// SPDX-License-Identifier: GPL-2.0 /* * This is for all the tests relating directly to heap memory, including * page allocation and slab allocations. */ #include "lkdtm.h" #include #include #include static struct kmem_cache *double_free_cache; static struct kmem_cache *a_cache; static struct kmem_cache *b_cache; /* * Using volatile here means the compiler cannot ever make assumptions * about this value. This means compile-time length checks involving * this variable cannot be performed; only run-time checks. */ static volatile int __offset = 1; /* * If there aren't guard pages, it's likely that a consecutive allocation will * let us overflow into the second allocation without overwriting something real. */ void lkdtm_VMALLOC_LINEAR_OVERFLOW(void) { char *one, *two; one = vzalloc(PAGE_SIZE); two = vzalloc(PAGE_SIZE); pr_info("Attempting vmalloc linear overflow ...\n"); memset(one, 0xAA, PAGE_SIZE + __offset); vfree(two); vfree(one); } /* * This tries to stay within the next largest power-of-2 kmalloc cache * to avoid actually overwriting anything important if it's not detected * correctly. */ void lkdtm_SLAB_LINEAR_OVERFLOW(void) { size_t len = 1020; u32 *data = kmalloc(len, GFP_KERNEL); if (!data) return; pr_info("Attempting slab linear overflow ...\n"); data[1024 / sizeof(u32)] = 0x12345678; kfree(data); } void lkdtm_WRITE_AFTER_FREE(void) { int *base, *again; size_t len = 1024; /* * The slub allocator uses the first word to store the free * pointer in some configurations. Use the middle of the * allocation to avoid running into the freelist */ size_t offset = (len / sizeof(*base)) / 2; base = kmalloc(len, GFP_KERNEL); if (!base) return; pr_info("Allocated memory %p-%p\n", base, &base[offset * 2]); pr_info("Attempting bad write to freed memory at %p\n", &base[offset]); kfree(base); base[offset] = 0x0abcdef0; /* Attempt to notice the overwrite. */ again = kmalloc(len, GFP_KERNEL); kfree(again); if (again != base) pr_info("Hmm, didn't get the same memory range.\n"); } void lkdtm_READ_AFTER_FREE(void) { int *base, *val, saw; size_t len = 1024; /* * The slub allocator will use the either the first word or * the middle of the allocation to store the free pointer, * depending on configurations. Store in the second word to * avoid running into the freelist. */ size_t offset = sizeof(*base); base = kmalloc(len, GFP_KERNEL); if (!base) { pr_info("Unable to allocate base memory.\n"); return; } val = kmalloc(len, GFP_KERNEL); if (!val) { pr_info("Unable to allocate val memory.\n"); kfree(base); return; } *val = 0x12345678; base[offset] = *val; pr_info("Value in memory before free: %x\n", base[offset]); kfree(base); pr_info("Attempting bad read from freed memory\n"); saw = base[offset]; if (saw != *val) { /* Good! Poisoning happened, so declare a win. */ pr_info("Memory correctly poisoned (%x)\n", saw); } else { pr_err("FAIL: Memory was not poisoned!\n"); pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); } kfree(val); } void lkdtm_WRITE_BUDDY_AFTER_FREE(void) { unsigned long p = __get_free_page(GFP_KERNEL); if (!p) { pr_info("Unable to allocate free page\n"); return; } pr_info("Writing to the buddy page before free\n"); memset((void *)p, 0x3, PAGE_SIZE); free_page(p); schedule(); pr_info("Attempting bad write to the buddy page after free\n"); memset((void *)p, 0x78, PAGE_SIZE); /* Attempt to notice the overwrite. */ p = __get_free_page(GFP_KERNEL); free_page(p); schedule(); } void lkdtm_READ_BUDDY_AFTER_FREE(void) { unsigned long p = __get_free_page(GFP_KERNEL); int saw, *val; int *base; if (!p) { pr_info("Unable to allocate free page\n"); return; } val = kmalloc(1024, GFP_KERNEL); if (!val) { pr_info("Unable to allocate val memory.