subdev; struct v4l2_ctrl_handler hdl; struct { /* exposure/auto-exposure cluster */ struct v4l2_ctrl *autoexposure; struct v4l2_ctrl *exposure; }; bool streaming; struct mutex mutex; struct v4l2_rect rect; /* Sensor window */ struct clk *clk; struct gpio_desc *standby_gpio; struct gpio_desc *reset_gpio; const struct mt9m001_datafmt *fmt; const struct mt9m001_datafmt *fmts; int num_fmts; unsigned int total_h; unsigned short y_skip_top; /* Lines to skip at the top */ struct media_pad pad; }; static struct mt9m001 *to_mt9m001(const struct i2c_client *client) { return container_of(i2c_get_clientdata(client), struct mt9m001, subdev); } static int reg_read(struct i2c_client *client, const u8 reg) { return i2c_smbus_read_word_swapped(client, reg); } static int reg_write(struct i2c_client *client, const u8 reg, const u16 data) { return i2c_smbus_write_word_swapped(client, reg, data); } static int reg_set(struct i2c_client *client, const u8 reg, const u16 data) { int ret; ret = reg_read(client, reg); if (ret < 0) return ret; return reg_write(client, reg, ret | data); } static int reg_clear(struct i2c_client *client, const u8 reg, const u16 data) { int ret; ret = reg_read(client, reg); if (ret < 0) return ret; return reg_write(client, reg, ret & ~data); } struct mt9m001_reg { u8 reg; u16 data; }; static int multi_reg_write(struct i2c_client *client, const struct mt9m001_reg *regs, int num) { int i; for (i = 0; i < num; i++) { int ret = reg_write(client, regs[i].reg, regs[i].data); if (ret) return ret; } return 0; } static int mt9m001_init(struct i2c_client *client) { const struct mt9m001_reg init_regs[] = { /* * Issue a soft reset. This returns all registers to their * default values. */ { MT9M001_RESET, 1 }, { MT9M001_RESET, 0 }, /* Disable chip, synchronous option update */ { MT9M001_OUTPUT_CONTROL, 0 } }; dev_dbg(&client->dev, "%s\n", __func__); return multi_reg_write(client, init_regs, ARRAY_SIZE(init_regs)); } static int mt9m001_apply_selection(struct v4l2_subdev *sd) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); const struct mt9m001_reg regs[] = { /* Blanking and start values - default... */ { MT9M001_HORIZONTAL_BLANKING, MT9M001_DEFAULT_HBLANK }, { MT9M001_VERTICAL_BLANKING, MT9M001_DEFAULT_VBLANK }, /* * The caller provides a supported format, as verified per * call to .set_fmt(FORMAT_TRY). */ { MT9M001_COLUMN_START, mt9m001->rect.left }, { MT9M001_ROW_START, mt9m001->rect.top }, { MT9M001_WINDOW_WIDTH, mt9m001->rect.width - 1 }, { MT9M001_WINDOW_HEIGHT, mt9m001->rect.height + mt9m001->y_skip_top - 1 }, }; return multi_reg_write(client, regs, ARRAY_SIZE(regs)); } static int mt9m001_s_stream(struct v4l2_subdev *sd, int enable) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); int ret = 0; mutex_lock(&mt9m001->mutex); if (mt9m001->streaming == enable) goto done; if (enable) { ret = pm_runtime_get_sync(&client->dev); if (ret < 0) goto put_unlock; ret = mt9m001_apply_selection(sd); if (ret) goto put_unlock; ret = __v4l2_ctrl_handler_setup(&mt9m001->hdl); if (ret) goto put_unlock; /* Switch to master "normal" mode */ ret = reg_write(client, MT9M001_OUTPUT_CONTROL, 2); if (ret < 0) goto put_unlock; } else { /* Switch to master stop sensor readout */ reg_write(client, MT9M001_OUTPUT_CONTROL, 0); pm_runtime_put(&client->dev); } mt9m001->streaming = enable; done: mutex_unlock(&mt9m001->mutex); return 0; put_unlock: pm_runtime_put(&client->dev); mutex_unlock(&mt9m001->mutex); return ret; } static int mt9m001_set_selection(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_selection *sel) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); struct v4l2_rect rect = sel->r; if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE || sel->target != V4L2_SEL_TGT_CROP) return -EINVAL; if (mt9m001->fmts == mt9m001_colour_fmts) /* * Bayer format - even number of rows for simplicity, * but let the user play with the top row. */ rect.height = ALIGN(rect.height, 2); /* Datasheet requirement: see register description */ rect.width = ALIGN(rect.width, 2); rect.left = ALIGN(rect.left, 2); rect.width = clamp_t(u32, rect.width, MT9M001_MIN_WIDTH, MT9M001_MAX_WIDTH); rect.left = clamp_t(u32, rect.left, MT9M001_COLUMN_SKIP, MT9M001_COLUMN_SKIP + MT9M001_MAX_WIDTH - rect.width); rect.height = clamp_t(u32, rect.height, MT9M001_MIN_HEIGHT, MT9M001_MAX_HEIGHT); rect.top = clamp_t(u32, rect.top, MT9M001_ROW_SKIP, MT9M001_ROW_SKIP + MT9M001_MAX_HEIGHT - rect.height); mt9m001->total_h = rect.height + mt9m001->y_skip_top + MT9M001_DEFAULT_VBLANK; mt9m001->rect = rect; return 0; } static int mt9m001_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_selection *sel) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); if (sel->which != V4L2_SUBDEV_FORMAT_ACTIVE) return -EINVAL; switch (sel->target) { case V4L2_SEL_TGT_CROP_BOUNDS: sel->r.left = MT9M001_COLUMN_SKIP; sel->r.top = MT9M001_ROW_SKIP; sel->r.width = MT9M001_MAX_WIDTH; sel->r.height = MT9M001_MAX_HEIGHT; return 0; case V4L2_SEL_TGT_CROP: sel->r = mt9m001->rect; return 0; default: return -EINVAL; } } static int mt9m001_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *format) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); struct v4l2_mbus_framefmt *mf = &format->format; if (format->pad) return -EINVAL; if (format->which == V4L2_SUBDEV_FORMAT_TRY) { mf = v4l2_subdev_get_try_format(sd, cfg, 0); format->format = *mf; return 0; } mf->width = mt9m001->rect.width; mf->height = mt9m001->rect.height; mf->code = mt9m001->fmt->code; mf->colorspace = mt9m001->fmt->colorspace; mf->field = V4L2_FIELD_NONE; mf->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; mf->quantization = V4L2_QUANTIZATION_DEFAULT; mf->xfer_func = V4L2_XFER_FUNC_DEFAULT; return 0; } static int mt9m001_s_fmt(struct v4l2_subdev *sd, const struct mt9m001_datafmt *fmt, struct v4l2_mbus_framefmt *mf) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); struct v4l2_subdev_selection sel = { .which = V4L2_SUBDEV_FORMAT_ACTIVE, .target = V4L2_SEL_TGT_CROP, .r.left = mt9m001->rect.left, .r.top = mt9m001->rect.top, .r.width = mf->width, .r.height = mf->height, }; int ret; /* No support for scaling so far, just crop. TODO: use skipping */ ret = mt9m001_set_selection(sd, NULL, &sel); if (!ret) { mf->width = mt9m001->rect.width; mf->height = mt9m001->rect.height; mt9m001->fmt = fmt; mf->colorspace = fmt->colorspace; } return ret; } static int mt9m001_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *mf = &format->format; struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); const struct mt9m001_datafmt *fmt; if (format->pad) return -EINVAL; v4l_bound_align_image(&mf->width, MT9M001_MIN_WIDTH, MT9M001_MAX_WIDTH, 1, &mf->height, MT9M001_MIN_HEIGHT + mt9m001->y_skip_top, MT9M001_MAX_HEIGHT + mt9m001->y_skip_top, 0, 0); if (mt9m001->fmts == mt9m001_colour_fmts) mf->height = ALIGN(mf->height - 1, 2); fmt = mt9m001_find_datafmt(mf->code, mt9m001->fmts, mt9m001->num_fmts); if (!fmt) { fmt = mt9m001->fmt; mf->code = fmt->code; } mf->colorspace = fmt->colorspace; mf->field = V4L2_FIELD_NONE; mf->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; mf->quantization = V4L2_QUANTIZATION_DEFAULT; mf->xfer_func = V4L2_XFER_FUNC_DEFAULT; if (format->which == V4L2_SUBDEV_FORMAT_ACTIVE) return mt9m001_s_fmt(sd, fmt, mf); cfg->try_fmt = *mf; return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int mt9m001_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (reg->reg > 0xff) return -EINVAL; reg->size = 2; reg->val = reg_read(client, reg->reg); if (reg->val > 0xffff) return -EIO; return 0; } static int mt9m001_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); if (reg->reg > 0xff) return -EINVAL; if (reg_write(client, reg->reg, reg->val) < 0) return -EIO; return 0; } #endif static int mt9m001_power_on(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct mt9m001 *mt9m001 = to_mt9m001(client); int ret; ret = clk_prepare_enable(mt9m001->clk); if (ret) return ret; if (mt9m001->standby_gpio) { gpiod_set_value_cansleep(mt9m001->standby_gpio, 0); usleep_range(1000, 2000); } if (mt9m001->reset_gpio) { gpiod_set_value_cansleep(mt9m001->reset_gpio, 1); usleep_range(1000, 2000); gpiod_set_value_cansleep(mt9m001->reset_gpio, 0); usleep_range(1000, 2000); } return 0; } static int mt9m001_power_off(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct mt9m001 *mt9m001 = to_mt9m001(client); gpiod_set_value_cansleep(mt9m001->standby_gpio, 1); clk_disable_unprepare(mt9m001->clk); return 0; } static int mt9m001_g_volatile_ctrl(struct v4l2_ctrl *ctrl) { struct mt9m001 *mt9m001 = container_of(ctrl->handler, struct mt9m001, hdl); s32 min, max; switch (ctrl->id) { case V4L2_CID_EXPOSURE_AUTO: min = mt9m001->exposure->minimum; max = mt9m001->exposure->maximum; mt9m001->exposure->val = (524 + (mt9m001->total_h - 1) * (max - min)) / 1048 + min; break; } return 0; } static int mt9m001_s_ctrl(struct v4l2_ctrl *ctrl) { struct mt9m001 *mt9m001 = container_of(ctrl->handler, struct mt9m001, hdl); struct v4l2_subdev *sd = &mt9m001->subdev; struct i2c_client *client = v4l2_get_subdevdata(sd); struct v4l2_ctrl *exp = mt9m001->exposure; int data; int ret; if (!pm_runtime_get_if_in_use(&client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_VFLIP: if (ctrl->val) ret = reg_set(client, MT9M001_READ_OPTIONS2, 0x8000); else ret = reg_clear(client, MT9M001_READ_OPTIONS2, 0x8000); break; case V4L2_CID_GAIN: /* See Datasheet Table 7, Gain settings. */ if (ctrl->val <= ctrl->default_value) { /* Pack it into 0..1 step 0.125, register values 0..8 */ unsigned long range = ctrl->default_value - ctrl->minimum; data = ((ctrl->val - (s32)ctrl->minimum) * 8 + range / 2) / range; dev_dbg(&client->dev, "Setting gain %d\n", data); ret = reg_write(client, MT9M001_GLOBAL_GAIN, data); } else { /* Pack it into 1.125..15 variable step, register values 9..67 */ /* We assume qctrl->maximum - qctrl->default_value - 1 > 0 */ unsigned long range = ctrl->maximum - ctrl->default_value - 1; unsigned long gain = ((ctrl->val - (s32)ctrl->default_value - 1) * 111 + range / 2) / range + 9; if (gain <= 32) data = gain; else if (gain <= 64) data = ((gain - 32) * 16 + 16) / 32 + 80; else data = ((gain - 64) * 7 + 28) / 56 + 96; dev_dbg(&client->dev, "Setting gain from %d to %d\n", reg_read(client, MT9M001_GLOBAL_GAIN), data); ret = reg_write(client, MT9M001_GLOBAL_GAIN, data); } break; case V4L2_CID_EXPOSURE_AUTO: if (ctrl->val == V4L2_EXPOSURE_MANUAL) { unsigned long range = exp->maximum - exp->minimum; unsigned long shutter = ((exp->val - (s32)exp->minimum) * 1048 + range / 2) / range + 1; dev_dbg(&client->dev, "Setting shutter width from %d to %lu\n", reg_read(client, MT9M001_SHUTTER_WIDTH), shutter); ret = reg_write(client, MT9M001_SHUTTER_WIDTH, shutter); } else { mt9m001->total_h = mt9m001->rect.height + mt9m001->y_skip_top + MT9M001_DEFAULT_VBLANK; ret = reg_write(client, MT9M001_SHUTTER_WIDTH, mt9m001->total_h); } break; default: ret = -EINVAL; break; } pm_runtime_put(&client->dev); return ret; } /* * Interface active, can use i2c. If it fails, it can indeed mean, that * this wasn't our capture interface, so, we wait for the right one */ static int mt9m001_video_probe(struct i2c_client *client) { struct mt9m001 *mt9m001 = to_mt9m001(client); s32 data; int ret; /* Enable the chip */ data = reg_write(client, MT9M001_CHIP_ENABLE, 1); dev_dbg(&client->dev, "write: %d\n", data); /* Read out the chip version register */ data = reg_read(client, MT9M001_CHIP_VERSION); /* must be 0x8411 or 0x8421 for colour sensor and 8431 for bw */ switch (data) { case 0x8411: case 0x8421: mt9m001->fmts = mt9m001_colour_fmts; mt9m001->num_fmts = ARRAY_SIZE(mt9m001_colour_fmts); break; case 0x8431: mt9m001->fmts = mt9m001_monochrome_fmts; mt9m001->num_fmts = ARRAY_SIZE(mt9m001_monochrome_fmts); break; default: dev_err(&client->dev, "No MT9M001 chip detected, register read %x\n", data); ret = -ENODEV; goto done; } mt9m001->fmt = &mt9m001->fmts[0]; dev_info(&client->dev, "Detected a MT9M001 chip ID %x (%s)\n", data, data == 0x8431 ? "C12STM" : "C12ST"); ret = mt9m001_init(client); if (ret < 0) { dev_err(&client->dev, "Failed to initialise the camera\n"); goto done; } /* mt9m001_init() has reset the chip, returning registers to defaults */ ret = v4l2_ctrl_handler_setup(&mt9m001->hdl); done: return ret; } static int mt9m001_g_skip_top_lines(struct v4l2_subdev *sd, u32 *lines) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); *lines = mt9m001->y_skip_top; return 0; } static const struct v4l2_ctrl_ops mt9m001_ctrl_ops = { .g_volatile_ctrl = mt9m001_g_volatile_ctrl, .s_ctrl = mt9m001_s_ctrl, }; static const struct v4l2_subdev_core_ops mt9m001_subdev_core_ops = { .log_status = v4l2_ctrl_subdev_log_status, .subscribe_event = v4l2_ctrl_subdev_subscribe_event, .unsubscribe_event = v4l2_event_subdev_unsubscribe, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = mt9m001_g_register, .s_register = mt9m001_s_register, #endif }; static int mt9m001_init_cfg(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); struct v4l2_mbus_framefmt *try_fmt = v4l2_subdev_get_try_format(sd, cfg, 0); try_fmt->width = MT9M001_MAX_WIDTH; try_fmt->height = MT9M001_MAX_HEIGHT; try_fmt->code = mt9m001->fmts[0].code; try_fmt->colorspace = mt9m001->fmts[0].colorspace; try_fmt->field = V4L2_FIELD_NONE; try_fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; try_fmt->quantization = V4L2_QUANTIZATION_DEFAULT; try_fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT; return 0; } static int mt9m001_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_pad_config *cfg, struct v4l2_subdev_mbus_code_enum *code) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct mt9m001 *mt9m001 = to_mt9m001(client); if (code->pad || code->index >= mt9m001->num_fmts) return -EINVAL; code->code = mt9m001->fmts[code->index].code; return 0; } static int mt9m001_g_mbus_config(struct v4l2_subdev *sd, struct v4l2_mbus_config *cfg) { /* MT9M001 has all capture_format parameters fixed */ cfg->flags = V4L2_MBUS_PCLK_SAMPLE_FALLING | V4L2_MBUS_HSYNC_ACTIVE_HIGH | V4L2_MBUS_VSYNC_ACTIVE_HIGH | V4L2_MBUS_DATA_ACTIVE_HIGH | V4L2_MBUS_MASTER; cfg->type = V4L2_MBUS_PARALLEL; return 0; } static const struct v4l2_subdev_video_ops mt9m001_subdev_video_ops = { .s_stream = mt9m001_s_stream, .g_mbus_config = mt9m001_g_mbus_config, }; static const struct v4l2_subdev_sensor_ops mt9m001_subdev_sensor_ops = { .g_skip_top_lines = mt9m001_g_skip_top_lines, }; static const struct v4l2_subdev_pad_ops mt9m001_subdev_pad_ops = { .init_cfg = mt9m001_init_cfg, .enum_mbus_code = mt9m001_enum_mbus_code, .get_selection = mt9m001_get_selection, .set_selection = mt9m001_set_selection, .get_fmt = mt9m001_get_fmt, .set_fmt = mt9m001_set_fmt, }; static const struct v4l2_subdev_ops mt9m001_subdev_ops = { .core = &mt9m001_subdev_core_ops, .video = &mt9m001_subdev_video_ops, .sensor = &mt9m001_subdev_sensor_ops, .pad = &mt9m001_subdev_pad_ops, }; static int mt9m001_probe(struct i2c_client *client, const struct i2c_device_id *did) { struct mt9m001 *mt9m001; struct i2c_adapter *adapter = to_i2c_adapter(client->dev.parent); int ret; if (!i2c_check_functionality(adapter, I2C_FUNC_SMBUS_WORD_DATA)) { dev_warn(&adapter->dev, "I2C-Adapter doesn't support I2C_FUNC_SMBUS_WORD\n"); return -EIO; } mt9m001 = devm_kzalloc(&client->dev, sizeof(*mt9m001), GFP_KERNEL); if (!mt9m001) return -ENOMEM; mt9m001->clk = devm_clk_get(&client->dev, NULL); if (IS_ERR(mt9m001->clk)) return PTR_ERR(mt9m001->clk); mt9m001->standby_gpio = devm_gpiod_get_optional(&client->dev, "standby", GPIOD_OUT_LOW); if (IS_ERR(mt9m001->standby_gpio)) return PTR_ERR(mt9m001->standby_gpio); mt9m001->reset_gpio = devm_gpiod_get_optional(&client->dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(mt9m001->reset_gpio)) return PTR_ERR(mt9m001->reset_gpio); v4l2_i2c_subdev_init(&mt9m001->subdev, client, &mt9m001_subdev_ops); mt9m001->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; v4l2_ctrl_handler_init(&mt9m001->hdl, 