// SPDX-License-Identifier: GPL-2.0-or-later /* * Synopsys DesignWare Multimedia Card Interface driver * (Based on NXP driver for lpc 31xx) * * Copyright (C) 2009 NXP Semiconductors * Copyright (C) 2009, 2010 Imagination Technologies Ltd. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "dw_mmc.h" /* Common flag combinations */ #define DW_MCI_DATA_ERROR_FLAGS (SDMMC_INT_DRTO | SDMMC_INT_DCRC | \ SDMMC_INT_HTO | SDMMC_INT_SBE | \ SDMMC_INT_EBE | SDMMC_INT_HLE) #define DW_MCI_CMD_ERROR_FLAGS (SDMMC_INT_RTO | SDMMC_INT_RCRC | \ SDMMC_INT_RESP_ERR | SDMMC_INT_HLE) #define DW_MCI_ERROR_FLAGS (DW_MCI_DATA_ERROR_FLAGS | \ DW_MCI_CMD_ERROR_FLAGS) #define DW_MCI_SEND_STATUS 1 #define DW_MCI_RECV_STATUS 2 #define DW_MCI_DMA_THRESHOLD 16 #define DW_MCI_FREQ_MAX 200000000 /* unit: HZ */ #define DW_MCI_FREQ_MIN 100000 /* unit: HZ */ #define IDMAC_INT_CLR (SDMMC_IDMAC_INT_AI | SDMMC_IDMAC_INT_NI | \ SDMMC_IDMAC_INT_CES | SDMMC_IDMAC_INT_DU | \ SDMMC_IDMAC_INT_FBE | SDMMC_IDMAC_INT_RI | \ SDMMC_IDMAC_INT_TI) #define DESC_RING_BUF_SZ PAGE_SIZE struct idmac_desc_64addr { u32 des0; /* Control Descriptor */ #define IDMAC_OWN_CLR64(x) \ !((x) & cpu_to_le32(IDMAC_DES0_OWN)) u32 des1; /* Reserved */ u32 des2; /*Buffer sizes */ #define IDMAC_64ADDR_SET_BUFFER1_SIZE(d, s) \ ((d)->des2 = ((d)->des2 & cpu_to_le32(0x03ffe000)) | \ ((cpu_to_le32(s)) & cpu_to_le32(0x1fff))) u32 des3; /* Reserved */ u32 des4; /* Lower 32-bits of Buffer Address Pointer 1*/ u32 des5; /* Upper 32-bits of Buffer Address Pointer 1*/ u32 des6; /* Lower 32-bits of Next Descriptor Address */ u32 des7; /* Upper 32-bits of Next Descriptor Address */ }; struct idmac_desc { __le32 des0; /* Control Descriptor */ #define IDMAC_DES0_DIC BIT(1) #define IDMAC_DES0_LD BIT(2) #define IDMAC_DES0_FD BIT(3) #define IDMAC_DES0_CH BIT(4) #define IDMAC_DES0_ER BIT(5) #define IDMAC_DES0_CES BIT(30) #define IDMAC_DES0_OWN BIT(31) __le32 des1; /* Buffer sizes */ #define IDMAC_SET_BUFFER1_SIZE(d, s) \ ((d)->des1 = ((d)->des1 & cpu_to_le32(0x03ffe000)) | (cpu_to_le32((s) & 0x1fff))) __le32 des2; /* buffer 1 physical address */ __le32 des3; /* buffer 2 physical address */ }; /* Each descriptor can transfer up to 4KB of data in chained mode */ #define DW_MCI_DESC_DATA_LENGTH 0x1000 #if defined(CONFIG_DEBUG_FS) static int dw_mci_req_show(struct seq_file *s, void *v) { struct dw_mci_slot *slot = s->private; struct mmc_request *mrq; struct mmc_command *cmd; struct mmc_command *stop; struct mmc_data *data; /* Make sure we get a consistent snapshot */ spin_lock_bh(&slot->host->lock); mrq = slot->mrq; if (mrq) { cmd = mrq->cmd; data = mrq->data; stop = mrq->stop; if (cmd) seq_printf(s, "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", cmd->opcode, cmd->arg, cmd->flags, cmd->resp[0], cmd->resp[1], cmd->resp[2], cmd->resp[2], cmd->error); if (data) seq_printf(s, "DATA %u / %u * %u flg %x err %d\n", data->bytes_xfered, data->blocks, data->blksz, data->flags, data->error); if (stop) seq_printf(s, "CMD%u(0x%x) flg %x rsp %x %x %x %x err %d\n", stop->opcode, stop->arg, stop->flags, stop->resp[0], stop->resp[1], stop->resp[2], stop->resp[2], stop->error); } spin_unlock_bh(&slot->host->lock); return 0; } DEFINE_SHOW_ATTRIBUTE(dw_mci_req); static int dw_mci_regs_show(struct seq_file *s, void *v) { struct dw_mci *host = s->private; pm_runtime_get_sync(host->dev); seq_printf(s, "STATUS:\t0x%08x\n", mci_readl(host, STATUS)); seq_printf(s, "RINTSTS:\t0x%08x\n", mci_readl(host, RINTSTS)); seq_printf(s, "CMD:\t0x%08x\n", mci_readl(host, CMD)); seq_printf(s, "CTRL:\t0x%08x\n", mci_readl(host, CTRL)); seq_printf(s, "INTMASK:\t0x%08x\n", mci_readl(host, INTMASK)); seq_printf(s, "CLKENA:\t0x%08x\n", mci_readl(host, CLKENA)); pm_runtime_put_autosuspend(host->dev); return 