// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright 2014 IBM Corp. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "cxl.h" #include #define CXL_PCI_VSEC_ID 0x1280 #define CXL_VSEC_MIN_SIZE 0x80 #define CXL_READ_VSEC_LENGTH(dev, vsec, dest) \ { \ pci_read_config_word(dev, vsec + 0x6, dest); \ *dest >>= 4; \ } #define CXL_READ_VSEC_NAFUS(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0x8, dest) #define CXL_READ_VSEC_STATUS(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0x9, dest) #define CXL_STATUS_SECOND_PORT 0x80 #define CXL_STATUS_MSI_X_FULL 0x40 #define CXL_STATUS_MSI_X_SINGLE 0x20 #define CXL_STATUS_FLASH_RW 0x08 #define CXL_STATUS_FLASH_RO 0x04 #define CXL_STATUS_LOADABLE_AFU 0x02 #define CXL_STATUS_LOADABLE_PSL 0x01 /* If we see these features we won't try to use the card */ #define CXL_UNSUPPORTED_FEATURES \ (CXL_STATUS_MSI_X_FULL | CXL_STATUS_MSI_X_SINGLE) #define CXL_READ_VSEC_MODE_CONTROL(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0xa, dest) #define CXL_WRITE_VSEC_MODE_CONTROL(dev, vsec, val) \ pci_write_config_byte(dev, vsec + 0xa, val) #define CXL_VSEC_PROTOCOL_MASK 0xe0 #define CXL_VSEC_PROTOCOL_1024TB 0x80 #define CXL_VSEC_PROTOCOL_512TB 0x40 #define CXL_VSEC_PROTOCOL_256TB 0x20 /* Power 8/9 uses this */ #define CXL_VSEC_PROTOCOL_ENABLE 0x01 #define CXL_READ_VSEC_PSL_REVISION(dev, vsec, dest) \ pci_read_config_word(dev, vsec + 0xc, dest) #define CXL_READ_VSEC_CAIA_MINOR(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0xe, dest) #define CXL_READ_VSEC_CAIA_MAJOR(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0xf, dest) #define CXL_READ_VSEC_BASE_IMAGE(dev, vsec, dest) \ pci_read_config_word(dev, vsec + 0x10, dest) #define CXL_READ_VSEC_IMAGE_STATE(dev, vsec, dest) \ pci_read_config_byte(dev, vsec + 0x13, dest) #define CXL_WRITE_VSEC_IMAGE_STATE(dev, vsec, val) \ pci_write_config_byte(dev, vsec + 0x13, val) #define CXL_VSEC_USER_IMAGE_LOADED 0x80 /* RO */ #define CXL_VSEC_PERST_LOADS_IMAGE 0x20 /* RW */ #define CXL_VSEC_PERST_SELECT_USER 0x10 /* RW */ #define CXL_READ_VSEC_AFU_DESC_OFF(dev, vsec, dest) \ pci_read_config_dword(dev, vsec + 0x20, dest) #define CXL_READ_VSEC_AFU_DESC_SIZE(dev, vsec, dest) \ pci_read_config_dword(dev, vsec + 0x24, dest) #define CXL_READ_VSEC_PS_OFF(dev, vsec, dest) \ pci_read_config_dword(dev, vsec + 0x28, dest) #define CXL_READ_VSEC_PS_SIZE(dev, vsec, dest) \ pci_read_config_dword(dev, vsec + 0x2c, dest) /* This works a little different than the p1/p2 register accesses to make it * easier to pull out individual fields */ #define AFUD_READ(afu, off) in_be64(afu->native->afu_desc_mmio + off) #define AFUD_READ_LE(afu, off) in_le64(afu->native->afu_desc_mmio + off) #define EXTRACT_PPC_BIT(val, bit) (!!(val & PPC_BIT(bit))) #define EXTRACT_PPC_BITS(val, bs, be) ((val & PPC_BITMASK(bs, be)) >> PPC_BITLSHIFT(be)) #define AFUD_READ_INFO(afu) AFUD_READ(afu, 0x0) #define AFUD_NUM_INTS_PER_PROC(val) EXTRACT_PPC_BITS(val, 0, 15) #define AFUD_NUM_PROCS(val) EXTRACT_PPC_BITS(val, 16, 31) #define AFUD_NUM_CRS(val) EXTRACT_PPC_BITS(val, 32, 47) #define AFUD_MULTIMODE(val) EXTRACT_PPC_BIT(val, 48) #define AFUD_PUSH_BLOCK_TRANSFER(val) EXTRACT_PPC_BIT(val, 55) #define AFUD_DEDICATED_PROCESS(val) EXTRACT_PPC_BIT(val, 59) #define AFUD_AFU_DIRECTED(val) EXTRACT_PPC_BIT(val, 61) #define AFUD_TIME_SLICED(val) EXTRACT_PPC_BIT(val, 63) #define AFUD_READ_CR(afu) AFUD_READ(afu, 0x20) #define AFUD_CR_LEN(val) EXTRACT_PPC_BITS(val, 8, 63) #define AFUD_READ_CR_OFF(afu) AFUD_READ(afu, 0x28) #define AFUD_READ_PPPSA(afu) AFUD_READ(afu, 0x30) #define AFUD_PPPSA_PP(val) EXTRACT_PPC_BIT(val, 6) #define AFUD_PPPSA_PSA(val) EXTRACT_PPC_BIT(val, 7) #define AFUD_PPPSA_LEN(val) EXTRACT_PPC_BITS(val, 8, 63) #define AFUD_READ_PPPSA_OFF(afu) AFUD_READ(afu, 0x38) #define AFUD_READ_EB(afu) AFUD_READ(afu, 0x40) #define AFUD_EB_LEN(val) EXTRACT_PPC_BITS(val, 8, 63) #define AFUD_READ_EB_OFF(afu) AFUD_READ(afu, 0x48) static const struct pci_device_id cxl_pci_tbl[] = { { PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x0477), }, { PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x044b), }, { PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x04cf), }, { PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x0601), }, { PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x0623), }, { PCI_DEVICE(PCI_VENDOR_ID_IBM, 0x0628), }, { } }; MODULE_DEVICE_TABLE(pci, cxl_pci_tbl); /* * Mostly using these wrappers to avoid confusion: * priv 1 is BAR2, while priv 2 is BAR0 */ static inline resource_size_t p1_base(struct pci_dev *dev) { return pci_resource_start(dev, 2); } static inline resource_size_t p1_size(struct pci_dev *dev) { return pci_resource_len(dev, 2); } static inline resource_size_t p2_base(struct pci_dev *dev) { return pci_resource_start(dev, 0); } static inline resource_size_t p2_size(struct pci_dev *dev) { return pci_resource_len(dev, 0); } static int find_cxl_vsec(struct pci_dev *dev) { int vsec = 0; u16 val; while ((vsec = pci_find_next_ext_capability(dev, vsec, PCI_EXT_CAP_ID_VNDR))) { pci_read_config_word(dev, vsec + 0x4, &val); if (val == CXL_PCI_VSEC_ID) return vsec; } return 0; } static void dump_cxl_config_space(struct pci_dev *dev) { int vsec; u32 val; dev_info(&dev->dev, "dump_cxl_config_space\n"); pci_read_config_dword(dev, PCI_BASE_ADDRESS_0, &val); dev_info(&dev->dev, "BAR0: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_1, &val); dev_info(&dev->dev, "BAR1: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_2, &val); dev_info(&dev->dev, "BAR2: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_3, &val); dev_info(&dev->dev, "BAR3: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_4, &val); dev_info(&dev->dev, "BAR4: %#.8x\n", val); pci_read_config_dword(dev, PCI_BASE_ADDRESS_5, &val); dev_info(&dev->dev, "BAR5: %#.8x\n", val); dev_info(&dev->dev, "p1 regs: %#llx, len: %#llx\n", p1_base(dev), p1_size(dev)); dev_info(&dev->dev, "p2 regs: %#llx, len: %#llx\n", p2_base(dev), p2_size(dev)); dev_info(&dev->dev, "BAR 4/5: %#llx, len: %#llx\n", pci_resource_start(dev, 4), pci_resource_len(dev, 4)); if (!