// SPDX-License-Identifier: GPL-2.0 /* * Tegra20 External Memory Controller driver * * Author: Dmitry Osipenko */ #include #include #include #include #include #include #include #include #include #include #include #include #include #define EMC_INTSTATUS 0x000 #define EMC_INTMASK 0x004 #define EMC_DBG 0x008 #define EMC_TIMING_CONTROL 0x028 #define EMC_RC 0x02c #define EMC_RFC 0x030 #define EMC_RAS 0x034 #define EMC_RP 0x038 #define EMC_R2W 0x03c #define EMC_W2R 0x040 #define EMC_R2P 0x044 #define EMC_W2P 0x048 #define EMC_RD_RCD 0x04c #define EMC_WR_RCD 0x050 #define EMC_RRD 0x054 #define EMC_REXT 0x058 #define EMC_WDV 0x05c #define EMC_QUSE 0x060 #define EMC_QRST 0x064 #define EMC_QSAFE 0x068 #define EMC_RDV 0x06c #define EMC_REFRESH 0x070 #define EMC_BURST_REFRESH_NUM 0x074 #define EMC_PDEX2WR 0x078 #define EMC_PDEX2RD 0x07c #define EMC_PCHG2PDEN 0x080 #define EMC_ACT2PDEN 0x084 #define EMC_AR2PDEN 0x088 #define EMC_RW2PDEN 0x08c #define EMC_TXSR 0x090 #define EMC_TCKE 0x094 #define EMC_TFAW 0x098 #define EMC_TRPAB 0x09c #define EMC_TCLKSTABLE 0x0a0 #define EMC_TCLKSTOP 0x0a4 #define EMC_TREFBW 0x0a8 #define EMC_QUSE_EXTRA 0x0ac #define EMC_ODT_WRITE 0x0b0 #define EMC_ODT_READ 0x0b4 #define EMC_FBIO_CFG5 0x104 #define EMC_FBIO_CFG6 0x114 #define EMC_AUTO_CAL_INTERVAL 0x2a8 #define EMC_CFG_2 0x2b8 #define EMC_CFG_DIG_DLL 0x2bc #define EMC_DLL_XFORM_DQS 0x2c0 #define EMC_DLL_XFORM_QUSE 0x2c4 #define EMC_ZCAL_REF_CNT 0x2e0 #define EMC_ZCAL_WAIT_CNT 0x2e4 #define EMC_CFG_CLKTRIM_0 0x2d0 #define EMC_CFG_CLKTRIM_1 0x2d4 #define EMC_CFG_CLKTRIM_2 0x2d8 #define EMC_CLKCHANGE_REQ_ENABLE BIT(0) #define EMC_CLKCHANGE_PD_ENABLE BIT(1) #define EMC_CLKCHANGE_SR_ENABLE BIT(2) #define EMC_TIMING_UPDATE BIT(0) #define EMC_REFRESH_OVERFLOW_INT BIT(3) #define EMC_CLKCHANGE_COMPLETE_INT BIT(4) #define EMC_DBG_READ_MUX_ASSEMBLY BIT(0) #define EMC_DBG_WRITE_MUX_ACTIVE BIT(1) #define EMC_DBG_FORCE_UPDATE BIT(2) #define EMC_DBG_READ_DQM_CTRL BIT(9) #define EMC_DBG_CFG_PRIORITY BIT(24) static const u16 emc_timing_registers[] = { EMC_RC, EMC_RFC, EMC_RAS, EMC_RP, EMC_R2W, EMC_W2R, EMC_R2P, EMC_W2P, EMC_RD_RCD, EMC_WR_RCD, EMC_RRD, EMC_REXT, EMC_WDV, EMC_QUSE, EMC_QRST, EMC_QSAFE, EMC_RDV, EMC_REFRESH, EMC_BURST_REFRESH_NUM, EMC_PDEX2WR, EMC_PDEX2RD, EMC_PCHG2PDEN, EMC_ACT2PDEN, EMC_AR2PDEN, EMC_RW2PDEN, EMC_TXSR, EMC_TCKE, EMC_TFAW, EMC_TRPAB, EMC_TCLKSTABLE, EMC_TCLKSTOP, EMC_TREFBW, EMC_QUSE_EXTRA, EMC_FBIO_CFG6, EMC_ODT_WRITE, EMC_ODT_READ, EMC_FBIO_CFG5, EMC_CFG_DIG_DLL, EMC_DLL_XFORM_DQS, EMC_DLL_XFORM_QUSE, EMC_ZCAL_REF_CNT, EMC_ZCAL_WAIT_CNT, EMC_AUTO_CAL_INTERVAL, EMC_CFG_CLKTRIM_0, EMC_CFG_CLKTRIM_1, EMC_CFG_CLKTRIM_2, }; struct emc_timing { unsigned long rate; u32 data[ARRAY_SIZE(emc_timing_registers)]; }; struct tegra_emc { struct device *dev; struct completion clk_handshake_complete; struct notifier_block clk_nb; struct clk *clk; void __iomem *regs; struct emc_timing *timings; unsigned int num_timings; }; static irqreturn_t tegra_emc_isr(int irq, void *data) { struct tegra_emc *emc = data; u32 intmask = EMC_REFRESH_OVERFLOW_INT | EMC_CLKCHANGE_COMPLETE_INT; u32 status; status = readl_relaxed(emc->regs + EMC_INTSTATUS) & intmask; if (!status) return IRQ_NONE; /* notify about EMC-CAR handshake completion */ if (status & EMC_CLKCHANGE_COMPLETE_INT) complete(&emc->clk_handshake_complete); /* notify about HW problem */ if (status & EMC_REFRESH_OVERFLOW_INT) dev_err_ratelimited(emc->dev, "refresh request overflow timeout\n"); /* clear interrupts */ writel_relaxed(status, emc->regs + EMC_INTSTATUS); return IRQ_HANDLED; } static struct emc_timing *tegra_emc_find_timing(struct tegra_emc *emc, unsigned long rate) { struct emc_timing *timing = NULL; unsigned int i; for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate >= rate) { timing = &emc->timings[i]; break; } } if (!timing) { dev_err(emc->dev, "no timing for rate %lu\n", rate); return NULL; } return timing; } static int emc_prepare_timing_change(struct tegra_emc *emc, unsigned long rate) { struct emc_timing *timing = tegra_emc_find_timing(emc, rate); unsigned int i; if (!timing) return -EINVAL; dev_dbg(emc->dev, "%s: using timing rate %lu for requested rate %lu\n", __func__, timing->rate, rate); /* program shadow registers */ for (i = 0; i < ARRAY_SIZE(timing->data); i++) writel_relaxed(timing->data[i], emc->regs + emc_timing_registers[i]); /* wait until programming has settled */ readl_relaxed(emc->regs + emc_timing_registers[i - 1]); reinit_completion(&emc->clk_handshake_complete); return 0; } static int emc_complete_timing_change(struct tegra_emc *emc, bool flush) { unsigned long timeout; dev_dbg(emc->dev, "%s: flush %d\n", __func__, flush); if (flush) { /* manually initiate memory timing update */ writel_relaxed(EMC_TIMING_UPDATE, emc->regs + EMC_TIMING_CONTROL); return 0; } timeout = wait_for_completion_timeout(&emc->clk_handshake_complete, msecs_to_jiffies(100)); if (timeout == 0) { dev_err(emc->dev, "EMC-CAR handshake failed\n"); return -EIO; } return 0; } static int tegra_emc_clk_change_notify(struct notifier_block *nb, unsigned long msg, void *data) { struct tegra_emc *emc = container_of(nb, struct tegra_emc, clk_nb); struct clk_notifier_data *cnd = data; int err; switch (msg) { case PRE_RATE_CHANGE: err = emc_prepare_timing_change(emc, cnd->new_rate); break; case ABORT_RATE_CHANGE: err = emc_prepare_timing_change(emc, cnd->old_rate); if (err) break; err = emc_complete_timing_change(emc, true); break; case POST_RATE_CHANGE: err = emc_complete_timing_change(emc, false); break; default: return NOTIFY_DONE; } return notifier_from_errno(err); } static int load_one_timing_from_dt(struct tegra_emc *emc, struct emc_timing *timing, struct device_node *node) { u32 rate; int err; if (!of_device_is_compatible(node, "nvidia,tegra20-emc-table")) { dev_err(emc->dev, "incompatible DT node: %pOF\n", node); return -EINVAL; } err = of_property_read_u32(node, "clock-frequency", &rate); if (err) { dev_err(emc->dev, "timing %pOF: failed to read rate: %d\n", node, err); return err; } err = of_property_read_u32_array(node, "nvidia,emc-registers", timing->data, ARRAY_SIZE(emc_timing_registers)); if (err) { dev_err(emc->dev, "timing %pOF: failed to read emc timing data: %d\n", node, err); return err; } /* * The EMC clock rate is twice the bus rate, and the bus rate is * measured in kHz. */ timing->rate = rate * 2 * 1000; dev_dbg(emc->dev, "%s: %pOF: EMC rate %lu\n", __func__, node, timing->rate); return 0; } static int cmp_timings(const void *_a, const void *_b) { const struct emc_timing *a = _a; const struct emc_timing *b = _b; if (a->rate < b->rate) return -1; if (a->rate > b->rate) return 1; return 0; } static int tegra_emc_load_timings_from_dt(struct tegra_emc *emc, struct device_node *node) { struct device_node *child; struct emc_timing *timing; int child_count; int err; child_count = of_get_child_count(node); if (!child_count) { dev_err(emc->dev, "no memory timings in DT node: %pOF\n", node); return -EINVAL; } emc->timings = devm_kcalloc(emc->dev, child_count, sizeof(*timing), GFP_KERNEL); if (!emc->timings) return -ENOMEM; emc->num_timings = child_count; timing = emc->timings; for_each_child_of_node(node, child) { err = load_one_timing_from_dt(emc, timing++, child); if (err) { of_node_put(child); return err; } } sort(emc->timings, emc->num_timings, sizeof(*timing), cmp_timings, NULL); dev_info(emc->dev, "got %u timings for RAM code %u (min %luMHz max %luMHz)\n", emc->num_timings, tegra_read_ram_code(), emc->timings[0].rate / 1000000, emc->timings[emc->num_timings - 1].rate / 1000000); return 0; } static struct device_node * tegra_emc_find_node_by_ram_code(struct device *dev) { struct device_node *np; u32 value, ram_code; int err; if (!of_property_read_bool(dev->of_node, "nvidia,use-ram-code")) return of_node_get(dev->of_node); ram_code = tegra_read_ram_code(); for (np = of_find_node_by_name(dev->of_node, "emc-tables"); np; np = of_find_node_by_name(np, "emc-tables")) { err = of_property_read_u32(np, "nvidia,ram-code", &value); if (err || value != ram_code) { of_node_put(np); continue; } return np; } dev_err(dev, "no memory timings for RAM code %u found in device tree\n", ram_code); return NULL; } static int emc_setup_hw(struct tegra_emc *emc) { u32 intmask = EMC_REFRESH_OVERFLOW_INT | EMC_CLKCHANGE_COMPLETE_INT; u32 emc_cfg, emc_dbg; emc_cfg = readl_relaxed(emc->regs + EMC_CFG_2); /* * Depending on a memory type, DRAM should enter either self-refresh * or power-down state on EMC clock change. */ if (!(emc_cfg & EMC_CLKCHANGE_PD_ENABLE) && !(emc_cfg & EMC_CLKCHANGE_SR_ENABLE)) { dev_err(emc->dev, "bootloader didn't specify DRAM auto-suspend mode\n"); return -EINVAL; } /* enable EMC and CAR to handshake on PLL divider/source changes */ emc_cfg |= EMC_CLKCHANGE_REQ_ENABLE; writel_relaxed(emc_cfg, emc->regs + EMC_CFG_2); /* initialize interrupt */ writel_relaxed(intmask, emc->regs + EMC_INTMASK); writel_relaxed(intmask, emc->regs + EMC_INTSTATUS); /* ensure that unwanted debug features are disabled */ emc_dbg = readl_relaxed(emc->regs + EMC_DBG); emc_dbg |= EMC_DBG_CFG_PRIORITY; emc_dbg &= ~EMC_DBG_READ_MUX_ASSEMBLY; emc_dbg &= ~EMC_DBG_WRITE_MUX_ACTIVE; emc_dbg &= ~EMC_DBG_FORCE_UPDATE; writel_relaxed(emc_dbg, emc->regs + EMC_DBG); return 0; } static long emc_round_rate(unsigned long rate, unsigned long min_rate, unsigned long max_rate, void *arg) { struct emc_timing *timing = NULL; struct tegra_emc *emc = arg; unsigned int i; min_rate = min(min_rate, emc->timings[emc->num_timings - 1].rate); for (i = 0; i < emc->num_timings; i++) { if (emc->timings[i].rate < rate && i != emc->num_timings - 1) continue; if (emc->timings[i].rate > max_rate) { i = max(i, 1u) - 1; if (emc->timings[i].rate < min_rate) break; } if (emc->timings[i].rate < min_rate) continue; timing = &emc->timings[i]; break; } if (!timing) { dev_err(emc->dev, "no timing for rate %lu min %lu max %lu\n", rate, min_rate, max_rate); return -EINVAL; } return timing->rate; } static int tegra_emc_probe(struct platform_device *pdev) { struct device_node *np; struct tegra_emc *emc; struct resource *res; int irq, err; /* driver has nothing to do in a case of memory timing absence */ if (of_get_child_count(pdev->dev.of_node) == 0) { dev_info(&pdev->dev, "EMC device tree node doesn't have memory timings\n"); return 0; } irq = platform_get_irq(pdev, 0); if (irq < 0) { dev_err(&pdev->dev, "interrupt not specified\n"); dev_err(&pdev->dev, "please update your device tree\n"); return irq; } np = tegra_emc_find_node_by_ram_code(&pdev->dev); if (!np) return -EINVAL; emc = devm_kzalloc(&pdev->dev, sizeof(*emc), GFP_KERNEL); if (!emc) { of_node_put(np); return -ENOMEM; } init_completion(&emc->clk_handshake_complete); emc->clk_nb.notifier_call = tegra_emc_clk_change_notify; emc->dev = &pdev->dev; err = tegra_emc_load_timings_from_dt(emc, np); of_node_put(np); if (err) return err; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); emc->regs = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(emc->regs)) return PTR_ERR(emc->regs); err = emc_setup_hw(emc); if (err) return err; err = devm_request_irq(&pdev->dev, irq, tegra_emc_isr, 0, dev_name(&pdev->dev), emc); if (err) { dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", irq, err); return err; } tegra20_clk_set_emc_round_callback(emc_round_rate, emc); emc->clk = devm_clk_get(&pdev->dev, "emc"); if (IS_ERR(emc->clk)) { err = PTR_ERR(emc->clk); dev_err(&pdev->dev, "failed to get emc clock: %d\n", err); goto unset_cb; } err = clk_notifier_register(emc->clk, &emc->clk_nb); if (err) { dev_err(&pdev->dev, "failed to register clk notifier: %d\n", err); goto unset_cb; } return 0; unset_cb: tegra20_clk_set_emc_round_callback(NULL, NULL); return err; } static const struct of_device_id tegra_emc_of_match[] = { { .compatible = "nvidia,tegra20-emc", }, {}, }; static struct platform_driver tegra_emc_driver = { .probe = tegra_emc_probe, .driver = { .name = "tegra20-emc", .of_match_table = tegra_emc_of_match, .suppress_bind_attrs = true, }, }; static int __init tegra_emc_init(void) { return platform_driver_register(&tegra_emc_driver); } subsys_initcall(tegra_emc_init);