0; } DEFINE_SHOW_ATTRIBUTE(dw_mci_regs); static void dw_mci_init_debugfs(struct dw_mci_slot *slot) { struct mmc_host *mmc = slot->mmc; struct dw_mci *host = slot->host; struct dentry *root; root = mmc->debugfs_root; if (!root) return; debugfs_create_file("regs", S_IRUSR, root, host, &dw_mci_regs_fops); debugfs_create_file("req", S_IRUSR, root, slot, &dw_mci_req_fops); debugfs_create_u32("state", S_IRUSR, root, (u32 *)&host->state); debugfs_create_x32("pending_events", S_IRUSR, root, (u32 *)&host->pending_events); debugfs_create_x32("completed_events", S_IRUSR, root, (u32 *)&host->completed_events); } #endif /* defined(CONFIG_DEBUG_FS) */ static bool dw_mci_ctrl_reset(struct dw_mci *host, u32 reset) { u32 ctrl; ctrl = mci_readl(host, CTRL); ctrl |= reset; mci_writel(host, CTRL, ctrl); /* wait till resets clear */ if (readl_poll_timeout_atomic(host->regs + SDMMC_CTRL, ctrl, !(ctrl & reset), 1, 500 * USEC_PER_MSEC)) { dev_err(host->dev, "Timeout resetting block (ctrl reset %#x)\n", ctrl & reset); return false; } return true; } static void dw_mci_wait_while_busy(struct dw_mci *host, u32 cmd_flags) { u32 status; /* * Databook says that before issuing a new data transfer command * we need to check to see if the card is busy. Data transfer commands * all have SDMMC_CMD_PRV_DAT_WAIT set, so we'll key off that. * * ...also allow sending for SDMMC_CMD_VOLT_SWITCH where busy is * expected. */ if ((cmd_flags & SDMMC_CMD_PRV_DAT_WAIT) && !(cmd_flags & SDMMC_CMD_VOLT_SWITCH)) { if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS, status, !(status & SDMMC_STATUS_BUSY), 10, 500 * USEC_PER_MSEC)) dev_err(host->dev, "Busy; trying anyway\n"); } } static void mci_send_cmd(struct dw_mci_slot *slot, u32 cmd, u32 arg) { struct dw_mci *host = slot->host; unsigned int cmd_status = 0; mci_writel(host, CMDARG, arg); wmb(); /* drain writebuffer */ dw_mci_wait_while_busy(host, cmd); mci_writel(host, CMD, SDMMC_CMD_START | cmd); if (readl_poll_timeout_atomic(host->regs + SDMMC_CMD, cmd_status, !(cmd_status & SDMMC_CMD_START), 1, 500 * USEC_PER_MSEC)) dev_err(&slot->mmc->class_dev, "Timeout sending command (cmd %#x arg %#x status %#x)\n", cmd, arg, cmd_status); } static u32 dw_mci_prepare_command(struct mmc_host *mmc, struct mmc_command *cmd) { struct dw_mci_slot *slot = mmc_priv(mmc); struct dw_mci *host = slot->host; u32 cmdr; cmd->error = -EINPROGRESS; cmdr = cmd->opcode; if (cmd->opcode == MMC_STOP_TRANSMISSION || cmd->opcode == MMC_GO_IDLE_STATE || cmd->opcode == MMC_GO_INACTIVE_STATE || (cmd->opcode == SD_IO_RW_DIRECT && ((cmd->arg >> 9) & 0x1FFFF) == SDIO_CCCR_ABORT)) cmdr |= SDMMC_CMD_STOP; else if (cmd->opcode != MMC_SEND_STATUS && cmd->data) cmdr |= SDMMC_CMD_PRV_DAT_WAIT; if (cmd->opcode == SD_SWITCH_VOLTAGE) { u32 clk_en_a; /* Special bit makes CMD11 not die */ cmdr |= SDMMC_CMD_VOLT_SWITCH; /* Change state to continue to handle CMD11 weirdness */ WARN_ON(slot->host->state != STATE_SENDING_CMD); slot->host->state = STATE_SENDING_CMD11; /* * We need to disable low power mode (automatic clock stop) * while doing voltage switch so we don't confuse the card, * since stopping the clock is a specific part of the UHS * voltage change dance. * * Note that low power mode (SDMMC_CLKEN_LOW_PWR) will be * unconditionally turned back on in dw_mci_setup_bus() if it's * ever called with a non-zero clock. That shouldn't happen * until the voltage change is all done. */ clk_en_a = mci_readl(host, CLKENA); clk_en_a &= ~(SDMMC_CLKEN_LOW_PWR << slot->id); mci_writel(host, CLKENA, clk_en_a); mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT, 0); } if (cmd->flags & MMC_RSP_PRESENT) { /* We expect a response, so set this bit */ cmdr |= SDMMC_CMD_RESP_EXP; if (cmd->flags & MMC_RSP_136) cmdr |= SDMMC_CMD_RESP_LONG; } if (cmd->flags & MMC_RSP_CRC) cmdr |= SDMMC_CMD_RESP_CRC; if (cmd->data) { cmdr |= SDMMC_CMD_DAT_EXP; if (cmd->data->flags & MMC_DATA_WRITE) cmdr |= SDMMC_CMD_DAT_WR; } if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &slot->flags)) cmdr |= SDMMC_CMD_USE_HOLD_REG; return cmdr; } static u32 dw_mci_prep_stop_abort(struct dw_mci *host, struct mmc_command *cmd) { struct mmc_command *stop; u32 cmdr; if (!cmd->data) return 0; stop = &host->stop_abort; cmdr = cmd->opcode; memset(stop, 0, sizeof(struct mmc_command)); if (cmdr == MMC_READ_SINGLE_BLOCK || cmdr == MMC_READ_MULTIPLE_BLOCK || cmdr == MMC_WRITE_BLOCK || cmdr == MMC_WRITE_MULTIPLE_BLOCK || cmdr == MMC_SEND_TUNING_BLOCK || cmdr == MMC_SEND_TUNING_BLOCK_HS200) { stop->opcode = MMC_STOP_TRANSMISSION; stop->arg = 0; stop->flags = MMC_RSP_R1B | MMC_CMD_AC; } else if (cmdr == SD_IO_RW_EXTENDED) { stop->opcode = SD_IO_RW_DIRECT; stop->arg |= (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) | ((cmd->arg >> 28) & 0x7); stop->flags = MMC_RSP_SPI_R5 | MMC_RSP_R5 | MMC_CMD_AC; } else { return 0; } cmdr = stop->opcode | SDMMC_CMD_STOP | SDMMC_CMD_RESP_CRC | SDMMC_CMD_RESP_EXP; if (!test_bit(DW_MMC_CARD_NO_USE_HOLD, &host->slot->flags)) cmdr |= SDMMC_CMD_USE_HOLD_REG; return cmdr; } static inline void dw_mci_set_cto(struct dw_mci *host) { unsigned int cto_clks; unsigned int cto_div; unsigned int cto_ms; unsigned long irqflags; cto_clks = mci_readl(host, TMOUT) & 0xff; cto_div = (mci_readl(host, CLKDIV) & 0xff) * 2; if (cto_div == 0) cto_div = 1; cto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * cto_clks * cto_div, host->bus_hz); /* add a bit spare time */ cto_ms += 10; /* * The durations we're working with are fairly short so we have to be * extra careful about synchronization here. Specifically in hardware a * command timeout is _at most_ 5.1 ms, so that means we expect an * interrupt (either command done or timeout) to come rather quickly * after the mci_writel. ...but just in case we have a long interrupt * latency let's add a bit of paranoia. * * In general we'll assume that at least an interrupt will be asserted * in hardware by the time the cto_timer runs. ...and if it hasn't * been asserted in hardware by that time then we'll assume it'll never * come. */ spin_lock_irqsave(&host->irq_lock, irqflags); if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) mod_timer(&host->cto_timer, jiffies + msecs_to_jiffies(cto_ms) + 1); spin_unlock_irqrestore(&host->irq_lock, irqflags); } static void dw_mci_start_command(struct dw_mci *host, struct mmc_command *cmd, u32 cmd_flags) { host->cmd = cmd; dev_vdbg(host->dev, "start command: ARGR=0x%08x CMDR=0x%08x\n", cmd->arg, cmd_flags); mci_writel(host, CMDARG, cmd->arg); wmb(); /* drain writebuffer */ dw_mci_wait_while_busy(host, cmd_flags); mci_writel(host, CMD, cmd_flags | SDMMC_CMD_START); /* response expected command only */ if (cmd_flags & SDMMC_CMD_RESP_EXP) dw_mci_set_cto(host); } static inline void send_stop_abort(struct dw_mci *host, struct mmc_data *data) { struct mmc_command *stop = &host->stop_abort; dw_mci_start_command(host, stop, host->stop_cmdr); } /* DMA interface functions */ static void dw_mci_stop_dma(struct dw_mci *host) { if (host->using_dma) { host->dma_ops->stop(host); host->dma_ops->cleanup(host); } /* Data transfer was stopped by the interrupt handler */ set_bit(EVENT_XFER_COMPLETE, &host->pending_events); } static