(vsec = find_cxl_vsec(dev))) return; #define show_reg(name, what) \ dev_info(&dev->dev, "cxl vsec: %30s: %#x\n", name, what) pci_read_config_dword(dev, vsec + 0x0, &val); show_reg("Cap ID", (val >> 0) & 0xffff); show_reg("Cap Ver", (val >> 16) & 0xf); show_reg("Next Cap Ptr", (val >> 20) & 0xfff); pci_read_config_dword(dev, vsec + 0x4, &val); show_reg("VSEC ID", (val >> 0) & 0xffff); show_reg("VSEC Rev", (val >> 16) & 0xf); show_reg("VSEC Length", (val >> 20) & 0xfff); pci_read_config_dword(dev, vsec + 0x8, &val); show_reg("Num AFUs", (val >> 0) & 0xff); show_reg("Status", (val >> 8) & 0xff); show_reg("Mode Control", (val >> 16) & 0xff); show_reg("Reserved", (val >> 24) & 0xff); pci_read_config_dword(dev, vsec + 0xc, &val); show_reg("PSL Rev", (val >> 0) & 0xffff); show_reg("CAIA Ver", (val >> 16) & 0xffff); pci_read_config_dword(dev, vsec + 0x10, &val); show_reg("Base Image Rev", (val >> 0) & 0xffff); show_reg("Reserved", (val >> 16) & 0x0fff); show_reg("Image Control", (val >> 28) & 0x3); show_reg("Reserved", (val >> 30) & 0x1); show_reg("Image Loaded", (val >> 31) & 0x1); pci_read_config_dword(dev, vsec + 0x14, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x18, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x1c, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x20, &val); show_reg("AFU Descriptor Offset", val); pci_read_config_dword(dev, vsec + 0x24, &val); show_reg("AFU Descriptor Size", val); pci_read_config_dword(dev, vsec + 0x28, &val); show_reg("Problem State Offset", val); pci_read_config_dword(dev, vsec + 0x2c, &val); show_reg("Problem State Size", val); pci_read_config_dword(dev, vsec + 0x30, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x34, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x38, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x3c, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x40, &val); show_reg("PSL Programming Port", val); pci_read_config_dword(dev, vsec + 0x44, &val); show_reg("PSL Programming Control", val); pci_read_config_dword(dev, vsec + 0x48, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x4c, &val); show_reg("Reserved", val); pci_read_config_dword(dev, vsec + 0x50, &val); show_reg("Flash Address Register", val); pci_read_config_dword(dev, vsec + 0x54, &val); show_reg("Flash Size Register", val); pci_read_config_dword(dev, vsec + 0x58, &val); show_reg("Flash Status/Control Register", val); pci_read_config_dword(dev, vsec + 0x58, &val); show_reg("Flash Data Port", val); #undef show_reg } static void dump_afu_descriptor(struct cxl_afu *afu) { u64 val, afu_cr_num, afu_cr_off, afu_cr_len; int i; #define show_reg(name, what) \ dev_info(&afu->dev, "afu desc: %30s: %#llx\n", name, what) val = AFUD_READ_INFO(afu); show_reg("num_ints_per_process", AFUD_NUM_INTS_PER_PROC(val)); show_reg("num_of_processes", AFUD_NUM_PROCS(val)); show_reg("num_of_afu_CRs", AFUD_NUM_CRS(val)); show_reg("req_prog_mode", val & 0xffffULL); afu_cr_num = AFUD_NUM_CRS(val); val = AFUD_READ(afu, 0x8); show_reg("Reserved", val); val = AFUD_READ(afu, 0x10); show_reg("Reserved", val); val = AFUD_READ(afu, 0x18); show_reg("Reserved", val); val = AFUD_READ_CR(afu); show_reg("Reserved", (val >> (63-7)) & 0xff); show_reg("AFU_CR_len", AFUD_CR_LEN(val)); afu_cr_len = AFUD_CR_LEN(val) * 256; val = AFUD_READ_CR_OFF(afu); afu_cr_off = val; show_reg("AFU_CR_offset", val); val = AFUD_READ_PPPSA(afu); show_reg("PerProcessPSA_control", (val >> (63-7)) & 0xff); show_reg("PerProcessPSA Length", AFUD_PPPSA_LEN(val)); val = AFUD_READ_PPPSA_OFF(afu); show_reg("PerProcessPSA_offset", val); val = AFUD_READ_EB(afu); show_reg("Reserved", (val >> (63-7)) & 0xff); show_reg("AFU_EB_len", AFUD_EB_LEN(val)); val = AFUD_READ_EB_OFF(afu); show_reg("AFU_EB_offset", val); for (i = 0; i < afu_cr_num; i++) { val = AFUD_READ_LE(afu, afu_cr_off + i * afu_cr_len); show_reg("CR Vendor", val & 0xffff); show_reg("CR Device", (val >> 16) & 0xffff); } #undef show_reg } #define P8_CAPP_UNIT0_ID 0xBA #define P8_CAPP_UNIT1_ID 0XBE #define P9_CAPP_UNIT0_ID 0xC0 #define P9_CAPP_UNIT1_ID 0xE0 static int get_phb_index(struct device_node *np, u32 *phb_index) { if (of_property_read_u32(np, "ibm,phb-index", phb_index)) return -ENODEV; return 0; } static u64 get_capp_unit_id(struct device_node *np, u32 phb_index) { /* * POWER 8: * - For chips other than POWER8NVL, we only have CAPP 0, * irrespective of which PHB is used. * - For POWER8NVL, assume CAPP 0 is attached to PHB0 and * CAPP 1 is attached to PHB1. */ if (cxl_is_power8()) { if (!pvr_version_is(PVR_POWER8NVL)) return P8_CAPP_UNIT0_ID; if (phb_index == 0) return P8_CAPP_UNIT0_ID; if (phb_index == 1) return P8_CAPP_UNIT1_ID; } /* * POWER 9: * PEC0 (PHB0). Capp ID = CAPP0 (0b1100_0000) * PEC1 (PHB1 - PHB2). No capi mode * PEC2 (PHB3 - PHB4 - PHB5): Capi mode on PHB3 only. Capp ID = CAPP1 (0b1110_0000) */ if (cxl_is_power9()) { if (phb_index == 0) return P9_CAPP_UNIT0_ID; if (phb_index == 3) return P9_CAPP_UNIT1_ID; } return 0; } int cxl_calc_capp_routing(struct pci_dev *dev, u64 *chipid, u32 *phb_index, u64 *capp_unit_id) { int rc; struct device_node *np; const __be32 *prop; if (!(np = pnv_pci_get_phb_node(dev))) return -ENODEV; while (np && !(prop = of_get_property(np, "ibm,chip-id", NULL))) np = of_get_next_parent(np); if (!np) return -ENODEV; *chipid = be32_to_cpup(prop); rc = get_phb_index(np, phb_index); if (rc) { pr_err("cxl: invalid phb index\n"); return rc; } *capp_unit_id = get_capp_unit_id(np, *phb_index); of_node_put(np); if (!*capp_unit_id) { pr_err("cxl: No capp unit found for PHB[%lld,%d]. Make sure the adapter is on a capi-compatible slot\n", *chipid, *phb_index); return -ENODEV; } return 0; } static DEFINE_MUTEX(indications_mutex); static int get_phb_indications(struct pci_dev *dev, u64 *capiind, u64 *asnind, u64 *nbwind) { static u64 nbw, asn, capi = 0; struct device_node *np; const __be32 *prop; mutex_lock(&indications_mutex); if (!capi) { if (!(np = pnv_pci_get_phb_node(dev))) { mutex_unlock(&indications_mutex); return -ENODEV; } prop = of_get_property(np, "ibm,phb-indications", NULL); if (!prop) { nbw = 0x0300UL; /* legacy values */ asn = 0x0400UL; capi = 0x0200UL; } else { nbw = (u64)be32_to_cpu(prop[2]); asn = (u64)be32_to_cpu(prop[1]); capi = (u64)be32_to_cpu(prop[0]); } of_node_put(np); } *capiind = capi; *asnind = asn; *nbwind = nbw; mutex_unlock(&indications_mutex); return 0; } int cxl_get_xsl9_dsnctl(struct pci_dev *dev, u64 capp_unit_id, u64 *reg) { u64 xsl_dsnctl; u64 capiind, asnind, nbwind; /* * CAPI Identifier bits [0:7] * bit 61:60 MSI bits --> 0 * bit 59 TVT selector --> 0 */ if (get_phb_indications(dev, &capiind, &asnind, &nbwind)) return -ENODEV; /* * Tell XSL where to route data to. * The field chipid should match the PHB CAPI_CMPM register */ xsl_dsnctl = (capiind << (63-15)); /* Bit 57 */ xsl_dsnctl |= (capp_unit_id << (63-15)); /* nMMU_ID Defaults to: b’000001001’*/ xsl_dsnctl |= ((u64)0x09 << (63-28)); /* * Used to identify CAPI packets which should be sorted into * the Non-Blocking queues by the PHB. This field should match * the PHB PBL_NBW_CMPM register * nbwind=0x03, bits [57:58], must include capi indicator. * Not supported on P9 DD1. */ xsl_dsnctl |= (nbwind << (63-55)); /* * Upper 16b address bits of ASB_Notify messages sent to the * system. Need to match the PHB’s ASN Compare/Mask Register. * Not supported on P9 DD1. */ xsl_dsnctl |= asnind; *reg = xsl_dsnctl; return 0; } static int init_implementation_adapter_regs_psl9(struct cxl *adapter, struct pci_dev *dev) { u64 xsl_dsnctl, psl_fircntl; u64 chipid; u32 phb_index; u64 capp_unit_id; u64 psl_debug; int rc; rc = cxl_calc_capp_routing(dev, &chipid, &phb_index, &capp_unit_id); if (rc) return rc; rc = cxl_get_xsl9_dsnctl(dev, capp_unit_id, &xsl_dsnctl); if (rc) return rc; cxl_p1_write(adapter, CXL_XSL9_DSNCTL, xsl_dsnctl); /* Set fir_cntl to recommended value for production env */ psl_fircntl = (0x2ULL << (63-3)); /* ce_report */ psl_fircntl |= (0x1ULL << (63-6)); /* FIR_report */ psl_fircntl |= 0x1ULL; /* ce_thresh */ cxl_p1_write(adapter, CXL_PSL9_FIR_CNTL, psl_fircntl); /* Setup the PSL to transmit packets on the PCIe before the * CAPP is enabled. Make sure that CAPP virtual machines are disabled */ cxl_p1_write(adapter, CXL_PSL9_DSNDCTL, 0x0001001000012A10ULL); /* * A response to an ASB_Notify request is returned by the * system as an MMIO write to the address defined in * the PSL_TNR_ADDR register. * keep the Reset Value: 0x00020000E0000000 */ /* Enable XSL rty limit */ cxl_p1_write(adapter, CXL_XSL9_DEF, 0x51F8000000000005ULL); /* Change XSL_INV dummy read threshold */ cxl_p1_write(adapter, CXL_XSL9_INV, 0x0000040007FFC200ULL); if (phb_index == 3) { /* disable machines 31-47 and 20-27 for DMA */ cxl_p1_write(adapter, CXL_PSL9_APCDEDTYPE, 0x40000FF3FFFF0000ULL); } /* Snoop machines */ cxl_p1_write(adapter, CXL_PSL9_APCDEDALLOC, 0x800F000200000000ULL); /* Enable NORST and DD2 features */ cxl_p1_write(adapter, CXL_PSL9_DEBUG, 0xC000000000000000ULL); /* * Check if PSL has data-cache. We need to flush adapter datacache * when as its about to be removed. */ psl_debug = cxl_p1_read(adapter, CXL_PSL9_DEBUG); if (psl_debug & CXL_PSL_DEBUG_CDC) { dev_dbg(&dev->dev, "No data-cache present\n"); adapter->native->no_data_cache = true; } return 0; } static int init_implementation_adapter_regs_psl8(struct cxl *adapter, struct pci_dev *dev) { u64 psl_dsnctl, psl_fircntl; u64 chipid; u32 phb_index; u64 capp_unit_id; int rc; rc = cxl_calc_capp_routing(dev, &chipid, &phb_index, &capp_unit_id); if (rc) return rc; psl_dsnctl = 0x0000900000000000ULL; /* pteupd ttype, scdone */ psl_dsnctl |= (0x2ULL << (63-38)); /* MMIO hang pulse: 256 us */ /* Tell PSL where to route data to */ psl_dsnctl |= (chipid << (63-5)); psl_dsnctl |= (capp_unit_id << (63-13)); cxl_p1_write(adapter, CXL_PSL_DSNDCTL, psl_dsnctl); cxl_p1_write(adapter, CXL_PSL_RESLCKTO, 0x20000000200ULL); /* snoop write mask */ cxl_p1_write(adapter, CXL_PSL_SNWRALLOC, 0x00000000FFFFFFFFULL); /* set fir_cntl to recommended value for production env */ psl_fircntl = (0x2ULL << (63-3)); /* ce_report */ psl_fircntl |= (0x1ULL << (63-6)); /* FIR_report */ psl_fircntl |= 0x1ULL; /* ce_thresh */ cxl_p1_write(adapter, CXL_PSL_FIR_CNTL, psl_fircntl); /* for debugging with trace arrays */ cxl_p1_write(adapter, CXL_PSL_TRACE, 0x0000FF7C00000000ULL); return 0; } /* PSL */ #define TBSYNC_CAL(n) (((u64)n & 0x7) << (63-3)) #define TBSYNC_CNT(n) (((u64)n & 0x7) << (63-6)) /* For the PSL this is a multiple for 0 < n <= 7: */ #define PSL_2048_250MHZ_CYCLES 1 static void write_timebase_ctrl_psl8(struct cxl *adapter) { cxl_p1_write(adapter, CXL_PSL_TB_CTLSTAT, TBSYNC_CNT(2 * PSL_2048_250MHZ_CYCLES)); } static u64 timebase_read_psl9(struct cxl *adapter) { return cxl_p1_read(adapter, CXL_PSL9_Timebase); } static u64 timebase_read_psl8(struct cxl *adapter) { return cxl_p1_read(adapter, CXL_PSL_Timebase); } static void cxl_setup_psl_timebase(struct cxl *adapter, struct pci_dev *dev) { struct device_node *np; adapter->psl_timebase_synced = false; if (!(np = pnv_pci_get_phb_node(dev))) return; /* Do not fail when CAPP timebase sync is not supported by OPAL */ of_node_get(np); if (! of_get_property(np, "ibm,capp-timebase-sync", NULL)) { of_node_put(np); dev_info(&dev->dev, "PSL timebase inactive: OPAL support missing\n"); return; } of_node_put(np); /* * Setup PSL Timebase Control and Status register * with the recommended Timebase Sync Count value */ if (adapter->native->sl_ops->write_timebase_ctrl) adapter->native->sl_ops->write_timebase_ctrl(adapter); /* Enable PSL Timebase */ cxl_p1_write(adapter, CXL_PSL_Control, 0x0000000000000000); cxl_p1_write(adapter, CXL_PSL_Control, CXL_PSL_Control_tb); return; } static int init_implementation_afu_regs_psl9(struct cxl_afu *afu) { return 0; } static int init_implementation_afu_regs_psl8(struct cxl_afu *afu) { /* read/write masks for this slice */ cxl_p1n_write(afu, CXL_PSL_APCALLOC_A, 0xFFFFFFFEFEFEFEFEULL); /* APC read/write masks for this slice */ cxl_p1n_write(afu, CXL_PSL_COALLOC_A, 0xFF000000FEFEFEFEULL); /* for debugging with trace arrays */ cxl_p1n_write(afu, CXL_PSL_SLICE_TRACE, 0x0000FFFF00000000ULL); cxl_p1n_write(afu, CXL_PSL_RXCTL_A, CXL_PSL_RXCTL_AFUHP_4S); return 0; } int cxl_pci_setup_irq(struct cxl *adapter, unsigned int hwirq, unsigned int virq) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); return pnv_cxl_ioda_msi_setup(dev, hwirq, virq); } int cxl_update_image_control(struct cxl *adapter) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); int rc; int vsec; u8 image_state; if (!(vsec = find_cxl_vsec(dev))) { dev_err(&dev->dev, "ABORTING: CXL VSEC not found!\n"); return -ENODEV; } if ((rc = CXL_READ_VSEC_IMAGE_STATE(dev, vsec, &image_state))) { dev_err(&dev->dev, "failed to read image state: %i\n", rc); return rc; } if (adapter->perst_loads_image) image_state |= CXL_VSEC_PERST_LOADS_IMAGE; else image_state &= ~CXL_VSEC_PERST_LOADS_IMAGE; if (adapter->perst_select_user) image_state |= CXL_VSEC_PERST_SELECT_USER; else image_state &= ~CXL_VSEC_PERST_SELECT_USER; if ((rc = CXL_WRITE_VSEC_IMAGE_STATE(dev, vsec, image_state))) { dev_err(&dev->dev, "failed to update image control: %i\n", rc); return rc; } return 0; } int cxl_pci_alloc_one_irq(struct cxl *adapter) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); return pnv_cxl_alloc_hwirqs(dev, 1); } void cxl_pci_release_one_irq(struct cxl *adapter, int hwirq) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); return pnv_cxl_release_hwirqs(dev, hwirq, 1); } int cxl_pci_alloc_irq_ranges(struct cxl_irq_ranges *irqs, struct cxl *adapter, unsigned int num) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); return pnv_cxl_alloc_hwirq_ranges(irqs, dev, num); } void cxl_pci_release_irq_ranges(struct cxl_irq_ranges *irqs, struct cxl *adapter) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); pnv_cxl_release_hwirq_ranges(irqs, dev); } static int setup_cxl_bars(struct pci_dev *dev) { /* Safety check in case we get backported to < 3.17 without M64 */ if ((p1_base(dev) < 0x100000000ULL) || (p2_base(dev) < 0x100000000ULL)) { dev_err(&dev->dev, "ABORTING: M32 BAR assignment incompatible with CXL\n"); return -ENODEV; } /* * BAR 4/5 has a special meaning for CXL and must be programmed with a * special value corresponding to the CXL protocol address range. * For POWER 8/9 that means bits 48:49 must be set to 10 */ pci_write_config_dword(dev, PCI_BASE_ADDRESS_4, 0x00000000); pci_write_config_dword(dev, PCI_BASE_ADDRESS_5, 0x00020000); return 0; } /* pciex node: ibm,opal-m64-window = <0x3d058 0x0 0x3d058 0x0 0x8 0x0>; */ static int switch_card_to_cxl(struct pci_dev *dev) { int vsec; u8 val; int rc; dev_info(&dev->dev, "switch card to CXL\n"); if (!(vsec = find_cxl_vsec(dev))) { dev_err(&dev->dev, "ABORTING: CXL VSEC not found!\n"); return -ENODEV; } if ((rc = CXL_READ_VSEC_MODE_CONTROL(dev, vsec, &val))) { dev_err(&dev->dev, "failed to read current mode control: %i", rc); return rc; } val &= ~CXL_VSEC_PROTOCOL_MASK; val |= CXL_VSEC_PROTOCOL_256TB | CXL_VSEC_PROTOCOL_ENABLE; if ((rc = CXL_WRITE_VSEC_MODE_CONTROL(dev, vsec, val))) { dev_err(&dev->dev, "failed to enable CXL protocol: %i", rc); return rc; } /* * The CAIA spec (v0.12 11.6 Bi-modal Device Support) states * we must wait 100ms after this mode switch before touching * PCIe config space. */ msleep(100); return 0; } static int pci_map_slice_regs(struct cxl_afu *afu, struct cxl *adapter, struct pci_dev *dev) { u64 p1n_base, p2n_base, afu_desc; const u64 p1n_size = 0x100; const u64 p2n_size = 0x1000; p1n_base = p1_base(dev) + 0x10000 + (afu->slice * p1n_size); p2n_base = p2_base(dev) + (afu->slice * p2n_size); afu->psn_phys = p2_base(dev) + (adapter->native->ps_off + (afu->slice * adapter->ps_size)); afu_desc = p2_base(dev) + adapter->native->afu_desc_off + (afu->slice * adapter->native->afu_desc_size); if (!