/* * tm6000-input.c - driver for TM5600/TM6000/TM6010 USB video capture devices * * Copyright (C) 2010 Stefan Ringel * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation version 2 * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include "tm6000.h" #include "tm6000-regs.h" static unsigned int ir_debug; module_param(ir_debug, int, 0644); MODULE_PARM_DESC(ir_debug, "debug message level"); static unsigned int enable_ir = 1; module_param(enable_ir, int, 0644); MODULE_PARM_DESC(enable_ir, "enable ir (default is enable)"); static unsigned int ir_clock_mhz = 12; module_param(ir_clock_mhz, int, 0644); MODULE_PARM_DESC(enable_ir, "ir clock, in MHz"); #define URB_SUBMIT_DELAY 100 /* ms - Delay to submit an URB request on retrial and init */ #define URB_INT_LED_DELAY 100 /* ms - Delay to turn led on again on int mode */ #undef dprintk #define dprintk(level, fmt, arg...) do {\ if (ir_debug >= level) \ printk(KERN_DEBUG "%s/ir: " fmt, ir->name , ## arg); \ } while (0) struct tm6000_ir_poll_result { u16 rc_data; }; struct tm6000_IR { struct tm6000_core *dev; struct rc_dev *rc; char name[32]; char phys[32]; /* poll expernal decoder */ int polling; struct delayed_work work; u8 wait:1; u8 pwled:2; u8 submit_urb:1; u16 key_addr; struct urb *int_urb; /* IR device properties */ u64 rc_type; }; void tm6000_ir_wait(struct tm6000_core *dev, u8 state) { struct tm6000_IR *ir = dev->ir; if (!dev->ir) return; dprintk(2, "%s: %i\n",__func__, ir->wait); if (state) ir->wait = 1; else ir->wait = 0; } static int tm6000_ir_config(struct tm6000_IR *ir) { struct tm6000_core *dev = ir->dev; u32 pulse = 0, leader = 0; dprintk(2, "%s\n",__func__); /* * The IR decoder supports RC-5 or NEC, with a configurable timing. * The timing configuration there is not that accurate, as it uses * approximate values. The NEC spec mentions a 562.5 unit period, * and RC-5 uses a 888.8 period. * Currently, driver assumes a clock provided by a 12 MHz XTAL, but * a modprobe parameter can adjust it. * Adjustments are required for other timings. * It seems that the 900ms timing for NEC is used to detect a RC-5 * IR, in order to discard such decoding */ switch (ir->rc_type) { case RC_BIT_NEC: leader = 900; /* ms */ pulse = 700; /* ms - the actual value would be 562 */ break; default: case RC_BIT_RC5: leader = 900; /* ms - from the NEC decoding */ pulse = 1780; /* ms - The actual value would be 1776 */ break; } pulse = ir_clock_mhz * pulse; leader = ir_clock_mhz * leader; if (ir->rc_type == RC_BIT_NEC) leader = leader | 0x8000; dprintk(2, "%s: %s, %d MHz, leader = 0x%04x, pulse = 0x%06x \n", __func__, (ir->rc_type == RC_BIT_NEC) ? "NEC" : "RC-5", ir_clock_mhz, leader, pulse); /* Remote WAKEUP = enable, normal mode, from IR decoder output */ tm6000_set_reg(dev, TM6010_REQ07_RE5_REMOTE_WAKEUP, 0xfe); /* Enable IR reception on non-busrt mode */ tm6000_set_reg(dev, TM6010_REQ07_RD8_IR, 0x2f); /* IR_WKUP_SEL = Low byte in decoded IR data */ tm6000_set_reg(dev, TM6010_REQ07_RDA_IR_WAKEUP_SEL, 0xff); /* IR_WKU_ADD code */ tm6000_set_reg(dev, TM6010_REQ07_RDB_IR_WAKEUP_ADD, 0xff); tm6000_set_reg(dev, TM6010_REQ07_RDC_IR_LEADER1, leader >> 8); tm6000_set_reg(dev, TM6010_REQ07_RDD_IR_LEADER0, leader); tm6000_set_reg(dev, TM6010_REQ07_RDE_IR_PULSE_CNT1, pulse >> 8); tm6000_set_reg(dev, TM6010_REQ07_RDF_IR_PULSE_CNT0, pulse); if (!ir->polling) tm6000_set_reg(dev, REQ_04_EN_DISABLE_MCU_INT, 2, 0); else tm6000_set_reg(dev, REQ_04_EN_DISABLE_MCU_INT, 2, 1); msleep(10); /* Shows that IR is working via the LED */ tm6000_flash_led(dev, 0); msleep(100); tm6000_flash_led(dev, 1); ir->pwled = 1; return 0; } static void