/* * omap_vout.c * * Copyright (C) 2005-2010 Texas Instruments. * * This file is licensed under the terms of the GNU General Public License * version 2. This program is licensed "as is" without any warranty of any * kind, whether express or implied. * * Leveraged code from the OMAP2 camera driver * Video-for-Linux (Version 2) camera capture driver for * the OMAP24xx camera controller. * * Author: Andy Lowe (source@mvista.com) * * Copyright (C) 2004 MontaVista Software, Inc. * Copyright (C) 2010 Texas Instruments. * * History: * 20-APR-2006 Khasim Modified VRFB based Rotation, * The image data is always read from 0 degree * view and written * to the virtual space of desired rotation angle * 4-DEC-2006 Jian Changed to support better memory management * * 17-Nov-2008 Hardik Changed driver to use video_ioctl2 * * 23-Feb-2010 Vaibhav H Modified to use new DSS2 interface * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "omap_voutlib.h" #include "omap_voutdef.h" MODULE_AUTHOR("Texas Instruments"); MODULE_DESCRIPTION("OMAP Video for Linux Video out driver"); MODULE_LICENSE("GPL"); /* Driver Configuration macros */ #define VOUT_NAME "omap_vout" enum omap_vout_channels { OMAP_VIDEO1, OMAP_VIDEO2, }; enum dma_channel_state { DMA_CHAN_NOT_ALLOTED, DMA_CHAN_ALLOTED, }; #define QQVGA_WIDTH 160 #define QQVGA_HEIGHT 120 /* Max Resolution supported by the driver */ #define VID_MAX_WIDTH 1280 /* Largest width */ #define VID_MAX_HEIGHT 720 /* Largest height */ /* Mimimum requirement is 2x2 for DSS */ #define VID_MIN_WIDTH 2 #define VID_MIN_HEIGHT 2 /* 2048 x 2048 is max res supported by OMAP display controller */ #define MAX_PIXELS_PER_LINE 2048 #define VRFB_TX_TIMEOUT 1000 #define VRFB_NUM_BUFS 4 /* Max buffer size tobe allocated during init */ #define OMAP_VOUT_MAX_BUF_SIZE (VID_MAX_WIDTH*VID_MAX_HEIGHT*4) static struct videobuf_queue_ops video_vbq_ops; /* Variables configurable through module params*/ static u32 video1_numbuffers = 3; static u32 video2_numbuffers = 3; static u32 video1_bufsize = OMAP_VOUT_MAX_BUF_SIZE; static u32 video2_bufsize = OMAP_VOUT_MAX_BUF_SIZE; static u32 vid1_static_vrfb_alloc; static u32 vid2_static_vrfb_alloc; static int debug; /* Module parameters */ module_param(video1_numbuffers, uint, S_IRUGO); MODULE_PARM_DESC(video1_numbuffers, "Number of buffers to be allocated at init time for Video1 device."); module_param(video2_numbuffers, uint, S_IRUGO); MODULE_PARM_DESC(video2_numbuffers, "Number of buffers to be allocated at init time for Video2 device."); module_param(video1_bufsize, uint, S_IRUGO); MODULE_PARM_DESC(video1_bufsize, "Size of the buffer to be allocated for video1 device"); module_param(video2_bufsize, uint, S_IRUGO); MODULE_PARM_DESC(video2_bufsize, "Size of the buffer to be allocated for video2 device"); module_param(vid1_static_vrfb_alloc, bool, S_IRUGO); MODULE_PARM_DESC(vid1_static_vrfb_alloc, "Static allocation of the VRFB buffer for video1 device"); module_param(vid2_static_vrfb_alloc, bool, S_IRUGO); MODULE_PARM_DESC(vid2_static_vrfb_alloc, "Static allocation of the VRFB buffer for video2 device"); module_param(debug, bool, S_IRUGO); MODULE_PARM_DESC(debug, "Debug level (0-1)"); /* list of image formats supported by OMAP2 video pipelines */ const static struct v4l2_fmtdesc omap_formats[] = { { /* Note: V4L2 defines RGB565 as: * * Byte 0 Byte 1 * g2 g1 g0 r4 r3 r2 r1 r0 b4 b3 b2 b1 b0 g5 g4 g3 * * We interpret RGB565 as: * * Byte 0 Byte 1 * g2 g1 g0 b4 b3 b2 b1 b0 r4 r3 r2 r1 r0 g5 g4 g3 */ .description = "RGB565, le", .pixelformat = V4L2_PIX_FMT_RGB565, }, { /* Note: V4L2 defines RGB32 as: RGB-8-8-8-8 we use * this for RGB24 unpack mode, the last 8 bits are ignored * */ .description = "RGB32, le", .pixelformat = V4L2_PIX_FMT_RGB32, }, { /* Note: V4L2 defines RGB24 as: RGB-8-8-8 we use * this for RGB24 packed mode * */ .description = "RGB24, le", .pixelformat = V4L2_PIX_FMT_RGB24, }, { .description = "YUYV (YUV 4:2:2), packed", .pixelformat = V4L2_PIX_FMT_YUYV, }, { .description = "UYVY, packed", .pixelformat = V4L2_PIX_FMT_UYVY, }, }; #define NUM_OUTPUT_FORMATS (ARRAY_SIZE(omap_formats)) /* * Allocate buffers */ static unsigned long omap_vout_alloc_buffer(u32 buf_size, u32 *phys_addr) { u32 order, size; unsigned long virt_addr, addr; size = PAGE_ALIGN(buf_size); order = get_order(size); virt_addr = __get_free_pages(GFP_KERNEL | GFP_DMA, order); addr = virt_addr; if (virt_addr) { while (size > 0) { SetPageReserved(virt_to_page(addr)); addr += PAGE_SIZE; size -= PAGE_SIZE; } } *phys_addr = (u32) virt_to_phys((void *) virt_addr); return virt_addr; } /* * Free buffers */ static void omap_vout_free_buffer(unsigned long virtaddr, u32 buf_size) { u32 order, size; unsigned long addr = virtaddr; size = PAGE_ALIGN(buf_size); order = get_order(size); while (size > 0) { ClearPageReserved(virt_to_page(addr)); addr += PAGE_SIZE; size -= PAGE_SIZE; } free_pages((unsigned long) virtaddr, order); } /* * Function for allocating video buffers */ static int omap_vout_allocate_vrfb_buffers(struct omap_vout_device *vout, unsigned int *count, int startindex) { int i, j; for (i = 0; i < *count; i++) { if (!vout->smsshado_virt_addr[i]) { vout->smsshado_virt_addr[i] = omap_vout_alloc_buffer(vout->smsshado_size, &vout->smsshado_phy_addr[i]); } if (!vout->smsshado_virt_addr[i] && startindex != -1) { if (V4L2_MEMORY_MMAP == vout->memory && i >= startindex) break; } if (!vout->smsshado_virt_addr[i]) { for (j = 0; j < i; j++) { omap_vout_free_buffer( vout->smsshado_virt_addr[j], vout->smsshado_size); vout->smsshado_virt_addr[j] = 0; vout->smsshado_phy_addr[j] = 0; } *count = 0; return -ENOMEM; } memset((void *) vout->smsshado_virt_addr[i], 0, vout->smsshado_size); } return 0; } /* * Try format */ static int omap_vout_try_format(struct v4l2_pix_format *pix) { int ifmt, bpp = 0; pix->height = clamp(pix->height, (u32)VID_MIN_HEIGHT, (u32)VID_MAX_HEIGHT); pix->width = clamp(pix->width, (u32)VID_MIN_WIDTH, (u32)VID_MAX_WIDTH); for (ifmt = 0; ifmt < NUM_OUTPUT_FORMATS; ifmt++) { if (pix->pixelformat == omap_formats[ifmt].pixelformat) break; } if (ifmt == NUM_OUTPUT_FORMATS) ifmt = 0; pix->pixelformat = omap_formats[ifmt].pixelformat; pix->field = V4L2_FIELD_ANY; pix->priv = 0; switch (pix->pixelformat) { case V4L2_PIX_FMT_YUYV: case V4L2_PIX_FMT_UYVY: default: pix->colorspace = V4L2_COLORSPACE_JPEG; bpp = YUYV_BPP; break; case V4L2_PIX_FMT_RGB565: case V4L2_PIX_FMT_RGB565X: pix->colorspace = V4L2_COLORSPACE_SRGB; bpp = RGB565_BPP; break; case V4L2_PIX_FMT_RGB24: pix->colorspace = V4L2_COLORSPACE_SRGB; bpp = RGB24_BPP; break; case V4L2_PIX_FMT_RGB32: case V4L2_PIX_FMT_BGR32: pix->colorspace = V4L2_COLORSPACE_SRGB; bpp = RGB32_BPP; break; } pix->bytesperline = pix->width * bpp; pix->sizeimage = pix->bytesperline * pix->height; return bpp; } /* * omap_vout_uservirt_to_phys: This inline function is used to convert user * space virtual address to physical address. */ static u32 omap_vout_uservirt_to_phys(u32 virtp) { unsigned long physp = 0; struct vm_area_struct *vma; struct mm_struct *mm = current->mm; vma = find_vma(mm, virtp); /* For kernel direct-mapped memory, take the easy way */ if (virtp >= PAGE_OFFSET) { physp = virt_to_phys((void *) virtp); } else if (vma && (vma->vm_flags & VM_IO) && vma->vm_pgoff) { /* this will catch, kernel-allocated, mmaped-to-usermode addresses */ physp = (vma->vm_pgoff << PAGE_SHIFT) + (virtp - vma->vm_start); } else { /* otherwise, use get_user_pages() for general userland pages */ int res, nr_pages = 1; struct page *pages; down_read(¤t->mm->mmap_sem); res = get_user_pages(current, current->mm, virtp, nr_pages, 1, 0, &pages, NULL); up_read(¤t->mm->mmap_sem); if (res == nr_pages) { physp = __pa(page_address(&pages[0]) + (virtp & ~PAGE_MASK)); } else { printk(KERN_WARNING VOUT_NAME "get_user_pages failed\n"); return 0; } } return physp; } /* * Wakes up the application once the DMA transfer to VRFB space is completed. */ static void omap_vout_vrfb_dma_tx_callback(int lch, u16 ch_status, void *data) { struct vid_vrfb_dma *t = (struct vid_vrfb_dma *) data; t->tx_status = 1; wake_up_interruptible(&t->wait); } /* * Release the VRFB context once the module exits */ static void omap_vout_release_vrfb(struct omap_vout_device *vout) { int i; for (i = 0; i < VRFB_NUM_BUFS; i++) omap_vrfb_release_ctx(&vout->vrfb_context[i]); if (vout->vrfb_dma_tx.req_status == DMA_CHAN_ALLOTED) { vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; omap_free_dma(vout->vrfb_dma_tx.dma_ch); } } /* * Return true if rotation is 90 or 270 */ static inline int rotate_90_or_270(const struct omap_vout_device *vout) { return (vout->rotation == dss_rotation_90_degree || vout->rotation == dss_rotation_270_degree); } /* * Return true if rotation is enabled */ static inline int rotation_enabled(const struct omap_vout_device *vout) { return vout->rotation || vout->mirror; } /* * Reverse the rotation degree if mirroring is enabled */ static inline int calc_rotation(const struct omap_vout_device *vout) { if (!vout->mirror) return vout->rotation; switch (vout->rotation) { case dss_rotation_90_degree: return dss_rotation_270_degree; case dss_rotation_270_degree: return dss_rotation_90_degree; case dss_rotation_180_degree: return dss_rotation_0_degree; default: return dss_rotation_180_degree; } } /* * Free the V4L2 buffers */ static void omap_vout_free_buffers(struct omap_vout_device *vout) { int i, numbuffers; /* Allocate memory for the buffers */ numbuffers = (vout->vid) ? video2_numbuffers : video1_numbuffers; vout->buffer_size = (vout->vid) ? video2_bufsize : video1_bufsize; for (i = 0; i < numbuffers; i++) { omap_vout_free_buffer(vout->buf_virt_addr[i], vout->buffer_size); vout->buf_phy_addr[i] = 0; vout->buf_virt_addr[i] = 0; } } /* * Free VRFB buffers */ static void omap_vout_free_vrfb_buffers(struct omap_vout_device *vout) { int j; for (j = 0; j < VRFB_NUM_BUFS; j++) { omap_vout_free_buffer(vout->smsshado_virt_addr[j], vout->smsshado_size); vout->smsshado_virt_addr[j] = 0; vout->smsshado_phy_addr[j] = 0; } } /* * Allocate the buffers for the VRFB space. Data is copied from V4L2 * buffers to the VRFB buffers using the DMA engine. */ static int omap_vout_vrfb_buffer_setup(struct omap_vout_device *vout, unsigned int *count, unsigned int startindex) { int i; bool yuv_mode; /* Allocate the VRFB buffers only if the buffers are not * allocated during init time. */ if ((rotation_enabled(vout)) && !vout->vrfb_static_allocation) if (omap_vout_allocate_vrfb_buffers(vout, count, startindex)) return -ENOMEM; if (vout->dss_mode == OMAP_DSS_COLOR_YUV2 || vout->dss_mode == OMAP_DSS_COLOR_UYVY) yuv_mode = true; else yuv_mode = false; for (i = 0; i < *count; i++) omap_vrfb_setup(&vout->vrfb_context[i], vout->smsshado_phy_addr[i], vout->pix.width, vout->pix.height, vout->bpp, yuv_mode); return 0; } /* * Convert V4L2 rotation to DSS rotation * V4L2 understand 0, 90, 180, 270. * Convert to 0, 1, 2 and 3 repsectively for DSS */ static int v4l2_rot_to_dss_rot(int v4l2_rotation, enum dss_rotation *rotation, bool mirror) { int ret = 0; switch (v4l2_rotation) { case 90: *rotation = dss_rotation_90_degree; break; case 180: *rotation = dss_rotation_180_degree; break; case 270: *rotation = dss_rotation_270_degree; break; case 0: *rotation = dss_rotation_0_degree; break; default: ret = -EINVAL; } return ret; } /* * Calculate the buffer offsets from which the streaming should * start. This offset calculation is mainly required because of * the VRFB 32 pixels alignment with rotation. */ static int omap_vout_calculate_offset(struct omap_vout_device *vout) { struct omap_overlay *ovl; enum dss_rotation rotation; struct omapvideo_info *ovid; bool mirroring = vout->mirror; struct omap_dss_device *cur_display; struct v4l2_rect *crop = &vout->crop; struct v4l2_pix_format *pix = &vout->pix; int *cropped_offset = &vout->cropped_offset; int vr_ps = 1, ps = 2, temp_ps = 2; int offset = 0, ctop = 0, cleft = 0, line_length = 0; ovid = &vout->vid_info; ovl = ovid->overlays[0]; /* get the display device attached to the overlay */ if (!ovl->manager || !ovl->manager->device) return -1; cur_display = ovl->manager->device; rotation = calc_rotation(vout); if (V4L2_PIX_FMT_YUYV == pix->pixelformat || V4L2_PIX_FMT_UYVY == pix->pixelformat) { if (rotation_enabled(vout)) { /* * ps - Actual pixel size for YUYV/UYVY for * VRFB/Mirroring is 4 bytes * vr_ps - Virtually pixel size for YUYV/UYVY is * 2 bytes */ ps = 4; vr_ps = 2; } else { ps = 2; /* otherwise the pixel size is 2 byte */ } } else if (V4L2_PIX_FMT_RGB32 == pix->pixelformat) { ps = 4; } else if (V4L2_PIX_FMT_RGB24 == pix->pixelformat) { ps = 3; } vout->ps = ps; vout->vr_ps = vr_ps; if (rotation_enabled(vout)) { line_length = MAX_PIXELS_PER_LINE; ctop = (pix->height - crop->height) - crop->top; cleft = (pix->width - crop->width) - crop->left; } else { line_length = pix->width; } vout->line_length = line_length; switch (rotation) { case dss_rotation_90_degree: offset = vout->vrfb_context[0].yoffset * vout->vrfb_context[0].bytespp; temp_ps = ps / vr_ps; if (mirroring == 0) { *cropped_offset = offset + line_length * temp_ps * cleft + crop->top * temp_ps; } else { *cropped_offset = offset + line_length * temp_ps * cleft + crop->top * temp_ps + (line_length * ((crop->width / (vr_ps)) - 1) * ps); } break; case dss_rotation_180_degree: offset = ((MAX_PIXELS_PER_LINE * vout->vrfb_context[0].yoffset * vout->vrfb_context[0].bytespp) + (vout->vrfb_context[0].xoffset * vout->vrfb_context[0].bytespp)); if (mirroring == 0) { *cropped_offset = offset + (line_length * ps * ctop) + (cleft / vr_ps) * ps; } else { *cropped_offset = offset + (line_length * ps * ctop) + (cleft / vr_ps) * ps + (line_length * (crop->height - 1) * ps); } break; case dss_rotation_270_degree: offset = MAX_PIXELS_PER_LINE * vout->vrfb_context[0].xoffset * vout->vrfb_context[0].bytespp; temp_ps = ps / vr_ps; if (mirroring == 0) { *cropped_offset = offset + line_length * temp_ps * crop->left + ctop * ps; } else { *cropped_offset = offset + line_length * temp_ps * crop->left + ctop * ps + (line_length * ((crop->width / vr_ps) - 1) * ps); } break; case dss_rotation_0_degree: if (mirroring == 0) { *cropped_offset = (line_length * ps) * crop->top + (crop->left / vr_ps) * ps; } else { *cropped_offset = (line_length * ps) * crop->top + (crop->left / vr_ps) * ps + (line_length * (crop->height - 1) * ps); } break; default: *cropped_offset = (line_length * ps * crop->top) / vr_ps + (crop->left * ps) / vr_ps + ((crop->width / vr_ps) - 1) * ps; break; } v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "%s Offset:%x\n", __func__, *cropped_offset); return 0; } /* * Convert V4L2 pixel format to DSS pixel format */ static int video_mode_to_dss_mode(struct omap_vout_device *vout) { struct omap_overlay *ovl; struct omapvideo_info *ovid; struct v4l2_pix_format *pix = &vout->pix; enum omap_color_mode mode; ovid = &vout->vid_info; ovl = ovid->overlays[0]; switch (pix->pixelformat) { case 0: break; case V4L2_PIX_FMT_YUYV: mode = OMAP_DSS_COLOR_YUV2; break; case V4L2_PIX_FMT_UYVY: mode = OMAP_DSS_COLOR_UYVY; break; case V4L2_PIX_FMT_RGB565: mode = OMAP_DSS_COLOR_RGB16; break; case V4L2_PIX_FMT_RGB24: mode = OMAP_DSS_COLOR_RGB24P; break; case V4L2_PIX_FMT_RGB32: mode = (ovl->id == OMAP_DSS_VIDEO1) ? OMAP_DSS_COLOR_RGB24U : OMAP_DSS_COLOR_ARGB32; break; case V4L2_PIX_FMT_BGR32: mode = OMAP_DSS_COLOR_RGBX32; break; default: mode = -EINVAL; } return mode; } /* * Setup the overlay */ int omapvid_setup_overlay(struct omap_vout_device *vout, struct omap_overlay *ovl, int posx, int posy, int outw, int outh, u32 addr) { int ret = 0; struct omap_overlay_info info; int cropheight, cropwidth, pixheight, pixwidth; if ((ovl->caps & OMAP_DSS_OVL_CAP_SCALE) == 0 && (outw != vout->pix.width || outh != vout->pix.height)) { ret = -EINVAL; goto setup_ovl_err; } vout->dss_mode = video_mode_to_dss_mode(vout); if (vout->dss_mode == -EINVAL) { ret = -EINVAL; goto setup_ovl_err; } /* Setup the input plane parameters according to * rotation value selected. */ if (rotate_90_or_270(vout)) { cropheight = vout->crop.width; cropwidth = vout->crop.height; pixheight = vout->pix.width; pixwidth = vout->pix.height; } else { cropheight = vout->crop.height; cropwidth = vout->crop.width; pixheight = vout->pix.height; pixwidth = vout->pix.width; } ovl->get_overlay_info(ovl, &info); info.paddr = addr; info.vaddr = NULL; info.width = cropwidth; info.height = cropheight; info.color_mode = vout->dss_mode; info.mirror = vout->mirror; info.pos_x = posx; info.pos_y = posy; info.out_width = outw; info.out_height = outh; info.global_alpha = vout->win.global_alpha; if (!rotation_enabled(vout)) { info.rotation = 0; info.rotation_type = OMAP_DSS_ROT_DMA; info.screen_width = pixwidth; } else { info.rotation = vout->rotation; info.rotation_type = OMAP_DSS_ROT_VRFB; info.screen_width = 2048; } v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "%s enable=%d addr=%x width=%d\n height=%d color_mode=%d\n" "rotation=%d mirror=%d posx=%d posy=%d out_width = %d \n" "out_height=%d rotation_type=%d screen_width=%d\n", __func__, info.enabled, info.paddr, info.width, info.height, info.color_mode, info.rotation, info.mirror, info.pos_x, info.pos_y, info.out_width, info.out_height, info.rotation_type, info.screen_width); ret = ovl->set_overlay_info(ovl, &info); if (ret) goto setup_ovl_err; return 0; setup_ovl_err: v4l2_warn(&vout->vid_dev->v4l2_dev, "setup_overlay failed\n"); return ret; } /* * Initialize the overlay structure */ int omapvid_init(struct omap_vout_device *vout, u32 addr) { int ret = 0, i; struct v4l2_window *win; struct omap_overlay *ovl; int posx, posy, outw, outh, temp; struct omap_video_timings *timing; struct omapvideo_info *ovid = &vout->vid_info; win = &vout->win; for (i = 0; i < ovid->num_overlays; i++) { ovl = ovid->overlays[i]; if (!ovl->manager || !ovl->manager->device) return -EINVAL; timing = &ovl->manager->device->panel.timings; outw = win->w.width; outh = win->w.height; switch (vout->rotation) { case dss_rotation_90_degree: /* Invert the height and width for 90 * and 270 degree rotation */ temp = outw; outw = outh; outh = temp; posy = (timing->y_res - win->w.width) - win->w.left; posx = win->w.top; break; case dss_rotation_180_degree: posx = (timing->x_res - win->w.width) - win->w.left; posy = (timing->y_res - win->w.height) - win->w.top; break; case dss_rotation_270_degree: temp = outw; outw = outh; outh = temp; posy = win->w.left; posx = (timing->x_res - win->w.height) - win->w.top; break; default: posx = win->w.left; posy = win->w.top; break; } ret = omapvid_setup_overlay(vout, ovl, posx, posy, outw, outh, addr); if (ret) goto omapvid_init_err; } return 0; omapvid_init_err: v4l2_warn(&vout->vid_dev->v4l2_dev, "apply_changes failed\n"); return ret; } /* * Apply the changes set the go bit of DSS */ int omapvid_apply_changes(struct omap_vout_device *vout) { int i; struct omap_overlay *ovl; struct omapvideo_info *ovid = &vout->vid_info; for (i = 0; i < ovid->num_overlays; i++) { ovl = ovid->overlays[i]; if (!ovl->manager || !ovl->manager->device) return -EINVAL; ovl->manager->apply(ovl->manager); } return 0; } void omap_vout_isr(void *arg, unsigned int irqstatus) { int ret; u32 addr, fid; struct omap_overlay *ovl; struct timeval timevalue; struct omapvideo_info *ovid; struct omap_dss_device *cur_display; struct omap_vout_device *vout = (struct omap_vout_device *)arg; if (!vout->streaming) return; ovid = &vout->vid_info; ovl = ovid->overlays[0]; /* get the display device attached to the overlay */ if (!ovl->manager || !ovl->manager->device) return; cur_display = ovl->manager->device; spin_lock(&vout->vbq_lock); do_gettimeofday(&timevalue); if (cur_display->type == OMAP_DISPLAY_TYPE_DPI) { if (!(irqstatus & DISPC_IRQ_VSYNC)) goto vout_isr_err; if (!vout->first_int && (vout->cur_frm != vout->next_frm)) { vout->cur_frm->ts = timevalue; vout->cur_frm->state = VIDEOBUF_DONE; wake_up_interruptible(&vout->cur_frm->done); vout->cur_frm = vout->next_frm; } vout->first_int = 0; if (list_empty(&vout->dma_queue)) goto vout_isr_err; vout->next_frm = list_entry(vout->dma_queue.next, struct videobuf_buffer, queue); list_del(&vout->next_frm->queue); vout->next_frm->state = VIDEOBUF_ACTIVE; addr = (unsigned long) vout->queued_buf_addr[vout->next_frm->i] + vout->cropped_offset; /* First save the configuration in ovelray structure */ ret = omapvid_init(vout, addr); if (ret) printk(KERN_ERR VOUT_NAME "failed to set overlay info\n"); /* Enable the pipeline and set the Go bit */ ret = omapvid_apply_changes(vout); if (ret) printk(KERN_ERR VOUT_NAME "failed to change mode\n"); } else { if (vout->first_int) { vout->first_int = 0; goto vout_isr_err; } if (irqstatus & DISPC_IRQ_EVSYNC_ODD) fid = 1; else if (irqstatus & DISPC_IRQ_EVSYNC_EVEN) fid = 0; else goto vout_isr_err; vout->field_id ^= 1; if (fid != vout->field_id) { if (0 == fid) vout->field_id = fid; goto vout_isr_err; } if (0 == fid) { if (vout->cur_frm == vout->next_frm) goto vout_isr_err; vout->cur_frm->ts = timevalue; vout->cur_frm->state = VIDEOBUF_DONE; wake_up_interruptible(&vout->cur_frm->done); vout->cur_frm = vout->next_frm; } else if (1 == fid) { if (list_empty(&vout->dma_queue) || (vout->cur_frm != vout->next_frm)) goto vout_isr_err; vout->next_frm = list_entry(vout->dma_queue.next, struct videobuf_buffer, queue); list_del(&vout->next_frm->queue); vout->next_frm->state = VIDEOBUF_ACTIVE; addr = (unsigned long) vout->queued_buf_addr[vout->next_frm->i] + vout->cropped_offset; /* First save the configuration in ovelray structure */ ret = omapvid_init(vout, addr); if (ret) printk(KERN_ERR VOUT_NAME "failed to set overlay info\n"); /* Enable the pipeline and set the Go bit */ ret = omapvid_apply_changes(vout); if (ret) printk(KERN_ERR VOUT_NAME "failed to change mode\n"); } } vout_isr_err: spin_unlock(&vout->vbq_lock); } /* Video buffer call backs */ /* * Buffer setup function is called by videobuf layer when REQBUF ioctl is * called. This is used to setup buffers and return size and count of * buffers allocated. After the call to this buffer, videobuf layer will * setup buffer queue depending on the size and count of buffers */ static int omap_vout_buffer_setup(struct videobuf_queue *q, unsigned int *count, unsigned int *size) { int startindex = 0, i, j; u32 phy_addr = 0, virt_addr = 0; struct omap_vout_device *vout = q->priv_data; if (!vout) return -EINVAL; if (V4L2_BUF_TYPE_VIDEO_OUTPUT != q->type) return -EINVAL; startindex = (vout->vid == OMAP_VIDEO1) ? video1_numbuffers : video2_numbuffers; if (V4L2_MEMORY_MMAP == vout->memory && *count < startindex) *count = startindex; if ((rotation_enabled(vout)) && *count > VRFB_NUM_BUFS) *count = VRFB_NUM_BUFS; /* If rotation is enabled, allocate memory for VRFB space also */ if (rotation_enabled(vout)) if (omap_vout_vrfb_buffer_setup(vout, count, startindex)) return -ENOMEM; if (V4L2_MEMORY_MMAP != vout->memory) return 0; /* Now allocated the V4L2 buffers */ *size = PAGE_ALIGN(vout->pix.width * vout->pix.height * vout->bpp); startindex = (vout->vid == OMAP_VIDEO1) ? video1_numbuffers : video2_numbuffers; for (i = startindex; i < *count; i++) { vout->buffer_size = *size; virt_addr = omap_vout_alloc_buffer(vout->buffer_size, &phy_addr); if (!virt_addr) { if (!rotation_enabled(vout)) break; /* Free the VRFB buffers if no space for V4L2 buffers */ for (j = i; j < *count; j++) { omap_vout_free_buffer( vout->smsshado_virt_addr[j], vout->smsshado_size); vout->smsshado_virt_addr[j] = 0; vout->smsshado_phy_addr[j] = 0; } } vout->buf_virt_addr[i] = virt_addr; vout->buf_phy_addr[i] = phy_addr; } *count = vout->buffer_allocated = i; return 0; } /* * Free the V4L2 buffers additionally allocated than default * number of buffers and free all the VRFB buffers */ static void