(afu->native->p1n_mmio = ioremap(p1n_base, p1n_size))) goto err; if (!(afu->p2n_mmio = ioremap(p2n_base, p2n_size))) goto err1; if (afu_desc) { if (!(afu->native->afu_desc_mmio = ioremap(afu_desc, adapter->native->afu_desc_size))) goto err2; } return 0; err2: iounmap(afu->p2n_mmio); err1: iounmap(afu->native->p1n_mmio); err: dev_err(&afu->dev, "Error mapping AFU MMIO regions\n"); return -ENOMEM; } static void pci_unmap_slice_regs(struct cxl_afu *afu) { if (afu->p2n_mmio) { iounmap(afu->p2n_mmio); afu->p2n_mmio = NULL; } if (afu->native->p1n_mmio) { iounmap(afu->native->p1n_mmio); afu->native->p1n_mmio = NULL; } if (afu->native->afu_desc_mmio) { iounmap(afu->native->afu_desc_mmio); afu->native->afu_desc_mmio = NULL; } } void cxl_pci_release_afu(struct device *dev) { struct cxl_afu *afu = to_cxl_afu(dev); pr_devel("%s\n", __func__); idr_destroy(&afu->contexts_idr); cxl_release_spa(afu); kfree(afu->native); kfree(afu); } /* Expects AFU struct to have recently been zeroed out */ static int cxl_read_afu_descriptor(struct cxl_afu *afu) { u64 val; val = AFUD_READ_INFO(afu); afu->pp_irqs = AFUD_NUM_INTS_PER_PROC(val); afu->max_procs_virtualised = AFUD_NUM_PROCS(val); afu->crs_num = AFUD_NUM_CRS(val); if (AFUD_AFU_DIRECTED(val)) afu->modes_supported |= CXL_MODE_DIRECTED; if (AFUD_DEDICATED_PROCESS(val)) afu->modes_supported |= CXL_MODE_DEDICATED; if (AFUD_TIME_SLICED(val)) afu->modes_supported |= CXL_MODE_TIME_SLICED; val = AFUD_READ_PPPSA(afu); afu->pp_size = AFUD_PPPSA_LEN(val) * 4096; afu->psa = AFUD_PPPSA_PSA(val); if ((afu->pp_psa = AFUD_PPPSA_PP(val))) afu->native->pp_offset = AFUD_READ_PPPSA_OFF(afu); val = AFUD_READ_CR(afu); afu->crs_len = AFUD_CR_LEN(val) * 256; afu->crs_offset = AFUD_READ_CR_OFF(afu); /* eb_len is in multiple of 4K */ afu->eb_len = AFUD_EB_LEN(AFUD_READ_EB(afu)) * 4096; afu->eb_offset = AFUD_READ_EB_OFF(afu); /* eb_off is 4K aligned so lower 12 bits are always zero */ if (EXTRACT_PPC_BITS(afu->eb_offset, 0, 11) != 0) { dev_warn(&afu->dev, "Invalid AFU error buffer offset %Lx\n", afu->eb_offset); dev_info(&afu->dev, "Ignoring AFU error buffer in the descriptor\n"); /* indicate that no afu buffer exists */ afu->eb_len = 0; } return 0; } static int cxl_afu_descriptor_looks_ok(struct cxl_afu *afu) { int i, rc; u32 val; if (afu->psa && afu->adapter->ps_size < (afu->native->pp_offset + afu->pp_size*afu->max_procs_virtualised)) { dev_err(&afu->dev, "per-process PSA can't fit inside the PSA!\n"); return -ENODEV; } if (afu->pp_psa && (afu->pp_size < PAGE_SIZE)) dev_warn(&afu->dev, "AFU uses pp_size(%#016llx) < PAGE_SIZE per-process PSA!\n", afu->pp_size); for (i = 0; i < afu->crs_num; i++) { rc = cxl_ops->afu_cr_read32(afu, i, 0, &val); if (rc || val == 0) { dev_err(&afu->dev, "ABORTING: AFU configuration record %i is invalid\n", i); return -EINVAL; } } if ((afu->modes_supported & ~CXL_MODE_DEDICATED) && afu->max_procs_virtualised == 0) { /* * We could also check this for the dedicated process model * since the architecture indicates it should be set to 1, but * in that case we ignore the value and I'd rather not risk * breaking any existing dedicated process AFUs that left it as * 0 (not that I'm aware of any). It is clearly an error for an * AFU directed AFU to set this to 0, and would have previously * triggered a bug resulting in the maximum not being enforced * at all since idr_alloc treats 0 as no maximum. */ dev_err(&afu->dev, "AFU does not support any processes\n"); return -EINVAL; } return 0; } static int sanitise_afu_regs_psl9(struct cxl_afu *afu) { u64 reg; /* * Clear out any regs that contain either an IVTE or address or may be * waiting on an acknowledgment to try to be a bit safer as we bring * it online */ reg = cxl_p2n_read(afu, CXL_AFU_Cntl_An); if ((reg & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) { dev_warn(&afu->dev, "WARNING: AFU was not disabled: %#016llx\n", reg); if (cxl_ops->afu_reset(afu)) return -EIO; if (cxl_afu_disable(afu)) return -EIO; if (cxl_psl_purge(afu)) return -EIO; } cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_PSL_AMBAR_An, 0x0000000000000000); reg = cxl_p2n_read(afu, CXL_PSL_DSISR_An); if (reg) { dev_warn(&afu->dev, "AFU had pending DSISR: %#016llx\n", reg); if (reg & CXL_PSL9_DSISR_An_TF) cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); else cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); } if (afu->adapter->native->sl_ops->register_serr_irq) { reg = cxl_p1n_read(afu, CXL_PSL_SERR_An); if (reg) { if (reg & ~0x000000007fffffff) dev_warn(&afu->dev, "AFU had pending SERR: %#016llx\n", reg); cxl_p1n_write(afu, CXL_PSL_SERR_An, reg & ~0xffff); } } reg = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); if (reg) { dev_warn(&afu->dev, "AFU had pending error status: %#016llx\n", reg); cxl_p2n_write(afu, CXL_PSL_ErrStat_An, reg); } return 0; } static int sanitise_afu_regs_psl8(struct cxl_afu *afu) { u64 reg; /* * Clear out any regs that contain either an IVTE or address or may be * waiting on an acknowledgement to try to be a bit safer as we bring * it online */ reg = cxl_p2n_read(afu, CXL_AFU_Cntl_An); if ((reg & CXL_AFU_Cntl_An_ES_MASK) != CXL_AFU_Cntl_An_ES_Disabled) { dev_warn(&afu->dev, "WARNING: AFU was not disabled: %#016llx\n", reg); if (cxl_ops->afu_reset(afu)) return -EIO; if (cxl_afu_disable(afu)) return -EIO; if (cxl_psl_purge(afu)) return -EIO; } cxl_p1n_write(afu, CXL_PSL_SPAP_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_PSL_IVTE_Limit_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_PSL_IVTE_Offset_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_PSL_AMBAR_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_PSL_SPOffset_An, 0x0000000000000000); cxl_p1n_write(afu, CXL_HAURP_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_CSRP_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_AURP1_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_AURP0_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_SSTP1_An, 0x0000000000000000); cxl_p2n_write(afu, CXL_SSTP0_An, 0x0000000000000000); reg = cxl_p2n_read(afu, CXL_PSL_DSISR_An); if (reg) { dev_warn(&afu->dev, "AFU had pending DSISR: %#016llx\n", reg); if (reg & CXL_PSL_DSISR_TRANS) cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_AE); else cxl_p2n_write(afu, CXL_PSL_TFC_An, CXL_PSL_TFC_An_A); } if (afu->adapter->native->sl_ops->register_serr_irq) { reg = cxl_p1n_read(afu, CXL_PSL_SERR_An); if (reg) { if (reg & ~0xffff) dev_warn(&afu->dev, "AFU had pending SERR: %#016llx\n", reg); cxl_p1n_write(afu, CXL_PSL_SERR_An, reg & ~0xffff); } } reg = cxl_p2n_read(afu, CXL_PSL_ErrStat_An); if (reg) { dev_warn(&afu->dev, "AFU had pending error status: %#016llx\n", reg); cxl_p2n_write(afu, CXL_PSL_ErrStat_An, reg); } return 0; } #define ERR_BUFF_MAX_COPY_SIZE PAGE_SIZE /* * afu_eb_read: * Called from sysfs and reads the afu error info buffer. The h/w only supports * 4/8 bytes aligned access. So in case the requested offset/count arent 8 byte * aligned the function uses a bounce buffer which can be max PAGE_SIZE. */ ssize_t cxl_pci_afu_read_err_buffer(struct cxl_afu *afu, char *buf, loff_t off, size_t count) { loff_t aligned_start, aligned_end; size_t aligned_length; void *tbuf; const void __iomem *ebuf = afu->native->afu_desc_mmio + afu->eb_offset; if (count == 0 || off < 0 || (size_t)off >= afu->eb_len) return 0; /* calculate aligned read window */ count = min((size_t)(afu->eb_len - off), count); aligned_start = round_down(off, 8); aligned_end = round_up(off + count, 8); aligned_length = aligned_end - aligned_start; /* max we can copy in one read is PAGE_SIZE */ if (aligned_length > ERR_BUFF_MAX_COPY_SIZE) { aligned_length = ERR_BUFF_MAX_COPY_SIZE; count = ERR_BUFF_MAX_COPY_SIZE - (off & 0x7); } /* use bounce buffer for copy */ tbuf = (void *)__get_free_page(GFP_KERNEL); if (!tbuf) return -ENOMEM; /* perform aligned read from the mmio region */ memcpy_fromio(tbuf, ebuf + aligned_start, aligned_length); memcpy(buf, tbuf + (off & 0x7), count); free_page((unsigned long)tbuf); return count; } static int pci_configure_afu(struct cxl_afu *afu, struct cxl *adapter, struct pci_dev *dev) { int rc; if ((rc = pci_map_slice_regs(afu, adapter, dev))) return rc; if (adapter->native->sl_ops->sanitise_afu_regs) { rc = adapter->native->sl_ops->sanitise_afu_regs(afu); if (rc) goto err1; } /* We need to reset the AFU before we can read the AFU descriptor */ if ((rc = cxl_ops->afu_reset(afu))) goto err1; if (cxl_verbose) dump_afu_descriptor(afu); if ((rc = cxl_read_afu_descriptor(afu))) goto err1; if ((rc = cxl_afu_descriptor_looks_ok(afu))) goto err1; if (adapter->native->sl_ops->afu_regs_init) if ((rc = adapter->native->sl_ops->afu_regs_init(afu))) goto err1; if (adapter->native->sl_ops->register_serr_irq) if ((rc = adapter->native->sl_ops->register_serr_irq(afu))) goto err1; if ((rc = cxl_native_register_psl_irq(afu))) goto err2; atomic_set(&afu->configured_state, 0); return 0; err2: if (adapter->native->sl_ops->release_serr_irq) adapter->native->sl_ops->release_serr_irq(afu); err1: pci_unmap_slice_regs(afu); return rc; } static void pci_deconfigure_afu(struct cxl_afu *afu) { /* * It's okay to deconfigure when AFU is already locked, otherwise wait * until there are no readers */ if (atomic_read(&afu->configured_state) != -1) { while (atomic_cmpxchg(&afu->configured_state, 0, -1) != -1) schedule(); } cxl_native_release_psl_irq(afu); if (afu->adapter->native->sl_ops->release_serr_irq) afu->adapter->native->sl_ops->release_serr_irq(afu); pci_unmap_slice_regs(afu); } static int pci_init_afu(struct cxl *adapter, int slice, struct pci_dev *dev) { struct cxl_afu *afu; int rc = -ENOMEM; afu = cxl_alloc_afu(adapter, slice); if (!afu) return -ENOMEM; afu->native = kzalloc(sizeof(struct cxl_afu_native), GFP_KERNEL); if (!afu->native) goto err_free_afu; mutex_init(&afu->native->spa_mutex); rc = dev_set_name(&afu->dev, "afu%i.%i", adapter->adapter_num, slice); if (rc) goto err_free_native; rc = pci_configure_afu(afu, adapter, dev); if (rc) goto err_free_native; /* Don't care if this fails */ cxl_debugfs_afu_add(afu); /* * After we call this function we must not free the afu directly, even * if it returns an error! */ if ((rc = cxl_register_afu(afu))) goto err_put1; if ((rc = cxl_sysfs_afu_add(afu))) goto err_put1; adapter->afu[afu->slice] = afu; if ((rc = cxl_pci_vphb_add(afu))) dev_info(&afu->dev, "Can't register vPHB\n"); return 0; err_put1: pci_deconfigure_afu(afu); cxl_debugfs_afu_remove(afu); device_unregister(&afu->dev); return rc; err_free_native: kfree(afu->native); err_free_afu: kfree(afu); return rc; } static void cxl_pci_remove_afu(struct cxl_afu *afu) { pr_devel("%s\n", __func__); if (!afu) return; cxl_pci_vphb_remove(afu); cxl_sysfs_afu_remove(afu); cxl_debugfs_afu_remove(afu); spin_lock(&afu->adapter->afu_list_lock); afu->adapter->afu[afu->slice] = NULL; spin_unlock(&afu->adapter->afu_list_lock); cxl_context_detach_all(afu); cxl_ops->afu_deactivate_mode(afu, afu->current_mode); pci_deconfigure_afu(afu); device_unregister(&afu->dev); } int cxl_pci_reset(struct cxl *adapter) { struct pci_dev *dev = to_pci_dev(adapter->dev.parent); int rc; if (adapter->perst_same_image) { dev_warn(&dev->dev, "cxl: refusing to reset/reflash when perst_reloads_same_image is set.\n"); return -EINVAL; } dev_info(&dev->dev, "CXL reset\n"); /* * The adapter is about to be reset, so ignore errors. */ cxl_data_cache_flush(adapter); /* pcie_warm_reset requests a fundamental pci reset which includes a * PERST assert/deassert. PERST triggers a loading of the image * if "user" or "factory" is selected in sysfs */ if ((rc = pci_set_pcie_reset_state(dev, pcie_warm_reset))) { dev_err(&dev->dev, "cxl: pcie_warm_reset failed\n"); return rc; } return rc; } static int cxl_map_adapter_regs(struct cxl *adapter, struct pci_dev *dev) { if (pci_request_region(dev, 2, "priv 2 regs")) goto err1; if (pci_request_region(dev, 0, "priv 1 regs")) goto err2; pr_devel("cxl_map_adapter_regs: p1: %#016llx %#llx, p2: %#016llx %#llx", p1_base(dev), p1_size(dev), p2_base(dev), p2_size(dev)); if (!(adapter->native->p1_mmio = ioremap(p1_base(dev), p1_size(dev)))) goto err3; if (!(adapter->native->p2_mmio = ioremap(p2_base(dev), p2_size(dev)))) goto err4; return 0; err4: iounmap(adapter->native->p1_mmio); adapter->native->p1_mmio = NULL; err3: pci_release_region(dev, 0); err2: pci_release_region(dev, 2); err1: return -ENOMEM; } static void cxl_unmap_adapter_regs(struct cxl *adapter) { if (adapter->native->p1_mmio) { iounmap(adapter->native->p1_mmio); adapter->native->p1_mmio = NULL; pci_release_region(to_pci_dev(adapter->dev.parent), 2); } if (adapter->native->p2_mmio) { iounmap(adapter->native->p2_mmio); adapter->native->p2_mmio = NULL; pci_release_region(to_pci_dev(adapter->dev.parent), 0); } } static int cxl_read_vsec(struct cxl *adapter, struct pci_dev *dev) { int vsec; u32 afu_desc_off, afu_desc_size; u32 ps_off, ps_size; u16 vseclen; u8 image_state; if (!(vsec = find_cxl_vsec(dev))) { dev_err(&dev->dev, "ABORTING: CXL VSEC not found!\n"); return -ENODEV; } CXL_READ_VSEC_LENGTH(dev, vsec, &vseclen); if (vseclen < CXL_VSEC_MIN_SIZE) { dev_err(&dev->dev, "ABORTING: CXL VSEC too short\n"); return -EINVAL; } CXL_READ_VSEC_STATUS(dev, vsec, &adapter->vsec_status); CXL_READ_VSEC_PSL_REVISION(dev, vsec, &adapter->psl_rev); CXL_READ_VSEC_CAIA_MAJOR(dev, vsec, &adapter->caia_major); CXL_READ_VSEC_CAIA_MINOR(dev, vsec, &adapter->caia_minor); CXL_READ_VSEC_BASE_IMAGE(dev, vsec, &adapter->base_image); CXL_READ_VSEC_IMAGE_STATE(dev, vsec, &image_state); adapter->user_image_loaded = !!(image_state & CXL_VSEC_USER_IMAGE_LOADED); adapter->perst_select_user = !!(image_state & CXL_VSEC_USER_IMAGE_LOADED); adapter->perst_loads_image = !!