tm6000_ir_keydown(struct tm6000_IR *ir, const char *buf, unsigned int len) { u8 device, command; u32 scancode; enum rc_type protocol; if (len < 1) return; command = buf[0]; device = (len > 1 ? buf[1] : 0x0); switch (ir->rc_type) { case RC_BIT_RC5: protocol = RC_TYPE_RC5; scancode = RC_SCANCODE_RC5(device, command); break; case RC_BIT_NEC: protocol = RC_TYPE_NEC; scancode = RC_SCANCODE_NEC(device, command); break; default: protocol = RC_TYPE_OTHER; scancode = RC_SCANCODE_OTHER(device << 8 | command); break; } dprintk(1, "%s, protocol: 0x%04x, scancode: 0x%08x\n", __func__, protocol, scancode); rc_keydown(ir->rc, protocol, scancode, 0); } static void tm6000_ir_urb_received(struct urb *urb) { struct tm6000_core *dev = urb->context; struct tm6000_IR *ir = dev->ir; char *buf; dprintk(2, "%s\n",__func__); if (urb->status < 0 || urb->actual_length <= 0) { printk(KERN_INFO "tm6000: IR URB failure: status: %i, length %i\n", urb->status, urb->actual_length); ir->submit_urb = 1; schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_SUBMIT_DELAY)); return; } buf = urb->transfer_buffer; if (ir_debug) print_hex_dump(KERN_DEBUG, "tm6000: IR data: ", DUMP_PREFIX_OFFSET,16, 1, buf, urb->actual_length, false); tm6000_ir_keydown(ir, urb->transfer_buffer, urb->actual_length); usb_submit_urb(urb, GFP_ATOMIC); /* * Flash the led. We can't do it here, as it is running on IRQ context. * So, use the scheduler to do it, in a few ms. */ ir->pwled = 2; schedule_delayed_work(&ir->work, msecs_to_jiffies(10)); } static void tm6000_ir_handle_key(struct work_struct *work) { struct tm6000_IR *ir = container_of(work, struct tm6000_IR, work.work); struct tm6000_core *dev = ir->dev; int rc; u8 buf[2]; if (ir->wait) return; dprintk(3, "%s\n",__func__); rc = tm6000_read_write_usb(dev, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE, REQ_02_GET_IR_CODE, 0, 0, buf, 2); if (rc < 0) return; /* Check if something was read */ if ((buf[0] & 0xff) == 0xff) { if (!ir->pwled) { tm6000_flash_led(dev, 1); ir->pwled = 1; } return; } tm6000_ir_keydown(ir, buf, rc); tm6000_flash_led(dev, 0); ir->pwled = 0; /* Re-schedule polling */ schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling)); } static void tm6000_ir_int_work(struct work_struct *work) { struct tm6000_IR *ir = container_of(work, struct tm6000_IR, work.work); struct tm6000_core *dev = ir->dev; int rc; dprintk(3, "%s, submit_urb = %d, pwled = %d\n",__func__, ir->submit_urb, ir->pwled); if (ir->submit_urb) { dprintk(3, "Resubmit urb\n"); tm6000_set_reg(dev, REQ_04_EN_DISABLE_MCU_INT, 2, 0); rc = usb_submit_urb(ir->int_urb, GFP_ATOMIC); if (rc < 0) { printk(KERN_ERR "tm6000: Can't submit an IR interrupt. Error %i\n", rc); /* Retry in 100 ms */ schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_SUBMIT_DELAY)); return; } ir->submit_urb = 0; } /* Led is enabled only if USB submit doesn't fail */ if (ir->pwled == 2) { tm6000_flash_led(dev, 0); ir->pwled = 0; schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_INT_LED_DELAY)); } else if (!ir->pwled) { tm6000_flash_led(dev, 1); ir->pwled = 1; } } static int tm6000_ir_start(struct rc_dev *rc) { struct tm6000_IR *ir = rc->priv; dprintk(2, "%s\n",__func__); schedule_delayed_work(&ir->work, 0); return 0; } static void tm6000_ir_stop(struct rc_dev *rc) { struct tm6000_IR *ir = rc->priv; dprintk(2, "%s\n",__func__); cancel_delayed_work_sync(&ir->work); } static int tm6000_ir_change_protocol(struct rc_dev *rc, u64 *rc_type) { struct tm6000_IR *ir = rc->priv; if (!ir) return 0; dprintk(2, "%s\n",__func__); if ((rc->rc_map.scan) && (*rc_type == RC_BIT_NEC)) ir->key_addr = ((rc->rc_map.scan[0].scancode >> 8) & 