omap_vout_free_allbuffers(struct omap_vout_device *vout) { int num_buffers = 0, i; num_buffers = (vout->vid == OMAP_VIDEO1) ? video1_numbuffers : video2_numbuffers; for (i = num_buffers; i < vout->buffer_allocated; i++) { if (vout->buf_virt_addr[i]) omap_vout_free_buffer(vout->buf_virt_addr[i], vout->buffer_size); vout->buf_virt_addr[i] = 0; vout->buf_phy_addr[i] = 0; } /* Free the VRFB buffers only if they are allocated * during reqbufs. Don't free if init time allocated */ if (!vout->vrfb_static_allocation) { for (i = 0; i < VRFB_NUM_BUFS; i++) { if (vout->smsshado_virt_addr[i]) { omap_vout_free_buffer( vout->smsshado_virt_addr[i], vout->smsshado_size); vout->smsshado_virt_addr[i] = 0; vout->smsshado_phy_addr[i] = 0; } } } vout->buffer_allocated = num_buffers; } /* * This function will be called when VIDIOC_QBUF ioctl is called. * It prepare buffers before give out for the display. This function * converts user space virtual address into physical address if userptr memory * exchange mechanism is used. If rotation is enabled, it copies entire * buffer into VRFB memory space before giving it to the DSS. */ static int omap_vout_buffer_prepare(struct videobuf_queue *q, struct videobuf_buffer *vb, enum v4l2_field field) { dma_addr_t dmabuf; struct vid_vrfb_dma *tx; enum dss_rotation rotation; struct omap_vout_device *vout = q->priv_data; u32 dest_frame_index = 0, src_element_index = 0; u32 dest_element_index = 0, src_frame_index = 0; u32 elem_count = 0, frame_count = 0, pixsize = 2; if (VIDEOBUF_NEEDS_INIT == vb->state) { vb->width = vout->pix.width; vb->height = vout->pix.height; vb->size = vb->width * vb->height * vout->bpp; vb->field = field; } vb->state = VIDEOBUF_PREPARED; /* if user pointer memory mechanism is used, get the physical * address of the buffer */ if (V4L2_MEMORY_USERPTR == vb->memory) { if (0 == vb->baddr) return -EINVAL; /* Physical address */ vout->queued_buf_addr[vb->i] = (u8 *) omap_vout_uservirt_to_phys(vb->baddr); } else { vout->queued_buf_addr[vb->i] = (u8 *)vout->buf_phy_addr[vb->i]; } if (!rotation_enabled(vout)) return 0; dmabuf = vout->buf_phy_addr[vb->i]; /* If rotation is enabled, copy input buffer into VRFB * memory space using DMA. We are copying input buffer * into VRFB memory space of desired angle and DSS will * read image VRFB memory for 0 degree angle */ pixsize = vout->bpp * vout->vrfb_bpp; /* * DMA transfer in double index mode */ /* Frame index */ dest_frame_index = ((MAX_PIXELS_PER_LINE * pixsize) - (vout->pix.width * vout->bpp)) + 1; /* Source and destination parameters */ src_element_index = 0; src_frame_index = 0; dest_element_index = 1; /* Number of elements per frame */ elem_count = vout->pix.width * vout->bpp; frame_count = vout->pix.height; tx = &vout->vrfb_dma_tx; tx->tx_status = 0; omap_set_dma_transfer_params(tx->dma_ch, OMAP_DMA_DATA_TYPE_S32, (elem_count / 4), frame_count, OMAP_DMA_SYNC_ELEMENT, tx->dev_id, 0x0); /* src_port required only for OMAP1 */ omap_set_dma_src_params(tx->dma_ch, 0, OMAP_DMA_AMODE_POST_INC, dmabuf, src_element_index, src_frame_index); /*set dma source burst mode for VRFB */ omap_set_dma_src_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16); rotation = calc_rotation(vout); /* dest_port required only for OMAP1 */ omap_set_dma_dest_params(tx->dma_ch, 0, OMAP_DMA_AMODE_DOUBLE_IDX, vout->vrfb_context[vb->i].paddr[0], dest_element_index, dest_frame_index); /*set dma dest burst mode for VRFB */ omap_set_dma_dest_burst_mode(tx->dma_ch, OMAP_DMA_DATA_BURST_16); omap_dma_set_global_params(DMA_DEFAULT_ARB_RATE, 0x20, 0); omap_start_dma(tx->dma_ch); interruptible_sleep_on_timeout(&tx->wait, VRFB_TX_TIMEOUT); if (tx->tx_status == 0) { omap_stop_dma(tx->dma_ch); return -EINVAL; } /* Store buffers physical address into an array. Addresses * from this array will be used to configure DSS */ vout->queued_buf_addr[vb->i] = (u8 *) vout->vrfb_context[vb->i].paddr[rotation]; return 0; } /* * Buffer queue funtion will be called from the videobuf layer when _QBUF * ioctl is called. It is used to enqueue buffer, which is ready to be * displayed. */ static void omap_vout_buffer_queue(struct videobuf_queue *q, struct videobuf_buffer *vb) { struct omap_vout_device *vout = q->priv_data; /* Driver is also maintainig a queue. So enqueue buffer in the driver * queue */ list_add_tail(&vb->queue, &vout->dma_queue); vb->state = VIDEOBUF_QUEUED; } /* * Buffer release function is called from videobuf layer to release buffer * which are already allocated */ static void omap_vout_buffer_release(struct videobuf_queue *q, struct videobuf_buffer *vb) { struct omap_vout_device *vout = q->priv_data; vb->state = VIDEOBUF_NEEDS_INIT; if (V4L2_MEMORY_MMAP != vout->memory) return; } /* * File operations */ static void omap_vout_vm_open(struct vm_area_struct *vma) { struct omap_vout_device *vout = vma->vm_private_data; v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "vm_open [vma=%08lx-%08lx]\n", vma->vm_start, vma->vm_end); vout->mmap_count++; } static void omap_vout_vm_close(struct vm_area_struct *vma) { struct omap_vout_device *vout = vma->vm_private_data; v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "vm_close [vma=%08lx-%08lx]\n", vma->vm_start, vma->vm_end); vout->mmap_count--; } static struct vm_operations_struct omap_vout_vm_ops = { .open = omap_vout_vm_open, .close = omap_vout_vm_close, }; static int omap_vout_mmap(struct file *file, struct vm_area_struct *vma) { int i; void *pos; unsigned long start = vma->vm_start; unsigned long size = (vma->vm_end - vma->vm_start); struct omap_vout_device *vout = file->private_data; struct videobuf_queue *q = &vout->vbq; v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, " %s pgoff=0x%lx, start=0x%lx, end=0x%lx\n", __func__, vma->vm_pgoff, vma->vm_start, vma->vm_end); /* look for the buffer to map */ for (i = 0; i < VIDEO_MAX_FRAME; i++) { if (NULL == q->bufs[i]) continue; if (V4L2_MEMORY_MMAP != q->bufs[i]->memory) continue; if (q->bufs[i]->boff == (vma->vm_pgoff << PAGE_SHIFT)) break; } if (VIDEO_MAX_FRAME == i) { v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "offset invalid [offset=0x%lx]\n", (vma->vm_pgoff << PAGE_SHIFT)); return -EINVAL; } q->bufs[i]->baddr = vma->vm_start; vma->vm_flags |= VM_RESERVED; vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot); vma->vm_ops = &omap_vout_vm_ops; vma->vm_private_data = (void *) vout; pos = (void *)vout->buf_virt_addr[i]; vma->vm_pgoff = virt_to_phys((void *)pos) >> PAGE_SHIFT; while (size > 0) { unsigned long pfn; pfn = virt_to_phys((void *) pos) >> PAGE_SHIFT; if (remap_pfn_range(vma, start, pfn, PAGE_SIZE, PAGE_SHARED)) return -EAGAIN; start += PAGE_SIZE; pos += PAGE_SIZE; size -= PAGE_SIZE; } vout->mmap_count++; v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__); return 0; } static int omap_vout_release(struct file *file) { unsigned int ret, i; struct videobuf_queue *q; struct omapvideo_info *ovid; struct omap_vout_device *vout = file->private_data; v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Entering %s\n", __func__); ovid = &vout->vid_info; if (!vout) return 0; q = &vout->vbq; /* Disable all the overlay managers connected with this interface */ for (i = 0; i < ovid->num_overlays; i++) { struct omap_overlay *ovl = ovid->overlays[i]; if (ovl->manager && ovl->manager->device) { struct omap_overlay_info info; ovl->get_overlay_info(ovl, &info); info.enabled = 0; ovl->set_overlay_info(ovl, &info); } } /* Turn off the pipeline */ ret = omapvid_apply_changes(vout); if (ret) v4l2_warn(&vout->vid_dev->v4l2_dev, "Unable to apply changes\n"); /* Free all buffers */ omap_vout_free_allbuffers(vout); videobuf_mmap_free(q); /* Even if apply changes fails we should continue freeing allocated memeory */ if (vout->streaming) { u32 mask = 0; mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD; omap_dispc_unregister_isr(omap_vout_isr, vout, mask); vout->streaming = 