(image_state & CXL_VSEC_PERST_LOADS_IMAGE); CXL_READ_VSEC_NAFUS(dev, vsec, &adapter->slices); CXL_READ_VSEC_AFU_DESC_OFF(dev, vsec, &afu_desc_off); CXL_READ_VSEC_AFU_DESC_SIZE(dev, vsec, &afu_desc_size); CXL_READ_VSEC_PS_OFF(dev, vsec, &ps_off); CXL_READ_VSEC_PS_SIZE(dev, vsec, &ps_size); /* Convert everything to bytes, because there is NO WAY I'd look at the * code a month later and forget what units these are in ;-) */ adapter->native->ps_off = ps_off * 64 * 1024; adapter->ps_size = ps_size * 64 * 1024; adapter->native->afu_desc_off = afu_desc_off * 64 * 1024; adapter->native->afu_desc_size = afu_desc_size * 64 * 1024; /* Total IRQs - 1 PSL ERROR - #AFU*(1 slice error + 1 DSI) */ adapter->user_irqs = pnv_cxl_get_irq_count(dev) - 1 - 2*adapter->slices; return 0; } /* * Workaround a PCIe Host Bridge defect on some cards, that can cause * malformed Transaction Layer Packet (TLP) errors to be erroneously * reported. Mask this error in the Uncorrectable Error Mask Register. * * The upper nibble of the PSL revision is used to distinguish between * different cards. The affected ones have it set to 0. */ static void cxl_fixup_malformed_tlp(struct cxl *adapter, struct pci_dev *dev) { int aer; u32 data; if (adapter->psl_rev & 0xf000) return; if (!(aer = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ERR))) return; pci_read_config_dword(dev, aer + PCI_ERR_UNCOR_MASK, &data); if (data & PCI_ERR_UNC_MALF_TLP) if (data & PCI_ERR_UNC_INTN) return; data |= PCI_ERR_UNC_MALF_TLP; data |= PCI_ERR_UNC_INTN; pci_write_config_dword(dev, aer + PCI_ERR_UNCOR_MASK, data); } static bool cxl_compatible_caia_version(struct cxl *adapter) { if (cxl_is_power8() && (adapter->caia_major == 1)) return true; if (cxl_is_power9() && (adapter->caia_major == 2)) return true; return false; } static int cxl_vsec_looks_ok(struct cxl *adapter, struct pci_dev *dev) { if (adapter->vsec_status & CXL_STATUS_SECOND_PORT) return -EBUSY; if (adapter->vsec_status & CXL_UNSUPPORTED_FEATURES) { dev_err(&dev->dev, "ABORTING: CXL requires unsupported features\n"); return -EINVAL; } if (!cxl_compatible_caia_version(adapter)) { dev_info(&dev->dev, "Ignoring card. PSL type is not supported (caia version: %d)\n", adapter->caia_major); return -ENODEV; } if (!adapter->slices) { /* Once we support dynamic reprogramming we can use the card if * it supports loadable AFUs */ dev_err(&dev->dev, "ABORTING: Device has no AFUs\n"); return -EINVAL; } if (!adapter->native->afu_desc_off || !adapter->native->afu_desc_size) { dev_err(&dev->dev, "ABORTING: VSEC shows no AFU descriptors\n"); return -EINVAL; } if (adapter->ps_size > p2_size(dev) - adapter->native->ps_off) { dev_err(&dev->dev, "ABORTING: Problem state size larger than " "available in BAR2: 0x%llx > 0x%llx\n", adapter->ps_size, p2_size(dev) - adapter->native->ps_off); return -EINVAL; } return 0; } ssize_t cxl_pci_read_adapter_vpd(struct cxl *adapter, void *buf, size_t len) { return pci_read_vpd(to_pci_dev(adapter->dev.parent), 0, len, buf); } static void cxl_release_adapter(struct device *dev) { struct cxl *adapter = to_cxl_adapter(dev); pr_devel("cxl_release_adapter\n"); cxl_remove_adapter_nr(adapter); kfree(adapter->native); kfree(adapter); } #define CXL_PSL_ErrIVTE_tberror (0x1ull << (63-31)) static int sanitise_adapter_regs(struct cxl *adapter) { int rc = 0; /* Clear PSL tberror bit by writing 1 to it */ cxl_p1_write(adapter, CXL_PSL_ErrIVTE, CXL_PSL_ErrIVTE_tberror); if (adapter->native->sl_ops->invalidate_all) { /* do not invalidate ERAT entries when not reloading on PERST */ if (cxl_is_power9() && (adapter->perst_loads_image)) return 0; rc = adapter->native->sl_ops->invalidate_all(adapter); } return rc; } /* This should contain *only* operations that can safely be done in * both creation and recovery. */ static int cxl_configure_adapter(struct cxl *adapter, struct pci_dev *dev) { int rc; adapter->dev.parent = &dev->dev; adapter->dev.release = cxl_release_adapter; pci_set_drvdata(dev, adapter); rc = pci_enable_device(dev); if (rc) { dev_err(&dev->dev, "pci_enable_device failed: %i\n", rc); return rc; } if ((rc = cxl_read_vsec(adapter, dev))) return rc; if ((rc = cxl_vsec_looks_ok(adapter, dev))) return rc; cxl_fixup_malformed_tlp(adapter, dev); if ((rc = setup_cxl_bars(dev))) return rc; if ((rc = switch_card_to_cxl(dev))) return rc; if ((rc = cxl_update_image_control(adapter))) return rc; if ((rc = cxl_map_adapter_regs(adapter, dev))) return rc; if ((rc = sanitise_adapter_regs(adapter))) goto err; if ((rc = adapter->native->sl_ops->adapter_regs_init(adapter, dev))) goto err; /* Required for devices using CAPP DMA mode, harmless for others */ pci_set_master(dev); adapter->tunneled_ops_supported = false; if (cxl_is_power9()) { if (pnv_pci_set_tunnel_bar(dev, 0x00020000E0000000ull, 1)) dev_info(&dev->dev, "Tunneled operations unsupported\n"); else adapter->tunneled_ops_supported = true; } if ((rc = pnv_phb_to_cxl_mode(dev, adapter->native->sl_ops->capi_mode))) goto err; /* If recovery happened, the last step is to turn on snooping. * In the non-recovery case this has no effect */ if ((rc = pnv_phb_to_cxl_mode(dev, OPAL_PHB_CAPI_MODE_SNOOP_ON))) goto err; /* Ignore error, adapter init is not dependant on timebase sync */ cxl_setup_psl_timebase(adapter, dev); if ((rc = cxl_native_register_psl_err_irq(adapter))) goto err; return 0; err: cxl_unmap_adapter_regs(adapter); return rc; } static void cxl_deconfigure_adapter(struct cxl *adapter) { struct pci_dev *pdev = to_pci_dev(adapter->dev.parent); if (cxl_is_power9()) pnv_pci_set_tunnel_bar(pdev, 0x00020000E0000000ull, 0); cxl_native_release_psl_err_irq(adapter); cxl_unmap_adapter_regs(adapter); pci_disable_device(pdev); } static void cxl_stop_trace_psl9(struct cxl *adapter) { int traceid; u64 trace_state, trace_mask; struct pci_dev *dev = to_pci_dev(adapter->dev.parent); /* read each tracearray state and issue mmio to stop them is needed */ for (traceid = 0; traceid <= CXL_PSL9_TRACEID_MAX; ++traceid) { trace_state = cxl_p1_read(adapter, CXL_PSL9_CTCCFG); trace_mask = (0x3ULL << (62 - traceid * 2)); trace_state = (trace_state & trace_mask) >> (62 - traceid * 2); dev_dbg(&dev->dev, "cxl: Traceid-%d trace_state=0x%0llX\n", traceid, trace_state); /* issue mmio if the trace array isn't in FIN state */ if (trace_state != CXL_PSL9_TRACESTATE_FIN) cxl_p1_write(adapter, CXL_PSL9_TRACECFG, 0x8400000000000000ULL | traceid); } } static void cxl_stop_trace_psl8(struct cxl *adapter) { int slice; /* Stop the trace */ cxl_p1_write(adapter, CXL_PSL_TRACE, 0x8000000000000017LL); /* Stop the slice traces */ spin_lock(&adapter->afu_list_lock); for (slice = 0; slice < adapter->slices; slice++) { if (adapter->afu[slice]) cxl_p1n_write(adapter->afu[slice], CXL_PSL_SLICE_TRACE, 0x8000000000000000LL); } spin_unlock(&adapter->afu_list_lock); } static const struct cxl_service_layer_ops psl9_ops = { .adapter_regs_init = init_implementation_adapter_regs_psl9, .invalidate_all = cxl_invalidate_all_psl9, .afu_regs_init = init_implementation_afu_regs_psl9, .sanitise_afu_regs = sanitise_afu_regs_psl9, .register_serr_irq = cxl_native_register_serr_irq, .release_serr_irq = cxl_native_release_serr_irq, .handle_interrupt = cxl_irq_psl9, .fail_irq = cxl_fail_irq_psl, .activate_dedicated_process = cxl_activate_dedicated_process_psl9, .attach_afu_directed = cxl_attach_afu_directed_psl9, .attach_dedicated_process = cxl_attach_dedicated_process_psl9, .update_dedicated_ivtes = cxl_update_dedicated_ivtes_psl9, .debugfs_add_adapter_regs = cxl_debugfs_add_adapter_regs_psl9, .debugfs_add_afu_regs = cxl_debugfs_add_afu_regs_psl9, .psl_irq_dump_registers = cxl_native_irq_dump_regs_psl9, .err_irq_dump_registers = cxl_native_err_irq_dump_regs_psl9, .debugfs_stop_trace = cxl_stop_trace_psl9, .timebase_read = timebase_read_psl9, .capi_mode = OPAL_PHB_CAPI_MODE_CAPI, .needs_reset_before_disable = true, }; static const struct cxl_service_layer_ops psl8_ops = { .adapter_regs_init = init_implementation_adapter_regs_psl8, .invalidate_all = cxl_invalidate_all_psl8, .afu_regs_init = init_implementation_afu_regs_psl8, .sanitise_afu_regs = sanitise_afu_regs_psl8, .register_serr_irq = cxl_native_register_serr_irq, .release_serr_irq = cxl_native_release_serr_irq, .handle_interrupt = cxl_irq_psl8, .fail_irq = cxl_fail_irq_psl, .activate_dedicated_process = cxl_activate_dedicated_process_psl8, .attach_afu_directed = cxl_attach_afu_directed_psl8, .attach_dedicated_process = cxl_attach_dedicated_process_psl8, .update_dedicated_ivtes = cxl_update_dedicated_ivtes_psl8, .debugfs_add_adapter_regs = cxl_debugfs_add_adapter_regs_psl8, .debugfs_add_afu_regs = cxl_debugfs_add_afu_regs_psl8, .psl_irq_dump_registers = cxl_native_irq_dump_regs_psl8, .err_irq_dump_registers = cxl_native_err_irq_dump_regs_psl8, .debugfs_stop_trace = cxl_stop_trace_psl8, .write_timebase_ctrl = write_timebase_ctrl_psl8, .timebase_read = timebase_read_psl8, .capi_mode = OPAL_PHB_CAPI_MODE_CAPI, .needs_reset_before_disable = true, }; static void set_sl_ops(struct cxl *adapter, struct pci_dev *dev) { if (cxl_is_power8()) { dev_info(&dev->dev, "Device uses a PSL8\n"); adapter->native->sl_ops = &psl8_ops; } else { dev_info(&dev->dev, "Device uses a PSL9\n"); adapter->native->sl_ops = &psl9_ops; } } static struct cxl *cxl_pci_init_adapter(struct pci_dev *dev) { struct cxl *adapter; int rc; adapter = cxl_alloc_adapter(); if (!adapter) return ERR_PTR(-ENOMEM); adapter->native = kzalloc(sizeof(struct cxl_native), GFP_KERNEL); if (!adapter->native) { rc = -ENOMEM; goto err_release; } set_sl_ops(adapter, dev); /* Set defaults for parameters which need to persist over * configure/reconfigure */ adapter->perst_loads_image = true; adapter->perst_same_image = false; rc = cxl_configure_adapter(adapter, dev); if (rc) { pci_disable_device(dev); goto err_release; } /* Don't care if this one fails: */ cxl_debugfs_adapter_add(adapter); /* * After we call this function we must not free the adapter directly, * even if it returns an error! */ if ((rc = cxl_register_adapter(adapter))) goto err_put1; if ((rc = cxl_sysfs_adapter_add(adapter))) goto err_put1; /* Release the context lock as adapter is configured */ cxl_adapter_context_unlock(adapter); return adapter; err_put1: /* This should mirror cxl_remove_adapter, except without the * sysfs parts */ cxl_debugfs_adapter_remove(adapter); cxl_deconfigure_adapter(adapter); device_unregister(&adapter->dev); return ERR_PTR(rc); err_release: cxl_release_adapter(&adapter->dev); return ERR_PTR(rc); } static void cxl_pci_remove_adapter(struct cxl *adapter) { pr_devel("cxl_remove_adapter\n"); cxl_sysfs_adapter_remove(adapter); cxl_debugfs_adapter_remove(adapter); /* * Flush adapter datacache as its about to be removed. */ cxl_data_cache_flush(adapter); cxl_deconfigure_adapter(adapter); device_unregister(&adapter->dev); } #define CXL_MAX_PCIEX_PARENT 2 int cxl_slot_is_switched(struct pci_dev *dev) { struct device_node *np; int depth = 0; if (!(np = pci_device_to_OF_node(dev))) { pr_err("cxl: np = NULL\n"); return -ENODEV; } of_node_get(np); while (np) { np = of_get_next_parent(np); if (!of_node_is_type(np, "pciex")) break; depth++; } of_node_put(np); return (depth > CXL_MAX_PCIEX_PARENT); } static int cxl_probe(struct pci_dev *dev, const struct pci_device_id *id) { struct cxl *adapter; int slice; int rc; if (cxl_pci_is_vphb_device(dev)) { dev_dbg(&dev->dev, "cxl_init_adapter: Ignoring cxl vphb device\n"); return -ENODEV; } if (cxl_slot_is_switched(dev)) { dev_info(&dev->dev, "Ignoring card on incompatible PCI slot\n"); return -ENODEV; } if (cxl_is_power9() && !radix_enabled()) { dev_info(&dev->dev, "Only Radix mode supported\n"); return -ENODEV; } if (cxl_verbose) dump_cxl_config_space(dev); adapter = cxl_pci_init_adapter(dev); if (IS_ERR(adapter)) { dev_err(&dev->dev, "cxl_init_adapter failed: %li\n", PTR_ERR(adapter)); return PTR_ERR(adapter); } for (slice = 0; slice < adapter->slices; slice++) { if ((rc = pci_init_afu(adapter, slice, dev))) { dev_err(&dev->dev, "AFU %i failed to initialise: %i\n", slice, rc); continue; } rc = cxl_afu_select_best_mode(adapter->afu[slice]); if (rc) dev_err(&dev->dev, "AFU %i failed to start: %i\n", slice, rc); } return 0; } static void cxl_remove(struct pci_dev *dev) { struct cxl *adapter = pci_get_drvdata(dev); struct cxl_afu *afu; int i; /* * Lock to prevent someone grabbing a ref through the adapter list as * we are removing it */ for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; cxl_pci_remove_afu(afu); } cxl_pci_remove_adapter(adapter); } static pci_ers_result_t cxl_vphb_error_detected(struct cxl_afu *afu, pci_channel_state_t state) { struct pci_dev *afu_dev; struct pci_driver *afu_drv; const struct pci_error_handlers *err_handler; pci_ers_result_t result = PCI_ERS_RESULT_NEED_RESET; pci_ers_result_t afu_result = PCI_ERS_RESULT_NEED_RESET; /* There should only be one entry, but go through the list * anyway */ if (afu == NULL || afu->phb == NULL) return result; list_for_each_entry(afu_dev, &afu->phb->bus->devices, bus_list) { afu_drv = to_pci_driver(afu_dev->dev.driver); if (!afu_drv) continue; afu_dev->error_state = state; err_handler = afu_drv->err_handler; if (err_handler) afu_result = err_handler->error_detected(afu_dev, state); /* Disconnect trumps all, NONE trumps NEED_RESET */ if (afu_result == PCI_ERS_RESULT_DISCONNECT) result = PCI_ERS_RESULT_DISCONNECT; else if ((afu_result == PCI_ERS_RESULT_NONE) && (result == PCI_ERS_RESULT_NEED_RESET)) result = PCI_ERS_RESULT_NONE; } return result; } static pci_ers_result_t cxl_pci_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct cxl *adapter = pci_get_drvdata(pdev); struct cxl_afu *afu; pci_ers_result_t result = PCI_ERS_RESULT_NEED_RESET; pci_ers_result_t afu_result = PCI_ERS_RESULT_NEED_RESET; int i; /* At this point, we could still have an interrupt pending. * Let's try to get them out of the way before they do * anything we don't like. */ schedule(); /* If we're permanently dead, give up. */ if (state == pci_channel_io_perm_failure) { spin_lock(&adapter->afu_list_lock); for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; /* * Tell the AFU drivers; but we don't care what they * say, we're going away. */ cxl_vphb_error_detected(afu, state); } spin_unlock(&adapter->afu_list_lock); return PCI_ERS_RESULT_DISCONNECT; } /* Are we reflashing? * * If we reflash, we could come back as something entirely * different, including a non-CAPI card. As such, by default * we don't participate in the process. We'll be unbound and * the slot re-probed. (TODO: check EEH doesn't blindly rebind * us!) * * However, this isn't the entire story: for reliablity * reasons, we usually want to reflash the FPGA on PERST in * order to get back to a more reliable known-good state. * * This causes us a bit of a problem: if we reflash we can't * trust that we'll come back the same - we could have a new * image and been PERSTed in order to load that * image. However, most of the time we actually *will* come * back the same - for example a regular EEH event. * * Therefore, we allow the user to assert that the image is * indeed the same and that we should continue on into EEH * anyway. */ if (adapter->perst_loads_image && !adapter->perst_same_image) { /* TODO take the PHB out of CXL mode */ dev_info(&pdev->dev, "reflashing, so opting out of EEH!