4); v4l2_ctrl_new_std(&mt9m001->hdl, &mt9m001_ctrl_ops, V4L2_CID_VFLIP, 0, 1, 1, 0); v4l2_ctrl_new_std(&mt9m001->hdl, &mt9m001_ctrl_ops, V4L2_CID_GAIN, 0, 127, 1, 64); mt9m001->exposure = v4l2_ctrl_new_std(&mt9m001->hdl, &mt9m001_ctrl_ops, V4L2_CID_EXPOSURE, 1, 255, 1, 255); /* * Simulated autoexposure. If enabled, we calculate shutter width * ourselves in the driver based on vertical blanking and frame width */ mt9m001->autoexposure = v4l2_ctrl_new_std_menu(&mt9m001->hdl, &mt9m001_ctrl_ops, V4L2_CID_EXPOSURE_AUTO, 1, 0, V4L2_EXPOSURE_AUTO); mt9m001->subdev.ctrl_handler = &mt9m001->hdl; if (mt9m001->hdl.error) return mt9m001->hdl.error; v4l2_ctrl_auto_cluster(2, &mt9m001->autoexposure, V4L2_EXPOSURE_MANUAL, true); mutex_init(&mt9m001->mutex); mt9m001->hdl.lock = &mt9m001->mutex; /* Second stage probe - when a capture adapter is there */ mt9m001->y_skip_top = 0; mt9m001->rect.left = MT9M001_COLUMN_SKIP; mt9m001->rect.top = MT9M001_ROW_SKIP; mt9m001->rect.width = MT9M001_MAX_WIDTH; mt9m001->rect.height = MT9M001_MAX_HEIGHT; ret = mt9m001_power_on(&client->dev); if (ret) goto error_hdl_free; pm_runtime_set_active(&client->dev); pm_runtime_enable(&client->dev); ret = mt9m001_video_probe(client); if (ret) goto error_power_off; mt9m001->pad.flags = MEDIA_PAD_FL_SOURCE; mt9m001->subdev.entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&mt9m001->subdev.entity, 1, &mt9m001->pad); if (ret) goto error_power_off; ret = v4l2_async_register_subdev(&mt9m001->subdev); if (ret) goto error_entity_cleanup; pm_runtime_idle(&client->dev); return 0; error_entity_cleanup: media_entity_cleanup(&mt9m001->subdev.entity); error_power_off: pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); mt9m001_power_off(&client->dev); error_hdl_free: v4l2_ctrl_handler_free(&mt9m001->hdl); mutex_destroy(&mt9m001->mutex); return ret; } static int mt9m001_remove(struct i2c_client *client) { struct mt9m001 *mt9m001 = to_mt9m001(client); pm_runtime_get_sync(&client->dev); v4l2_async_unregister_subdev(&mt9m001->subdev); media_entity_cleanup(&mt9m001->subdev.entity); pm_runtime_disable(&client->dev); pm_runtime_set_suspended(&client->dev); pm_runtime_put_noidle(&client->dev); mt9m001_power_off(&client->dev); v4l2_ctrl_handler_free(&mt9m001->hdl); mutex_destroy(&mt9m001->mutex); return 0; } static const struct i2c_device_id mt9m001_id[] = { { "mt9m001", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, mt9m001_id); static const struct dev_pm_ops mt9m001_pm_ops = { SET_RUNTIME_PM_OPS(mt9m001_power_off, mt9m001_power_on, NULL) }; static const struct of_device_id mt9m001_of_match[] = { { .compatible = "onnn,mt9m001", }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, mt9m001_of_match); static struct i2c_driver mt9m001_i2c_driver = { .driver = { .name = "mt9m001", .pm = &mt9m001_pm_ops, .of_match_table = mt9m001_of_match, }, .probe = mt9m001_probe, .remove = mt9m001_remove, .id_table = mt9m001_id, }; module_i2c_driver(mt9m001_i2c_driver); MODULE_DESCRIPTION("Micron MT9M001 Camera driver"); MODULE_AUTHOR("Guennadi Liakhovetski "); MODULE_LICENSE("GPL v2");