0xffff); ir->rc_type = *rc_type; tm6000_ir_config(ir); /* TODO */ return 0; } static int __tm6000_ir_int_start(struct rc_dev *rc) { struct tm6000_IR *ir = rc->priv; struct tm6000_core *dev; int pipe, size; int err = -ENOMEM; if (!ir) return -ENODEV; dev = ir->dev; dprintk(2, "%s\n",__func__); ir->int_urb = usb_alloc_urb(0, GFP_ATOMIC); if (!ir->int_urb) return -ENOMEM; pipe = usb_rcvintpipe(dev->udev, dev->int_in.endp->desc.bEndpointAddress & USB_ENDPOINT_NUMBER_MASK); size = usb_maxpacket(dev->udev, pipe, usb_pipeout(pipe)); dprintk(1, "IR max size: %d\n", size); ir->int_urb->transfer_buffer = kzalloc(size, GFP_ATOMIC); if (ir->int_urb->transfer_buffer == NULL) { usb_free_urb(ir->int_urb); return err; } dprintk(1, "int interval: %d\n", dev->int_in.endp->desc.bInterval); usb_fill_int_urb(ir->int_urb, dev->udev, pipe, ir->int_urb->transfer_buffer, size, tm6000_ir_urb_received, dev, dev->int_in.endp->desc.bInterval); ir->submit_urb = 1; schedule_delayed_work(&ir->work, msecs_to_jiffies(URB_SUBMIT_DELAY)); return 0; } static void __tm6000_ir_int_stop(struct rc_dev *rc) { struct tm6000_IR *ir = rc->priv; if (!ir || !ir->int_urb) return; dprintk(2, "%s\n",__func__); usb_kill_urb(ir->int_urb); kfree(ir->int_urb->transfer_buffer); usb_free_urb(ir->int_urb); ir->int_urb = NULL; } int tm6000_ir_int_start(struct tm6000_core *dev) { struct tm6000_IR *ir = dev->ir; if (!ir) return 0; return __tm6000_ir_int_start(ir->rc); } void tm6000_ir_int_stop(struct tm6000_core *dev) { struct tm6000_IR *ir = dev->ir; if (!ir || !ir->rc) return; __tm6000_ir_int_stop(ir->rc); } int tm6000_ir_init(struct tm6000_core *dev) { struct tm6000_IR *ir; struct rc_dev *rc; int err = -ENOMEM; u64 rc_type; if (!enable_ir) return -ENODEV; if (!dev->caps.has_remote) return 0; if (!dev->ir_codes) return 0; ir = kzalloc(sizeof(*ir), GFP_ATOMIC); rc = rc_allocate_device(); if (!ir || !rc) goto out; dprintk(2, "%s\n", __func__); /* record handles to ourself */ ir->dev = dev; dev->ir = ir; ir->rc = rc; /* input setup */ rc->allowed_protocols = RC_BIT_RC5 | RC_BIT_NEC; /* Neded, in order to support NEC remotes with 24 or 32 bits */ rc->scancode_mask = 0xffff; rc->priv = ir; rc->change_protocol = tm6000_ir_change_protocol; if (dev->int_in.endp) { rc->open = __tm6000_ir_int_start; rc->close = __tm6000_ir_int_stop; INIT_DELAYED_WORK(&ir->work, tm6000_ir_int_work); } else { rc->open = tm6000_ir_start; rc->close = tm6000_ir_stop; ir->polling = 50; INIT_DELAYED_WORK(&ir->work, tm6000_ir_handle_key); } rc->driver_type = RC_DRIVER_SCANCODE; snprintf(ir->name, sizeof(ir->name), "tm5600/60x0 IR (%s)", dev->name); usb_make_path(dev->udev, ir->phys, sizeof(ir->phys)); strlcat(ir->phys, "/input0", sizeof(ir->phys)); rc_type = RC_BIT_UNKNOWN; tm6000_ir_change_protocol(rc, &rc_type); rc->input_name = ir->name; rc->input_phys = ir->phys; rc->input_id.bustype = BUS_USB; rc->input_id.version = 1; rc->input_id.vendor = le16_to_cpu(dev->udev->descriptor.idVendor); rc->input_id.product = le16_to_cpu(dev->udev->descriptor.idProduct); rc->map_name = dev->ir_codes; rc->driver_name = "tm6000"; rc->dev.parent = &dev->udev->dev; /* ir register */ err = rc_register_device(rc); if (err) goto out; return 0; out: dev->ir = NULL; rc_free_device(rc); kfree(ir); return err; } int tm6000_ir_fini(struct tm6000_core *dev) { struct tm6000_IR *ir = dev->ir; /* skip detach on non attached board */ if (!ir) return 0; dprintk(2, "%s\n",__func__); if (!ir->polling) __tm6000_ir_int_stop(ir->rc); tm6000_ir_stop(ir->rc); /* Turn off the led */ tm6000_flash_led(dev, 0); ir->pwled = 0; rc_unregister_device(ir->rc); kfree(ir); dev->ir = NULL; return 0; }