\n"); return PCI_ERS_RESULT_NONE; } /* * At this point, we want to try to recover. We'll always * need a complete slot reset: we don't trust any other reset. * * Now, we go through each AFU: * - We send the driver, if bound, an error_detected callback. * We expect it to clean up, but it can also tell us to give * up and permanently detach the card. To simplify things, if * any bound AFU driver doesn't support EEH, we give up on EEH. * * - We detach all contexts associated with the AFU. This * does not free them, but puts them into a CLOSED state * which causes any the associated files to return useful * errors to userland. It also unmaps, but does not free, * any IRQs. * * - We clean up our side: releasing and unmapping resources we hold * so we can wire them up again when the hardware comes back up. * * Driver authors should note: * * - Any contexts you create in your kernel driver (except * those associated with anonymous file descriptors) are * your responsibility to free and recreate. Likewise with * any attached resources. * * - We will take responsibility for re-initialising the * device context (the one set up for you in * cxl_pci_enable_device_hook and accessed through * cxl_get_context). If you've attached IRQs or other * resources to it, they remains yours to free. * * You can call the same functions to release resources as you * normally would: we make sure that these functions continue * to work when the hardware is down. * * Two examples: * * 1) If you normally free all your resources at the end of * each request, or if you use anonymous FDs, your * error_detected callback can simply set a flag to tell * your driver not to start any new calls. You can then * clear the flag in the resume callback. * * 2) If you normally allocate your resources on startup: * * Set a flag in error_detected as above. * * Let CXL detach your contexts. * * In slot_reset, free the old resources and allocate new ones. * * In resume, clear the flag to allow things to start. */ /* Make sure no one else changes the afu list */ spin_lock(&adapter->afu_list_lock); for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; if (afu == NULL) continue; afu_result = cxl_vphb_error_detected(afu, state); cxl_context_detach_all(afu); cxl_ops->afu_deactivate_mode(afu, afu->current_mode); pci_deconfigure_afu(afu); /* Disconnect trumps all, NONE trumps NEED_RESET */ if (afu_result == PCI_ERS_RESULT_DISCONNECT) result = PCI_ERS_RESULT_DISCONNECT; else if ((afu_result == PCI_ERS_RESULT_NONE) && (result == PCI_ERS_RESULT_NEED_RESET)) result = PCI_ERS_RESULT_NONE; } spin_unlock(&adapter->afu_list_lock); /* should take the context lock here */ if (cxl_adapter_context_lock(adapter) != 0) dev_warn(&adapter->dev, "Couldn't take context lock with %d active-contexts\n", atomic_read(&adapter->contexts_num)); cxl_deconfigure_adapter(adapter); return result; } static pci_ers_result_t cxl_pci_slot_reset(struct pci_dev *pdev) { struct cxl *adapter = pci_get_drvdata(pdev); struct cxl_afu *afu; struct cxl_context *ctx; struct pci_dev *afu_dev; struct pci_driver *afu_drv; const struct pci_error_handlers *err_handler; pci_ers_result_t afu_result = PCI_ERS_RESULT_RECOVERED; pci_ers_result_t result = PCI_ERS_RESULT_RECOVERED; int i; if (cxl_configure_adapter(adapter, pdev)) goto err; /* * Unlock context activation for the adapter. Ideally this should be * done in cxl_pci_resume but cxlflash module tries to activate the * master context as part of slot_reset callback. */ cxl_adapter_context_unlock(adapter); spin_lock(&adapter->afu_list_lock); for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; if (afu == NULL) continue; if (pci_configure_afu(afu, adapter, pdev)) goto err_unlock; if (cxl_afu_select_best_mode(afu)) goto err_unlock; if (afu->phb == NULL) continue; list_for_each_entry(afu_dev, &afu->phb->bus->devices, bus_list) { /* Reset the device context. * TODO: make this less disruptive */ ctx = cxl_get_context(afu_dev); if (ctx && cxl_release_context(ctx)) goto err_unlock; ctx = cxl_dev_context_init(afu_dev); if (IS_ERR(ctx)) goto err_unlock; afu_dev->dev.archdata.cxl_ctx = ctx; if (cxl_ops->afu_check_and_enable(afu)) goto err_unlock; afu_dev->error_state = pci_channel_io_normal; /* If there's a driver attached, allow it to * chime in on recovery. Drivers should check * if everything has come back OK, but * shouldn't start new work until we call * their resume function. */ afu_drv = to_pci_driver(afu_dev->dev.driver); if (!afu_drv) continue; err_handler = afu_drv->err_handler; if (err_handler && err_handler->slot_reset) afu_result = err_handler->slot_reset(afu_dev); if (afu_result == PCI_ERS_RESULT_DISCONNECT) result = PCI_ERS_RESULT_DISCONNECT; } } spin_unlock(&adapter->afu_list_lock); return result; err_unlock: spin_unlock(&adapter->afu_list_lock); err: /* All the bits that happen in both error_detected and cxl_remove * should be idempotent, so we don't need to worry about leaving a mix * of unconfigured and reconfigured resources. */ dev_err(&pdev->dev, "EEH recovery failed. Asking to be disconnected.\n"); return PCI_ERS_RESULT_DISCONNECT; } static void cxl_pci_resume(struct pci_dev *pdev) { struct cxl *adapter = pci_get_drvdata(pdev); struct cxl_afu *afu; struct pci_dev *afu_dev; struct pci_driver *afu_drv; const struct pci_error_handlers *err_handler; int i; /* Everything is back now. Drivers should restart work now. * This is not the place to be checking if everything came back up * properly, because there's no return value: do that in slot_reset. */ spin_lock(&adapter->afu_list_lock); for (i = 0; i < adapter->slices; i++) { afu = adapter->afu[i]; if (afu == NULL || afu->phb == NULL) continue; list_for_each_entry(afu_dev, &afu->phb->bus->devices, bus_list) { afu_drv = to_pci_driver(afu_dev->dev.driver); if (!afu_drv) continue; err_handler = afu_drv->err_handler; if (err_handler && err_handler->resume) err_handler->resume(afu_dev); } } spin_unlock(&adapter->afu_list_lock); } static const struct pci_error_handlers cxl_err_handler = { .error_detected = cxl_pci_error_detected, .slot_reset = cxl_pci_slot_reset, .resume = cxl_pci_resume, }; struct pci_driver cxl_pci_driver = { .name = "cxl-pci", .id_table = cxl_pci_tbl, .probe = cxl_probe, .remove = cxl_remove, .shutdown = cxl_remove, .err_handler = &cxl_err_handler, };