0; videobuf_streamoff(q); videobuf_queue_cancel(q); } if (vout->mmap_count != 0) vout->mmap_count = 0; vout->opened -= 1; file->private_data = NULL; if (vout->buffer_allocated) videobuf_mmap_free(q); v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__); return ret; } static int omap_vout_open(struct file *file) { struct videobuf_queue *q; struct omap_vout_device *vout = NULL; vout = video_drvdata(file); v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Entering %s\n", __func__); if (vout == NULL) return -ENODEV; /* for now, we only support single open */ if (vout->opened) return -EBUSY; vout->opened += 1; file->private_data = vout; vout->type = V4L2_BUF_TYPE_VIDEO_OUTPUT; q = &vout->vbq; video_vbq_ops.buf_setup = omap_vout_buffer_setup; video_vbq_ops.buf_prepare = omap_vout_buffer_prepare; video_vbq_ops.buf_release = omap_vout_buffer_release; video_vbq_ops.buf_queue = omap_vout_buffer_queue; spin_lock_init(&vout->vbq_lock); videobuf_queue_dma_contig_init(q, &video_vbq_ops, q->dev, &vout->vbq_lock, vout->type, V4L2_FIELD_NONE, sizeof(struct videobuf_buffer), vout); v4l2_dbg(1, debug, &vout->vid_dev->v4l2_dev, "Exiting %s\n", __func__); return 0; } /* * V4L2 ioctls */ static int vidioc_querycap(struct file *file, void *fh, struct v4l2_capability *cap) { struct omap_vout_device *vout = fh; strlcpy(cap->driver, VOUT_NAME, sizeof(cap->driver)); strlcpy(cap->card, vout->vfd->name, sizeof(cap->card)); cap->bus_info[0] = '\0'; cap->capabilities = V4L2_CAP_STREAMING | V4L2_CAP_VIDEO_OUTPUT; return 0; } static int vidioc_enum_fmt_vid_out(struct file *file, void *fh, struct v4l2_fmtdesc *fmt) { int index = fmt->index; enum v4l2_buf_type type = fmt->type; fmt->index = index; fmt->type = type; if (index >= NUM_OUTPUT_FORMATS) return -EINVAL; fmt->flags = omap_formats[index].flags; strlcpy(fmt->description, omap_formats[index].description, sizeof(fmt->description)); fmt->pixelformat = omap_formats[index].pixelformat; return 0; } static int vidioc_g_fmt_vid_out(struct file *file, void *fh, struct v4l2_format *f) { struct omap_vout_device *vout = fh; f->fmt.pix = vout->pix; return 0; } static int vidioc_try_fmt_vid_out(struct file *file, void *fh, struct v4l2_format *f) { struct omap_overlay *ovl; struct omapvideo_info *ovid; struct omap_video_timings *timing; struct omap_vout_device *vout = fh; ovid = &vout->vid_info; ovl = ovid->overlays[0]; if (!ovl->manager || !ovl->manager->device) return -EINVAL; /* get the display device attached to the overlay */ timing = &ovl->manager->device->panel.timings; vout->fbuf.fmt.height = timing->y_res; vout->fbuf.fmt.width = timing->x_res; omap_vout_try_format(&f->fmt.pix); return 0; } static int vidioc_s_fmt_vid_out(struct file *file, void *fh, struct v4l2_format *f) { int ret, bpp; struct omap_overlay *ovl; struct omapvideo_info *ovid; struct omap_video_timings *timing; struct omap_vout_device *vout = fh; if (vout->streaming) return -EBUSY; mutex_lock(&vout->lock); ovid = &vout->vid_info; ovl = ovid->overlays[0]; /* get the display device attached to the overlay */ if (!ovl->manager || !ovl->manager->device) { ret = -EINVAL; goto s_fmt_vid_out_exit; } timing = &ovl->manager->device->panel.timings; /* We dont support RGB24-packed mode if vrfb rotation * is enabled*/ if ((rotation_enabled(vout)) && f->fmt.pix.pixelformat == V4L2_PIX_FMT_RGB24) { ret = -EINVAL; goto s_fmt_vid_out_exit; } /* get the framebuffer parameters */ if (rotate_90_or_270(vout)) { vout->fbuf.fmt.height = timing->x_res; vout->fbuf.fmt.width = timing->y_res; } else { vout->fbuf.fmt.height = timing->y_res; vout->fbuf.fmt.width = timing->x_res; } /* change to samller size is OK */ bpp = omap_vout_try_format(&f->fmt.pix); f->fmt.pix.sizeimage = f->fmt.pix.width * f->fmt.pix.height * bpp; /* try & set the new output format */ vout->bpp = bpp; vout->pix = f->fmt.pix; vout->vrfb_bpp = 1; /* If YUYV then vrfb bpp is 2, for others its 1 */ if (V4L2_PIX_FMT_YUYV == vout->pix.pixelformat || V4L2_PIX_FMT_UYVY == vout->pix.pixelformat) vout->vrfb_bpp = 2; /* set default crop and win */ omap_vout_new_format(&vout->pix, &vout->fbuf, &vout->crop, &vout->win); /* Save the changes in the overlay strcuture */ ret = omapvid_init(vout, 0); if (ret) { v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode\n"); goto s_fmt_vid_out_exit; } ret = 0; s_fmt_vid_out_exit: mutex_unlock(&vout->lock); return ret; } static int vidioc_try_fmt_vid_overlay(struct file *file, void *fh, struct v4l2_format *f) { int ret = 0; struct omap_vout_device *vout = fh; struct v4l2_window *win = &f->fmt.win; ret = omap_vout_try_window(&vout->fbuf, win); if (!ret) { if (vout->vid == OMAP_VIDEO1) win->global_alpha = 255; else win->global_alpha = f->fmt.win.global_alpha; } return ret; } static int vidioc_s_fmt_vid_overlay(struct file *file, void *fh, struct v4l2_format *f) { int ret = 0; struct omap_overlay *ovl; struct omapvideo_info *ovid; struct omap_vout_device *vout = fh; struct v4l2_window *win = &f->fmt.win; mutex_lock(&vout->lock); ovid = &vout->vid_info; ovl = ovid->overlays[0]; ret = omap_vout_new_window(&vout->crop, &vout->win, &vout->fbuf, win); if (!ret) { /* Video1 plane does not support global alpha */ if (ovl->id == OMAP_DSS_VIDEO1) vout->win.global_alpha = 255; else vout->win.global_alpha = f->fmt.win.global_alpha; vout->win.chromakey = f->fmt.win.chromakey; } mutex_unlock(&vout->lock); return ret; } static int vidioc_enum_fmt_vid_overlay(struct file *file, void *fh, struct v4l2_fmtdesc *fmt) { int index = fmt->index; enum v4l2_buf_type type = fmt->type; fmt->index = index; fmt->type = type; if (index >= NUM_OUTPUT_FORMATS) return -EINVAL; fmt->flags = omap_formats[index].flags; strlcpy(fmt->description, omap_formats[index].description, sizeof(fmt->description)); fmt->pixelformat = omap_formats[index].pixelformat; return 0; } static int vidioc_g_fmt_vid_overlay(struct file *file, void *fh, struct v4l2_format *f) { u32 key_value = 0; struct omap_overlay *ovl; struct omapvideo_info *ovid; struct omap_vout_device *vout = fh; struct omap_overlay_manager_info info; struct v4l2_window *win = &f->fmt.win; ovid = &vout->vid_info; ovl = ovid->overlays[0]; win->w = vout->win.w; win->field = vout->win.field; win->global_alpha = vout->win.global_alpha; if (ovl->manager && ovl->manager->get_manager_info) { ovl->manager->get_manager_info(ovl->manager, &info); key_value = info.trans_key; } win->chromakey = key_value; return 0; } static int vidioc_cropcap(struct file *file, void *fh, struct v4l2_cropcap *cropcap) { struct omap_vout_device *vout = fh; struct v4l2_pix_format *pix = &vout->pix; if (cropcap->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) return -EINVAL; /* Width and height are always even */ cropcap->bounds.width = pix->width & ~1; cropcap->bounds.height = pix->height & ~1; omap_vout_default_crop(&vout->pix, &vout->fbuf, &cropcap->defrect); cropcap->pixelaspect.numerator = 1; cropcap->pixelaspect.denominator = 1; return 0; } static int vidioc_g_crop(struct file *file, void *fh, struct v4l2_crop *crop) { struct omap_vout_device *vout = fh; if (crop->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) return -EINVAL; crop->c = vout->crop; return 0; } static int vidioc_s_crop(struct file *file, void *fh, struct v4l2_crop *crop) { int ret = -EINVAL; struct omap_vout_device *vout = fh; struct omapvideo_info *ovid; struct omap_overlay *ovl; struct omap_video_timings *timing; if (vout->streaming) return -EBUSY; mutex_lock(&vout->lock); ovid = &vout->vid_info; ovl = ovid->overlays[0]; if (!ovl->manager || !ovl->manager->device) { ret = -EINVAL; goto s_crop_err; } /* get the display device attached to the overlay */ timing = &ovl->manager->device->panel.timings; if (rotate_90_or_270(vout)) { vout->fbuf.fmt.height = timing->x_res; vout->fbuf.fmt.width = timing->y_res; } else { vout->fbuf.fmt.height = timing->y_res; vout->fbuf.fmt.width = timing->x_res; } if (crop->type == V4L2_BUF_TYPE_VIDEO_OUTPUT) ret = omap_vout_new_crop(&vout->pix, &vout->crop, &vout->win, &vout->fbuf, &crop->c); s_crop_err: mutex_unlock(&vout->lock); return ret; } static int vidioc_queryctrl(struct file *file, void *fh, struct v4l2_queryctrl *ctrl) { int ret = 0; switch (ctrl->id) { case V4L2_CID_ROTATE: ret = v4l2_ctrl_query_fill(ctrl, 0, 270, 90, 0); break; case V4L2_CID_BG_COLOR: ret = v4l2_ctrl_query_fill(ctrl, 0, 0xFFFFFF, 1, 0); break; case V4L2_CID_VFLIP: ret = v4l2_ctrl_query_fill(ctrl, 0, 1, 1, 0); break; default: ctrl->name[0] = '\0'; ret = -EINVAL; } return ret; } static int vidioc_g_ctrl(struct file *file, void *fh, struct v4l2_control *ctrl) { int ret = 0; struct omap_vout_device *vout = fh; switch (ctrl->id) { case V4L2_CID_ROTATE: ctrl->value = vout->control[0].value; break; case V4L2_CID_BG_COLOR: { struct omap_overlay_manager_info info; struct omap_overlay *ovl; ovl = vout->vid_info.overlays[0]; if (!ovl->manager || !ovl->manager->get_manager_info) { ret = -EINVAL; break; } ovl->manager->get_manager_info(ovl->manager, &info); ctrl->value = info.default_color; break; } case V4L2_CID_VFLIP: ctrl->value = vout->control[2].value; break; default: ret = -EINVAL; } return ret; } static int vidioc_s_ctrl(struct file *file, void *fh, struct v4l2_control *a) { int ret = 0; struct omap_vout_device *vout = fh; switch (a->id) { case V4L2_CID_ROTATE: { int rotation = a->value; mutex_lock(&vout->lock); if (rotation && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) { mutex_unlock(&vout->lock); ret = -EINVAL; break; } if (v4l2_rot_to_dss_rot(rotation, &vout->rotation, vout->mirror)) { mutex_unlock(&vout->lock); ret = -EINVAL; break; } vout->control[0].value = rotation; mutex_unlock(&vout->lock); break; } case V4L2_CID_BG_COLOR: { struct omap_overlay *ovl; unsigned int color = a->value; struct omap_overlay_manager_info info; ovl = vout->vid_info.overlays[0]; mutex_lock(&vout->lock); if (!ovl->manager || !ovl->manager->get_manager_info) { mutex_unlock(&vout->lock); ret = -EINVAL; break; } ovl->manager->get_manager_info(ovl->manager, &info); info.default_color = color; if (ovl->manager->set_manager_info(ovl->manager, &info)) { mutex_unlock(&vout->lock); ret = -EINVAL; break; } vout->control[1].value = color; mutex_unlock(&vout->lock); break; } case V4L2_CID_VFLIP: { struct omap_overlay *ovl; struct omapvideo_info *ovid; unsigned int mirror = a->value; ovid = &vout->vid_info; ovl = ovid->overlays[0]; mutex_lock(&vout->lock); if (mirror && vout->pix.pixelformat == V4L2_PIX_FMT_RGB24) { mutex_unlock(&vout->lock); ret = -EINVAL; break; } vout->mirror = mirror; vout->control[2].value = mirror; mutex_unlock(&vout->lock); break; } default: ret = -EINVAL; } return ret; } static int vidioc_reqbufs(struct file *file, void *fh, struct v4l2_requestbuffers *req) { int ret = 0; unsigned int i, num_buffers = 0; struct omap_vout_device *vout = fh; struct videobuf_queue *q = &vout->vbq; if ((req->type != V4L2_BUF_TYPE_VIDEO_OUTPUT) || (req->count < 0)) return -EINVAL; /* if memory is not mmp or userptr return error */ if ((V4L2_MEMORY_MMAP != req->memory) && (V4L2_MEMORY_USERPTR != req->memory)) return -EINVAL; mutex_lock(&vout->lock); /* Cannot be requested when streaming is on */ if (vout->streaming) { ret = -EBUSY; goto reqbuf_err; } /* If buffers are already allocated free them */ if (q->bufs[0] && (V4L2_MEMORY_MMAP == q->bufs[0]->memory)) { if (vout->mmap_count) { ret = -EBUSY; goto reqbuf_err; } num_buffers = (vout->vid == OMAP_VIDEO1) ? video1_numbuffers : video2_numbuffers; for (i = num_buffers; i < vout->buffer_allocated; i++) { omap_vout_free_buffer(vout->buf_virt_addr[i], vout->buffer_size); vout->buf_virt_addr[i] = 0; vout->buf_phy_addr[i] = 0; } vout->buffer_allocated = num_buffers; videobuf_mmap_free(q); } else if (q->bufs[0] && (V4L2_MEMORY_USERPTR == q->bufs[0]->memory)) { if (vout->buffer_allocated) { videobuf_mmap_free(q); for (i = 0; i < vout->buffer_allocated; i++) { kfree(q->bufs[i]); q->bufs[i] = NULL; } vout->buffer_allocated = 0; } } /*store the memory type in data structure */ vout->memory = req->memory; INIT_LIST_HEAD(&vout->dma_queue); /* call videobuf_reqbufs api */ ret = videobuf_reqbufs(q, req); if (ret < 0) goto reqbuf_err; vout->buffer_allocated = req->count; reqbuf_err: mutex_unlock(&vout->lock); return ret; } static int vidioc_querybuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct omap_vout_device *vout = fh; return videobuf_querybuf(&vout->vbq, b); } static int vidioc_qbuf(struct file *file, void *fh, struct v4l2_buffer *buffer) { struct omap_vout_device *vout = fh; struct videobuf_queue *q = &vout->vbq; if ((V4L2_BUF_TYPE_VIDEO_OUTPUT != buffer->type) || (buffer->index >= vout->buffer_allocated) || (q->bufs[buffer->index]->memory != buffer->memory)) { return -EINVAL; } if (V4L2_MEMORY_USERPTR == buffer->memory) { if ((buffer->length < vout->pix.sizeimage) || (0 == buffer->m.userptr)) { return -EINVAL; } } if ((rotation_enabled(vout)) && vout->vrfb_dma_tx.req_status == DMA_CHAN_NOT_ALLOTED) { v4l2_warn(&vout->vid_dev->v4l2_dev, "DMA Channel not allocated for Rotation\n"); return -EINVAL; } return videobuf_qbuf(q, buffer); } static int vidioc_dqbuf(struct file *file, void *fh, struct v4l2_buffer *b) { struct omap_vout_device *vout = fh; struct videobuf_queue *q = &vout->vbq; if (!vout->streaming) return -EINVAL; if (file->f_flags & O_NONBLOCK) /* Call videobuf_dqbuf for non blocking mode */ return videobuf_dqbuf(q, (struct v4l2_buffer *)b, 1); else /* Call videobuf_dqbuf for blocking mode */ return videobuf_dqbuf(q, (struct v4l2_buffer *)b, 0); } static int vidioc_streamon(struct file *file, void *fh, enum v4l2_buf_type i) { int ret = 0, j; u32 addr = 0, mask = 0; struct omap_vout_device *vout = fh; struct videobuf_queue *q = &vout->vbq; struct omapvideo_info *ovid = &vout->vid_info; mutex_lock(&vout->lock); if (vout->streaming) { ret = -EBUSY; goto streamon_err; } ret = videobuf_streamon(q); if (ret) goto streamon_err; if (list_empty(&vout->dma_queue)) { ret = -EIO; goto streamon_err1; } /* Get the next frame from the buffer queue */ vout->next_frm = vout->cur_frm = list_entry(vout->dma_queue.next, struct videobuf_buffer, queue); /* Remove buffer from the buffer queue */ list_del(&vout->cur_frm->queue); /* Mark state of the current frame to active */ vout->cur_frm->state = VIDEOBUF_ACTIVE; /* Initialize field_id and started member */ vout->field_id = 0; /* set flag here. Next QBUF will start DMA */ vout->streaming = 1; vout->first_int = 1; if (omap_vout_calculate_offset(vout)) { ret = -EINVAL; goto streamon_err1; } addr = (unsigned long) vout->queued_buf_addr[vout->cur_frm->i] + vout->cropped_offset; mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD; omap_dispc_register_isr(omap_vout_isr, vout, mask); for (j = 0; j < ovid->num_overlays; j++) { struct omap_overlay *ovl = ovid->overlays[j]; if (ovl->manager && ovl->manager->device) { struct omap_overlay_info info; ovl->get_overlay_info(ovl, &info); info.enabled = 1; info.paddr = addr; if (ovl->set_overlay_info(ovl, &info)) { ret = -EINVAL; goto streamon_err1; } } } /* First save the configuration in ovelray structure */ ret = omapvid_init(vout, addr); if (ret) v4l2_err(&vout->vid_dev->v4l2_dev, "failed to set overlay info\n"); /* Enable the pipeline and set the Go bit */ ret = omapvid_apply_changes(vout); if (ret) v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode\n"); ret = 0; streamon_err1: if (ret) ret = videobuf_streamoff(q); streamon_err: mutex_unlock(&vout->lock); return ret; } static int vidioc_streamoff(struct file *file, void *fh, enum v4l2_buf_type i) { u32 mask = 0; int ret = 0, j; struct omap_vout_device *vout = fh; struct omapvideo_info *ovid = &vout->vid_info; if (!vout->streaming) return -EINVAL; vout->streaming = 0; mask = DISPC_IRQ_VSYNC | DISPC_IRQ_EVSYNC_EVEN | DISPC_IRQ_EVSYNC_ODD; omap_dispc_unregister_isr(omap_vout_isr, vout, mask); for (j = 0; j < ovid->num_overlays; j++) { struct