void dw_mci_dma_cleanup(struct dw_mci *host) { struct mmc_data *data = host->data; if (data && data->host_cookie == COOKIE_MAPPED) { dma_unmap_sg(host->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); data->host_cookie = COOKIE_UNMAPPED; } } static void dw_mci_idmac_reset(struct dw_mci *host) { u32 bmod = mci_readl(host, BMOD); /* Software reset of DMA */ bmod |= SDMMC_IDMAC_SWRESET; mci_writel(host, BMOD, bmod); } static void dw_mci_idmac_stop_dma(struct dw_mci *host) { u32 temp; /* Disable and reset the IDMAC interface */ temp = mci_readl(host, CTRL); temp &= ~SDMMC_CTRL_USE_IDMAC; temp |= SDMMC_CTRL_DMA_RESET; mci_writel(host, CTRL, temp); /* Stop the IDMAC running */ temp = mci_readl(host, BMOD); temp &= ~(SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB); temp |= SDMMC_IDMAC_SWRESET; mci_writel(host, BMOD, temp); } static void dw_mci_dmac_complete_dma(void *arg) { struct dw_mci *host = arg; struct mmc_data *data = host->data; dev_vdbg(host->dev, "DMA complete\n"); if ((host->use_dma == TRANS_MODE_EDMAC) && data && (data->flags & MMC_DATA_READ)) /* Invalidate cache after read */ dma_sync_sg_for_cpu(mmc_dev(host->slot->mmc), data->sg, data->sg_len, DMA_FROM_DEVICE); host->dma_ops->cleanup(host); /* * If the card was removed, data will be NULL. No point in trying to * send the stop command or waiting for NBUSY in this case. */ if (data) { set_bit(EVENT_XFER_COMPLETE, &host->pending_events); tasklet_schedule(&host->tasklet); } } static int dw_mci_idmac_init(struct dw_mci *host) { int i; if (host->dma_64bit_address == 1) { struct idmac_desc_64addr *p; /* Number of descriptors in the ring buffer */ host->ring_size = DESC_RING_BUF_SZ / sizeof(struct idmac_desc_64addr); /* Forward link the descriptor list */ for (i = 0, p = host->sg_cpu; i < host->ring_size - 1; i++, p++) { p->des6 = (host->sg_dma + (sizeof(struct idmac_desc_64addr) * (i + 1))) & 0xffffffff; p->des7 = (u64)(host->sg_dma + (sizeof(struct idmac_desc_64addr) * (i + 1))) >> 32; /* Initialize reserved and buffer size fields to "0" */ p->des0 = 0; p->des1 = 0; p->des2 = 0; p->des3 = 0; } /* Set the last descriptor as the end-of-ring descriptor */ p->des6 = host->sg_dma & 0xffffffff; p->des7 = (u64)host->sg_dma >> 32; p->des0 = IDMAC_DES0_ER; } else { struct idmac_desc *p; /* Number of descriptors in the ring buffer */ host->ring_size = DESC_RING_BUF_SZ / sizeof(struct idmac_desc); /* Forward link the descriptor list */ for (i = 0, p = host->sg_cpu; i < host->ring_size - 1; i++, p++) { p->des3 = cpu_to_le32(host->sg_dma + (sizeof(struct idmac_desc) * (i + 1))); p->des0 = 0; p->des1 = 0; } /* Set the last descriptor as the end-of-ring descriptor */ p->des3 = cpu_to_le32(host->sg_dma); p->des0 = cpu_to_le32(IDMAC_DES0_ER); } dw_mci_idmac_reset(host); if (host->dma_64bit_address == 1) { /* Mask out interrupts - get Tx & Rx complete only */ mci_writel(host, IDSTS64, IDMAC_INT_CLR); mci_writel(host, IDINTEN64, SDMMC_IDMAC_INT_NI | SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); /* Set the descriptor base address */ mci_writel(host, DBADDRL, host->sg_dma & 0xffffffff); mci_writel(host, DBADDRU, (u64)host->sg_dma >> 32); } else { /* Mask out interrupts - get Tx & Rx complete only */ mci_writel(host, IDSTS, IDMAC_INT_CLR); mci_writel(host, IDINTEN, SDMMC_IDMAC_INT_NI | SDMMC_IDMAC_INT_RI | SDMMC_IDMAC_INT_TI); /* Set the descriptor base address */ mci_writel(host, DBADDR, host->sg_dma); } return 0; } static inline int dw_mci_prepare_desc64(struct dw_mci *host, struct mmc_data *data, unsigned int sg_len) { unsigned int desc_len; struct idmac_desc_64addr *desc_first, *desc_last, *desc; u32 