\n"); free_page(p); return; } base = (int *)p; *val = 0x12345678; base[0] = *val; pr_info("Value in memory before free: %x\n", base[0]); free_page(p); pr_info("Attempting to read from freed memory\n"); saw = base[0]; if (saw != *val) { /* Good! Poisoning happened, so declare a win. */ pr_info("Memory correctly poisoned (%x)\n", saw); } else { pr_err("FAIL: Buddy page was not poisoned!\n"); pr_expected_config_param(CONFIG_INIT_ON_FREE_DEFAULT_ON, "init_on_free"); } kfree(val); } void lkdtm_SLAB_INIT_ON_ALLOC(void) { u8 *first; u8 *val; first = kmalloc(512, GFP_KERNEL); if (!first) { pr_info("Unable to allocate 512 bytes the first time.\n"); return; } memset(first, 0xAB, 512); kfree(first); val = kmalloc(512, GFP_KERNEL); if (!val) { pr_info("Unable to allocate 512 bytes the second time.\n"); return; } if (val != first) { pr_warn("Reallocation missed clobbered memory.\n"); } if (memchr(val, 0xAB, 512) == NULL) { pr_info("Memory appears initialized (%x, no earlier values)\n", *val); } else { pr_err("FAIL: Slab was not initialized\n"); pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); } kfree(val); } void lkdtm_BUDDY_INIT_ON_ALLOC(void) { u8 *first; u8 *val; first = (u8 *)__get_free_page(GFP_KERNEL); if (!first) { pr_info("Unable to allocate first free page\n"); return; } memset(first, 0xAB, PAGE_SIZE); free_page((unsigned long)first); val = (u8 *)__get_free_page(GFP_KERNEL); if (!val) { pr_info("Unable to allocate second free page\n"); return; } if (val != first) { pr_warn("Reallocation missed clobbered memory.\n"); } if (memchr(val, 0xAB, PAGE_SIZE) == NULL) { pr_info("Memory appears initialized (%x, no earlier values)\n", *val); } else { pr_err("FAIL: Slab was not initialized\n"); pr_expected_config_param(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, "init_on_alloc"); } free_page((unsigned long)val); } void lkdtm_SLAB_FREE_DOUBLE(void) { int *val; val = kmem_cache_alloc(double_free_cache, GFP_KERNEL); if (!val) { pr_info("Unable to allocate double_free_cache memory.\n"); return; } /* Just make sure we got real memory. */ *val = 0x12345678; pr_info("Attempting double slab free ...\n"); kmem_cache_free(double_free_cache, val); kmem_cache_free(double_free_cache, val); } void lkdtm_SLAB_FREE_CROSS(void) { int *val; val = kmem_cache_alloc(a_cache, GFP_KERNEL); if (!val) { pr_info("Unable to allocate a_cache memory.\n"); return; } /* Just make sure we got real memory. */ *val = 0x12345679; pr_info("Attempting cross-cache slab free ...\n"); kmem_cache_free(b_cache, val); } void lkdtm_SLAB_FREE_PAGE(void) { unsigned long p = __get_free_page(GFP_KERNEL); pr_info("Attempting non-Slab slab free ...\n"); kmem_cache_free(NULL, (void *)p); free_page(p); } /* * We have constructors to keep the caches distinctly separated without * needing to boot with "slab_nomerge". */ static void ctor_double_free(void *region) { } static void ctor_a(void *region) { } static void ctor_b(void *region) { } void __init lkdtm_heap_init(void) { double_free_cache = kmem_cache_create("lkdtm-heap-double_free", 64, 0, 0, ctor_double_free); a_cache = kmem_cache_create("lkdtm-heap-a", 64, 0, 0, ctor_a); b_cache = kmem_cache_create("lkdtm-heap-b", 64, 0, 0, ctor_b); } void __exit lkdtm_heap_exit(void) { kmem_cache_destroy(double_free_cache); kmem_cache_destroy(a_cache); kmem_cache_destroy(b_cache); }