omap_overlay *ovl = ovid->overlays[j]; if (ovl->manager && ovl->manager->device) { struct omap_overlay_info info; ovl->get_overlay_info(ovl, &info); info.enabled = 0; ret = ovl->set_overlay_info(ovl, &info); if (ret) v4l2_err(&vout->vid_dev->v4l2_dev, "failed to update overlay info in streamoff\n"); } } /* Turn of the pipeline */ ret = omapvid_apply_changes(vout); if (ret) v4l2_err(&vout->vid_dev->v4l2_dev, "failed to change mode in" " streamoff\n"); INIT_LIST_HEAD(&vout->dma_queue); ret = videobuf_streamoff(&vout->vbq); return ret; } static int vidioc_s_fbuf(struct file *file, void *fh, struct v4l2_framebuffer *a) { int enable = 0; struct omap_overlay *ovl; struct omapvideo_info *ovid; struct omap_vout_device *vout = fh; struct omap_overlay_manager_info info; enum omap_dss_trans_key_type key_type = OMAP_DSS_COLOR_KEY_GFX_DST; ovid = &vout->vid_info; ovl = ovid->overlays[0]; /* OMAP DSS doesn't support Source and Destination color key together */ if ((a->flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY) && (a->flags & V4L2_FBUF_FLAG_CHROMAKEY)) return -EINVAL; /* OMAP DSS Doesn't support the Destination color key and alpha blending together */ if ((a->flags & V4L2_FBUF_FLAG_CHROMAKEY) && (a->flags & V4L2_FBUF_FLAG_LOCAL_ALPHA)) return -EINVAL; if ((a->flags & V4L2_FBUF_FLAG_SRC_CHROMAKEY)) { vout->fbuf.flags |= V4L2_FBUF_FLAG_SRC_CHROMAKEY; key_type = OMAP_DSS_COLOR_KEY_VID_SRC; } else vout->fbuf.flags &= ~V4L2_FBUF_FLAG_SRC_CHROMAKEY; if ((a->flags & V4L2_FBUF_FLAG_CHROMAKEY)) { vout->fbuf.flags |= V4L2_FBUF_FLAG_CHROMAKEY; key_type = OMAP_DSS_COLOR_KEY_GFX_DST; } else vout->fbuf.flags &= ~V4L2_FBUF_FLAG_CHROMAKEY; if (a->flags & (V4L2_FBUF_FLAG_CHROMAKEY | V4L2_FBUF_FLAG_SRC_CHROMAKEY)) enable = 1; else enable = 0; if (ovl->manager && ovl->manager->get_manager_info && ovl->manager->set_manager_info) { ovl->manager->get_manager_info(ovl->manager, &info); info.trans_enabled = enable; info.trans_key_type = key_type; info.trans_key = vout->win.chromakey; if (ovl->manager->set_manager_info(ovl->manager, &info)) return -EINVAL; } if (a->flags & V4L2_FBUF_FLAG_LOCAL_ALPHA) { vout->fbuf.flags |= V4L2_FBUF_FLAG_LOCAL_ALPHA; enable = 1; } else { vout->fbuf.flags &= ~V4L2_FBUF_FLAG_LOCAL_ALPHA; enable = 0; } if (ovl->manager && ovl->manager->get_manager_info && ovl->manager->set_manager_info) { ovl->manager->get_manager_info(ovl->manager, &info); info.alpha_enabled = enable; if (ovl->manager->set_manager_info(ovl->manager, &info)) return -EINVAL; } return 0; } static int vidioc_g_fbuf(struct file *file, void *fh, struct v4l2_framebuffer *a) { struct omap_overlay *ovl; struct omapvideo_info *ovid; struct omap_vout_device *vout = fh; struct omap_overlay_manager_info info; ovid = &vout->vid_info; ovl = ovid->overlays[0]; a->flags = 0x0; a->capability = V4L2_FBUF_CAP_LOCAL_ALPHA | V4L2_FBUF_CAP_CHROMAKEY | V4L2_FBUF_CAP_SRC_CHROMAKEY; if (ovl->manager && ovl->manager->get_manager_info) { ovl->manager->get_manager_info(ovl->manager, &info); if (info.trans_key_type == OMAP_DSS_COLOR_KEY_VID_SRC) a->flags |= V4L2_FBUF_FLAG_SRC_CHROMAKEY; if (info.trans_key_type == OMAP_DSS_COLOR_KEY_GFX_DST) a->flags |= V4L2_FBUF_FLAG_CHROMAKEY; } if (ovl->manager && ovl->manager->get_manager_info) { ovl->manager->get_manager_info(ovl->manager, &info); if (info.alpha_enabled) a->flags |= V4L2_FBUF_FLAG_LOCAL_ALPHA; } return 0; } static const struct v4l2_ioctl_ops vout_ioctl_ops = { .vidioc_querycap = vidioc_querycap, .vidioc_enum_fmt_vid_out = vidioc_enum_fmt_vid_out, .vidioc_g_fmt_vid_out = vidioc_g_fmt_vid_out, .vidioc_try_fmt_vid_out = vidioc_try_fmt_vid_out, .vidioc_s_fmt_vid_out = vidioc_s_fmt_vid_out, .vidioc_queryctrl = vidioc_queryctrl, .vidioc_g_ctrl = vidioc_g_ctrl, .vidioc_s_fbuf = vidioc_s_fbuf, .vidioc_g_fbuf = vidioc_g_fbuf, .vidioc_s_ctrl = vidioc_s_ctrl, .vidioc_try_fmt_vid_overlay = vidioc_try_fmt_vid_overlay, .vidioc_s_fmt_vid_overlay = vidioc_s_fmt_vid_overlay, .vidioc_enum_fmt_vid_overlay = vidioc_enum_fmt_vid_overlay, .vidioc_g_fmt_vid_overlay = vidioc_g_fmt_vid_overlay, .vidioc_cropcap = vidioc_cropcap, .vidioc_g_crop = vidioc_g_crop, .vidioc_s_crop = vidioc_s_crop, .vidioc_reqbufs = vidioc_reqbufs, .vidioc_querybuf = vidioc_querybuf, .vidioc_qbuf = vidioc_qbuf, .vidioc_dqbuf = vidioc_dqbuf, .vidioc_streamon = vidioc_streamon, .vidioc_streamoff = vidioc_streamoff, }; static const struct v4l2_file_operations omap_vout_fops = { .owner = THIS_MODULE, .unlocked_ioctl = video_ioctl2, .mmap = omap_vout_mmap, .open = omap_vout_open, .release = omap_vout_release, }; /* Init functions used during driver initialization */ /* Initial setup of video_data */ static int __init omap_vout_setup_video_data(struct omap_vout_device *vout) { struct video_device *vfd; struct v4l2_pix_format *pix; struct v4l2_control *control; struct omap_dss_device *display = vout->vid_info.overlays[0]->manager->device; /* set the default pix */ pix = &vout->pix; /* Set the default picture of QVGA */ pix->width = QQVGA_WIDTH; pix->height = QQVGA_HEIGHT; /* Default pixel format is RGB 5-6-5 */ pix->pixelformat = V4L2_PIX_FMT_RGB565; pix->field = V4L2_FIELD_ANY; pix->bytesperline = pix->width * 2; pix->sizeimage = pix->bytesperline * pix->height; pix->priv = 0; pix->colorspace = V4L2_COLORSPACE_JPEG; vout->bpp = RGB565_BPP; vout->fbuf.fmt.width = display->panel.timings.x_res; vout->fbuf.fmt.height = display->panel.timings.y_res; /* Set the data structures for the overlay parameters*/ vout->win.global_alpha = 255; vout->fbuf.flags = 0; vout->fbuf.capability = V4L2_FBUF_CAP_LOCAL_ALPHA | V4L2_FBUF_CAP_SRC_CHROMAKEY | V4L2_FBUF_CAP_CHROMAKEY; vout->win.chromakey = 0; omap_vout_new_format(pix, &vout->fbuf, &vout->crop, &vout->win); /*Initialize the control variables for rotation, flipping and background color. */ control = vout->control; control[0].id = V4L2_CID_ROTATE; control[0].value = 0; vout->rotation = 0; vout->mirror = 0; vout->control[2].id = V4L2_CID_HFLIP; vout->control[2].value = 0; vout->vrfb_bpp = 2; control[1].id = V4L2_CID_BG_COLOR; control[1].value = 0; /* initialize the video_device struct */ vfd = vout->vfd = video_device_alloc(); if (!vfd) { printk(KERN_ERR VOUT_NAME ": could not allocate" " video device struct\n"); return -ENOMEM; } vfd->release = video_device_release; vfd->ioctl_ops = &vout_ioctl_ops; strlcpy(vfd->name, VOUT_NAME, sizeof(vfd->name)); /* need to register for a VID_HARDWARE_* ID in videodev.h */ vfd->fops = &omap_vout_fops; vfd->v4l2_dev = &vout->vid_dev->v4l2_dev; mutex_init(&vout->lock); vfd->minor = -1; return 0; } /* Setup video buffers */ static int __init omap_vout_setup_video_bufs(struct platform_device *pdev, int vid_num) { u32 numbuffers; int ret = 0, i, j; int image_width, image_height; struct video_device *vfd; struct omap_vout_device *vout; int static_vrfb_allocation = 0, vrfb_num_bufs = VRFB_NUM_BUFS; struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev); struct omap2video_device *vid_dev = container_of(v4l2_dev, struct omap2video_device, v4l2_dev); vout = vid_dev->vouts[vid_num]; vfd = vout->vfd; numbuffers = (vid_num == 0) ? video1_numbuffers : video2_numbuffers; vout->buffer_size = (vid_num == 0) ? video1_bufsize : video2_bufsize; dev_info(&pdev->dev, "Buffer Size = %d\n", vout->buffer_size); for (i = 0; i < numbuffers; i++) { vout->buf_virt_addr[i] = omap_vout_alloc_buffer(vout->buffer_size, (u32 *) &vout->buf_phy_addr[i]); if (!vout->buf_virt_addr[i]) { numbuffers = i; ret = -ENOMEM; goto free_buffers; } } for (i = 0; i < VRFB_NUM_BUFS; i++) { if (omap_vrfb_request_ctx(&vout->vrfb_context[i])) { dev_info(&pdev->dev, ": VRFB allocation failed\n"); for (j = 0; j < i; j++) omap_vrfb_release_ctx(&vout->vrfb_context[j]); ret = -ENOMEM; goto free_buffers; } } vout->cropped_offset = 0; /* Calculate VRFB memory size */ /* allocate for worst case size */ image_width = VID_MAX_WIDTH / TILE_SIZE; if (VID_MAX_WIDTH % TILE_SIZE) image_width++; image_width = image_width * TILE_SIZE; image_height = VID_MAX_HEIGHT / TILE_SIZE; if (VID_MAX_HEIGHT % TILE_SIZE) image_height++; image_height = image_height * TILE_SIZE; vout->smsshado_size = PAGE_ALIGN(image_width * image_height * 2 * 2); /* * Request and Initialize DMA, for DMA based VRFB transfer */ vout->vrfb_dma_tx.dev_id = OMAP_DMA_NO_DEVICE; vout->vrfb_dma_tx.dma_ch = -1; vout->vrfb_dma_tx.req_status = DMA_CHAN_ALLOTED; ret = omap_request_dma(vout->vrfb_dma_tx.dev_id, "VRFB DMA TX", omap_vout_vrfb_dma_tx_callback, (void *) &vout->vrfb_dma_tx, &vout->vrfb_dma_tx.dma_ch); if (ret < 0) { vout->vrfb_dma_tx.req_status = DMA_CHAN_NOT_ALLOTED; dev_info(&pdev->dev, ": failed to allocate DMA Channel for" " video%d\n", vfd->minor); } init_waitqueue_head(&vout->vrfb_dma_tx.wait); /* Allocate VRFB buffers if selected through bootargs */ static_vrfb_allocation = (vid_num == 0) ? vid1_static_vrfb_alloc : vid2_static_vrfb_alloc; /* statically allocated the VRFB buffer is done through commands line aruments */ if (static_vrfb_allocation) { if (omap_vout_allocate_vrfb_buffers(vout, &vrfb_num_bufs, -1)) { ret = -ENOMEM; goto release_vrfb_ctx; } vout->vrfb_static_allocation = 1; } return 0; release_vrfb_ctx: for (j = 0; j < VRFB_NUM_BUFS; j++) omap_vrfb_release_ctx(&vout->vrfb_context[j]); free_buffers: for (i = 0; i < numbuffers; i++) { omap_vout_free_buffer(vout->buf_virt_addr[i], vout->buffer_size); vout->buf_virt_addr[i] = 0; vout->buf_phy_addr[i] = 0; } return ret; } /* Create video out devices */ static int __init omap_vout_create_video_devices(struct platform_device *pdev) { int ret = 0, k; struct omap_vout_device *vout; struct video_device *vfd = NULL; struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev); struct omap2video_device *vid_dev = container_of(v4l2_dev, struct omap2video_device, v4l2_dev); for (k = 0; k < pdev->num_resources; k++) { vout = kzalloc(sizeof(struct omap_vout_device), GFP_KERNEL); if (!vout) { dev_err(&pdev->dev, ": could not allocate memory\n"); return -ENOMEM; } vout->vid = k; vid_dev->vouts[k] = vout; vout->vid_dev = vid_dev; /* Select video2 if only 1 overlay is controlled by V4L2 */ if (pdev->num_resources == 1) vout->vid_info.overlays[0] = vid_dev->overlays[k + 2]; else /* Else select video1 and video2 one by one. */ vout->vid_info.overlays[0] = vid_dev->overlays[k + 1]; vout->vid_info.num_overlays = 1; vout->vid_info.id = k + 1; /* Setup the default configuration for the video devices */ if (omap_vout_setup_video_data(vout) != 0) { ret = -ENOMEM; goto error; } /* Allocate default number of buffers for the video streaming * and reserve the VRFB space for rotation */ if (omap_vout_setup_video_bufs(pdev, k) != 0) { ret = -ENOMEM; goto error1; } /* Register the Video device with V4L2 */ vfd = vout->vfd; if (video_register_device(vfd, VFL_TYPE_GRABBER, k + 1) < 0) { dev_err(&pdev->dev, ": Could not register " "Video for Linux device\n"); vfd->minor = -1; ret = -ENODEV; goto error2; } video_set_drvdata(vfd, vout); /* Configure the overlay structure */ ret = omapvid_init(vid_dev->vouts[k], 0); if (!ret) goto success; error2: omap_vout_release_vrfb(vout); omap_vout_free_buffers(vout); error1: video_device_release(vfd); error: kfree(vout); return ret; success: dev_info(&pdev->dev, ": registered and initialized" " video device %d\n", vfd->minor); if (k == (pdev->num_resources - 1)) return 0; } return -ENODEV; } /* Driver functions */ static void omap_vout_cleanup_device(struct omap_vout_device *vout) { struct video_device *vfd; if (!vout) return; vfd = vout->vfd; if (vfd) { if (!video_is_registered(vfd)) { /* * The device was never registered, so release the * video_device struct directly. */ video_device_release(vfd); } else { /* * The unregister function will release the video_device * struct as well as unregistering it. */ video_unregister_device(vfd); } } omap_vout_release_vrfb(vout); omap_vout_free_buffers(vout); /* Free the VRFB buffer if allocated * init time */ if (vout->vrfb_static_allocation) omap_vout_free_vrfb_buffers(vout); kfree(vout); } static int omap_vout_remove(struct platform_device *pdev) { int k; struct v4l2_device *v4l2_dev = platform_get_drvdata(pdev); struct omap2video_device *vid_dev = container_of(v4l2_dev, struct omap2video_device, v4l2_dev); v4l2_device_unregister(v4l2_dev); for (k = 0; k < pdev->num_resources; k++) omap_vout_cleanup_device(vid_dev->vouts[k]); for (k = 0; k < vid_dev->num_displays; k++) { if (vid_dev->displays[k]->state != OMAP_DSS_DISPLAY_DISABLED) vid_dev->displays[k]->driver->disable(vid_dev->displays[k]); omap_dss_put_device(vid_dev->displays[k]); } kfree(vid_dev); return 0; } static int __init omap_vout_probe(struct platform_device *pdev) { int ret = 0, i; struct omap_overlay *ovl; struct omap_dss_device *dssdev = NULL; struct omap_dss_device *def_display; struct omap2video_device *vid_dev = NULL; if (pdev->num_resources == 0) { dev_err(&pdev->dev, "probed for an unknown device\n"); return -ENODEV; } vid_dev = kzalloc(sizeof(struct omap2video_device), GFP_KERNEL); if (vid_dev == NULL) return -ENOMEM; vid_dev->num_displays = 0; for_each_dss_dev(dssdev) { omap_dss_get_device(dssdev); vid_dev->displays[vid_dev->num_displays++] = dssdev; } if (vid_dev->num_displays == 0) { dev_err(&pdev->dev, "no displays\n"); ret = -EINVAL; goto probe_err0; } vid_dev->num_overlays = omap_dss_get_num_overlays(); for (i = 0; i < vid_dev->num_overlays; i++) vid_dev->overlays[i] = omap_dss_get_overlay(i); vid_dev->num_managers = omap_dss_get_num_overlay_managers(); for (i = 0; i < vid_dev->num_managers; i++) vid_dev->managers[i] = omap_dss_get_overlay_manager(i); /* Get the Video1 overlay and video2 overlay. * Setup the Display attached to that overlays */ for (i = 1; i < vid_dev->num_overlays; i++) { ovl = omap_dss_get_overlay(i); if (ovl->manager && ovl->manager->device) { def_display = ovl->manager->device; } else { dev_warn(&pdev->dev, "cannot find display\n"); def_display = NULL; } if (def_display) { struct omap_dss_driver *dssdrv = def_display->driver; ret = dssdrv->enable(def_display); if (ret) { /* Here we are not considering a error * as display may be enabled by frame * buffer driver */ dev_warn(&pdev->dev, "'%s' Display already enabled\n", def_display->name); } /* set the update mode */ if (def_display->caps & OMAP_DSS_DISPLAY_CAP_MANUAL_UPDATE) { if (dssdrv->enable_te) dssdrv->enable_te(def_display, 0); if (dssdrv->set_update_mode) dssdrv->set_update_mode(def_display, OMAP_DSS_UPDATE_MANUAL); } else { if (dssdrv->set_update_mode) dssdrv->set_update_mode(def_display, OMAP_DSS_UPDATE_AUTO); } } } if (v4l2_device_register(&pdev->dev, &vid_dev->v4l2_dev) < 0) { dev_err(&pdev->dev, "v4l2_device_register failed\n"); ret = -ENODEV; goto probe_err1; } ret = omap_vout_create_video_devices(pdev); if (ret) goto probe_err2; for (i = 0; i < vid_dev->num_displays; i++) { struct omap_dss_device *display = vid_dev->displays[i]; if (display->driver->update) display->driver->update(display, 0, 0, display->panel.timings.x_res, display->panel.timings.y_res); } return 0; probe_err2: v4l2_device_unregister(&vid_dev->v4l2_dev); probe_err1: for (i = 1; i < vid_dev->num_overlays; i++) { def_display = NULL; ovl = omap_dss_get_overlay(i); if (ovl->manager && ovl->manager->device) def_display = ovl->manager->device; if (def_display && def_display->driver) def_display->driver->disable(def_display); } probe_err0: kfree(vid_dev); return ret; } static struct platform_driver omap_vout_driver = { .driver = { .name = VOUT_NAME, }, .probe = omap_vout_probe, .remove = omap_vout_remove, }; static int __init omap_vout_init(void) { if (platform_driver_register(&omap_vout_driver) != 0) { printk(KERN_ERR VOUT_NAME ":Could not register Video driver\n"); return -EINVAL; } return 0; } static void omap_vout_cleanup(void) { platform_driver_unregister(&omap_vout_driver); } late_initcall(omap_vout_init); module_exit(omap_vout_cleanup);