val; int i; desc_first = desc_last = desc = host->sg_cpu; for (i = 0; i < sg_len; i++) { unsigned int length = sg_dma_len(&data->sg[i]); u64 mem_addr = sg_dma_address(&data->sg[i]); for ( ; length ; desc++) { desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? length : DW_MCI_DESC_DATA_LENGTH; length -= desc_len; /* * Wait for the former clear OWN bit operation * of IDMAC to make sure that this descriptor * isn't still owned by IDMAC as IDMAC's write * ops and CPU's read ops are asynchronous. */ if (readl_poll_timeout_atomic(&desc->des0, val, !(val & IDMAC_DES0_OWN), 10, 100 * USEC_PER_MSEC)) goto err_own_bit; /* * Set the OWN bit and disable interrupts * for this descriptor */ desc->des0 = IDMAC_DES0_OWN | IDMAC_DES0_DIC | IDMAC_DES0_CH; /* Buffer length */ IDMAC_64ADDR_SET_BUFFER1_SIZE(desc, desc_len); /* Physical address to DMA to/from */ desc->des4 = mem_addr & 0xffffffff; desc->des5 = mem_addr >> 32; /* Update physical address for the next desc */ mem_addr += desc_len; /* Save pointer to the last descriptor */ desc_last = desc; } } /* Set first descriptor */ desc_first->des0 |= IDMAC_DES0_FD; /* Set last descriptor */ desc_last->des0 &= ~(IDMAC_DES0_CH | IDMAC_DES0_DIC); desc_last->des0 |= IDMAC_DES0_LD; return 0; err_own_bit: /* restore the descriptor chain as it's polluted */ dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n"); memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); dw_mci_idmac_init(host); return -EINVAL; } static inline int dw_mci_prepare_desc32(struct dw_mci *host, struct mmc_data *data, unsigned int sg_len) { unsigned int desc_len; struct idmac_desc *desc_first, *desc_last, *desc; u32 val; int i; desc_first = desc_last = desc = host->sg_cpu; for (i = 0; i < sg_len; i++) { unsigned int length = sg_dma_len(&data->sg[i]); u32 mem_addr = sg_dma_address(&data->sg[i]); for ( ; length ; desc++) { desc_len = (length <= DW_MCI_DESC_DATA_LENGTH) ? length : DW_MCI_DESC_DATA_LENGTH; length -= desc_len; /* * Wait for the former clear OWN bit operation * of IDMAC to make sure that this descriptor * isn't still owned by IDMAC as IDMAC's write * ops and CPU's read ops are asynchronous. */ if (readl_poll_timeout_atomic(&desc->des0, val, IDMAC_OWN_CLR64(val), 10, 100 * USEC_PER_MSEC)) goto err_own_bit; /* * Set the OWN bit and disable interrupts * for this descriptor */ desc->des0 = cpu_to_le32(IDMAC_DES0_OWN | IDMAC_DES0_DIC | IDMAC_DES0_CH); /* Buffer length */ IDMAC_SET_BUFFER1_SIZE(desc, desc_len); /* Physical address to DMA to/from */ desc->des2 = cpu_to_le32(mem_addr); /* Update physical address for the next desc */ mem_addr += desc_len; /* Save pointer to the last descriptor */ desc_last = desc; } } /* Set first descriptor */ desc_first->des0 |= cpu_to_le32(IDMAC_DES0_FD); /* Set last descriptor */ desc_last->des0 &= cpu_to_le32(~(IDMAC_DES0_CH | IDMAC_DES0_DIC)); desc_last->des0 |= cpu_to_le32(IDMAC_DES0_LD); return 0; err_own_bit: /* restore the descriptor chain as it's polluted */ dev_dbg(host->dev, "descriptor is still owned by IDMAC.\n"); memset(host->sg_cpu, 0, DESC_RING_BUF_SZ); dw_mci_idmac_init(host); return -EINVAL; } static int dw_mci_idmac_start_dma(struct dw_mci *host, unsigned int sg_len) { u32 temp; int ret; if (host->dma_64bit_address == 1) ret = dw_mci_prepare_desc64(host, host->data, sg_len); else ret = dw_mci_prepare_desc32(host, host->data, sg_len); if (ret) goto out; /* drain writebuffer */ wmb(); /* Make sure to reset DMA in case we did PIO before this */ dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET); dw_mci_idmac_reset(host); /* Select IDMAC interface */ temp = mci_readl(host, CTRL); temp |= SDMMC_CTRL_USE_IDMAC; mci_writel(host, CTRL, temp); /* drain writebuffer */ wmb(); /* Enable the IDMAC */ temp = mci_readl(host, BMOD); temp |= SDMMC_IDMAC_ENABLE | SDMMC_IDMAC_FB; mci_writel(host, BMOD, temp); /* Start it running */ mci_writel(host, PLDMND, 1); out: return ret; } static const struct dw_mci_dma_ops dw_mci_idmac_ops = { .init = dw_mci_idmac_init, .start = dw_mci_idmac_start_dma, .stop = dw_mci_idmac_stop_dma, .complete = dw_mci_dmac_complete_dma, .cleanup = dw_mci_dma_cleanup, }; static void dw_mci_edmac_stop_dma(struct dw_mci *host) { dmaengine_terminate_async(host->dms->ch); } static int dw_mci_edmac_start_dma(struct dw_mci *host, unsigned int sg_len) { struct dma_slave_config cfg; struct dma_async_tx_descriptor *desc = NULL; struct scatterlist *sgl = host->data->sg; static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; u32 sg_elems = host->data->sg_len; u32 fifoth_val; u32 fifo_offset = host->fifo_reg - host->regs; int ret = 0; /* Set external dma config: burst size, burst width */ cfg.dst_addr = host->phy_regs + fifo_offset; cfg.src_addr = cfg.dst_addr; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; /* Match burst msize with external dma config */ fifoth_val = mci_readl(host, FIFOTH); cfg.dst_maxburst = mszs[(fifoth_val >> 28) & 0x7]; cfg.src_maxburst = cfg.dst_maxburst; if (host->data->flags & MMC_DATA_WRITE) cfg.direction = DMA_MEM_TO_DEV; else cfg.direction = DMA_DEV_TO_MEM; ret = dmaengine_slave_config(host->dms->ch, &cfg); if (ret) { dev_err(host->dev, "Failed to config edmac.\n"); return -EBUSY; } desc = dmaengine_prep_slave_sg(host->dms->ch, sgl, sg_len, cfg.direction, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); if (!desc) { dev_err(host->dev, "Can't prepare slave sg.\n"); return -EBUSY; } /* Set dw_mci_dmac_complete_dma as callback */ desc->callback = dw_mci_dmac_complete_dma; desc->callback_param = (void *)host; dmaengine_submit(desc); /* Flush cache before write */ if (host->data->flags & MMC_DATA_WRITE) dma_sync_sg_for_device(mmc_dev(host->slot->mmc), sgl, sg_elems, DMA_TO_DEVICE); dma_async_issue_pending(host->dms->ch); return 0; } static int dw_mci_edmac_init(struct dw_mci *host) { /* Request external dma channel */ host->dms = kzalloc(sizeof(struct dw_mci_dma_slave), GFP_KERNEL); if (!host->dms) return -ENOMEM; host->dms->ch = dma_request_slave_channel(host->dev, "rx-tx"); if (!host->dms->ch) { dev_err(host->dev, "Failed to get external DMA channel.\n"); kfree(host->dms); host->dms = NULL; return -ENXIO; } return 0; } static void dw_mci_edmac_exit(struct dw_mci *host) { if (host->dms) { if (host->dms->ch) { dma_release_channel(host->dms->ch); host->dms->ch = NULL; } kfree(host->dms); host->dms = NULL; } } static const struct dw_mci_dma_ops dw_mci_edmac_ops = { .init = dw_mci_edmac_init, .exit = dw_mci_edmac_exit, .start = dw_mci_edmac_start_dma, .stop = dw_mci_edmac_stop_dma, .complete = dw_mci_dmac_complete_dma, .cleanup = dw_mci_dma_cleanup, }; static int dw_mci_pre_dma_transfer(struct dw_mci *host, struct mmc_data *data, int cookie) { struct scatterlist *sg; unsigned int i, sg_len; if (data->host_cookie == COOKIE_PRE_MAPPED) return data->sg_len; /* * We don't do DMA on "complex" transfers, i.e. with * non-word-aligned buffers or lengths. Also, we don't bother * with all the DMA setup overhead for short transfers. */ if (data->blocks * data->blksz < DW_MCI_DMA_THRESHOLD) return -EINVAL; if (data->blksz & 3) return -EINVAL; for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->offset & 3 || sg->length & 3) return -EINVAL; } sg_len = dma_map_sg(host->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); if (sg_len == 0) return -EINVAL; data->host_cookie = cookie; return sg_len; } static void dw_mci_pre_req(struct mmc_host *mmc, struct mmc_request *mrq) { struct dw_mci_slot *slot = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (!slot->host->use_dma || !data) return; /* This data might be unmapped at this time */ data->host_cookie = COOKIE_UNMAPPED; if (dw_mci_pre_dma_transfer(slot->host, mrq->data, COOKIE_PRE_MAPPED) < 0) data->host_cookie = COOKIE_UNMAPPED; } static void dw_mci_post_req(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct dw_mci_slot *slot = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (!slot->host->use_dma || !data) return; if (data->host_cookie != COOKIE_UNMAPPED) dma_unmap_sg(slot->host->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); data->host_cookie = COOKIE_UNMAPPED; } static int dw_mci_get_cd(struct mmc_host *mmc) { int present; struct dw_mci_slot *slot = mmc_priv(mmc); struct dw_mci *host = slot->host; int gpio_cd = mmc_gpio_get_cd(mmc); /* Use platform get_cd function, else try onboard card detect */ if (((mmc->caps & MMC_CAP_NEEDS_POLL) || !mmc_card_is_removable(mmc))) { present = 1; if (!test_bit(DW_MMC_CARD_PRESENT, &slot->flags)) { if (mmc->caps & MMC_CAP_NEEDS_POLL) { dev_info(&mmc->class_dev, "card is polling.\n"); } else { dev_info(&mmc->class_dev, "card is non-removable.\n"); } set_bit(DW_MMC_CARD_PRESENT, &slot->flags); } return present; } else if (gpio_cd >= 0) present = gpio_cd; else present = (mci_readl(slot->host, CDETECT) & (1 << slot->id)) == 0 ? 1 : 0; spin_lock_bh(&host->lock); if (present && !test_and_set_bit(DW_MMC_CARD_PRESENT, &slot->flags)) dev_dbg(&mmc->class_dev, "card is present\n"); else if (!present && !test_and_clear_bit(DW_MMC_CARD_PRESENT, &slot->flags)) dev_dbg(&mmc->class_dev, "card is not present\n"); spin_unlock_bh(&host->lock); return present; } static void dw_mci_adjust_fifoth(struct dw_mci *host, struct mmc_data *data) { unsigned int blksz = data->blksz; static const u32 mszs[] = {1, 4, 8, 16, 32, 64, 128, 256}; u32 fifo_width = 1 << host->data_shift; u32 blksz_depth = blksz / fifo_width, fifoth_val; u32 msize = 0, rx_wmark = 1, tx_wmark, tx_wmark_invers; int idx = ARRAY_SIZE(mszs) - 1; /* pio should ship this scenario */ if (!host->use_dma) return; tx_wmark = (host->fifo_depth) / 2; tx_wmark_invers = host->fifo_depth - tx_wmark; /* * MSIZE is '1', * if blksz is not a multiple of the FIFO width */ if (blksz % fifo_width) goto done; do { if (!((blksz_depth % mszs[idx]) || (tx_wmark_invers % mszs[idx]))) { msize = idx; rx_wmark = mszs[idx] - 1; break; } } while (--idx > 0); /* * If idx is '0', it won't be tried * Thus, initial values are uesed */ done: fifoth_val = SDMMC_SET_FIFOTH(msize, rx_wmark, tx_wmark); mci_writel(host, FIFOTH, fifoth_val); } static void dw_mci_ctrl_thld(struct dw_mci *host, struct mmc_data *data) { unsigned int blksz = data->blksz; u32 blksz_depth, fifo_depth; u16 thld_size; u8 enable; /* * CDTHRCTL doesn't exist prior to 240A (in fact that register offset is * in the FIFO region, so we really shouldn't access it). */ if (host->verid < DW_MMC_240A || (host->verid < DW_MMC_280A && data->flags & MMC_DATA_WRITE)) return; /* * Card write Threshold is introduced since 2.80a * It's used when HS400 mode is enabled. */ if (data->flags & MMC_DATA_WRITE && host->timing != MMC_TIMING_MMC_HS400) goto disable; if (data->flags & MMC_DATA_WRITE) enable = SDMMC_CARD_WR_THR_EN; else enable = SDMMC_CARD_RD_THR_EN; if (host->timing != MMC_TIMING_MMC_HS200 && host->timing != MMC_TIMING_UHS_SDR104 && host->timing != MMC_TIMING_MMC_HS400) goto disable; blksz_depth = blksz / (1 << host->data_shift); fifo_depth = host->fifo_depth; if (blksz_depth > fifo_depth) goto disable; /* * If (blksz_depth) >= (fifo_depth >> 1), should be 'thld_size <= blksz' * If (blksz_depth) < (fifo_depth >> 1), should be thld_size = blksz * Currently just choose blksz. */ thld_size = blksz; mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(thld_size, enable)); return; disable: mci_writel(host, CDTHRCTL, 0); } static int dw_mci_submit_data_dma(struct dw_mci *host, struct mmc_data *data) { unsigned long irqflags; int sg_len; u32 temp; host->using_dma = 0; /* If we don't have a channel, we can't do DMA */ if (!host->use_dma) return -ENODEV; sg_len = dw_mci_pre_dma_transfer(host, data, COOKIE_MAPPED); if (sg_len < 0) { host->dma_ops->stop(host); return sg_len; } host->using_dma = 1; if (host->use_dma == TRANS_MODE_IDMAC) dev_vdbg(host->dev, "sd sg_cpu: %#lx sg_dma: %#lx sg_len: %d\n", (unsigned long)host->sg_cpu, (unsigned long)host->sg_dma, sg_len); /* * Decide the MSIZE and RX/TX Watermark. * If current block size is same with previous size, * no need to update fifoth. */ if (host->prev_blksz != data->blksz) dw_mci_adjust_fifoth(host, data); /* Enable the DMA interface */ temp = mci_readl(host, CTRL); temp |= SDMMC_CTRL_DMA_ENABLE; mci_writel(host, CTRL, temp); /* Disable RX/TX IRQs, let DMA handle it */ spin_lock_irqsave(&host->irq_lock, irqflags); temp = mci_readl(host, INTMASK); temp &= ~(SDMMC_INT_RXDR | SDMMC_INT_TXDR); mci_writel(host, INTMASK, temp); spin_unlock_irqrestore(&host->irq_lock, irqflags); if (host->dma_ops->start(host, sg_len)) { host->dma_ops->stop(host); /* We can't do DMA, try PIO for this one */ dev_dbg(host->dev, "%s: fall back to PIO mode for current transfer\n", __func__); return -ENODEV; } return 0; } static void dw_mci_submit_data(struct dw_mci *host, struct mmc_data *data) { unsigned long irqflags; int flags = SG_MITER_ATOMIC; u32 temp; data->error = -EINPROGRESS; WARN_ON(host->data); host->sg = NULL; host->data = data; if (data->flags & MMC_DATA_READ) host->dir_status = DW_MCI_RECV_STATUS; else host->dir_status = DW_MCI_SEND_STATUS; dw_mci_ctrl_thld(host, data); if (dw_mci_submit_data_dma(host, data)) { if (host->data->flags & MMC_DATA_READ) flags |= SG_MITER_TO_SG; else flags |= SG_MITER_FROM_SG; sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); host->sg = data->sg; host->part_buf_start = 0; host->part_buf_count = 0; mci_writel(host, RINTSTS, SDMMC_INT_TXDR | SDMMC_INT_RXDR); spin_lock_irqsave(&host->irq_lock, irqflags); temp = mci_readl(host, INTMASK); temp |= SDMMC_INT_TXDR | SDMMC_INT_RXDR; mci_writel(host, INTMASK, temp); spin_unlock_irqrestore(&host->irq_lock, irqflags); temp = mci_readl(host, CTRL); temp &= ~SDMMC_CTRL_DMA_ENABLE; mci_writel(host, CTRL, temp); /* * Use the initial fifoth_val for PIO mode. If wm_algined * is set, we set watermark same as data size. * If next issued data may be transfered by DMA mode, * prev_blksz should be invalidated. */ if (host->wm_aligned) dw_mci_adjust_fifoth(host, data); else mci_writel(host, FIFOTH, host->fifoth_val); host->prev_blksz = 0; } else { /* * Keep the current block size. * It will be used to decide whether to update * fifoth register next time. */ host->prev_blksz = data->blksz; } } static void dw_mci_setup_bus(struct dw_mci_slot *slot, bool force_clkinit) { struct dw_mci *host = slot->host; unsigned int clock = slot->clock; u32 div; u32 clk_en_a; u32 sdmmc_cmd_bits = SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT; /* We must continue to set bit 28 in CMD until the change is complete */ if (host->state == STATE_WAITING_CMD11_DONE) sdmmc_cmd_bits |= SDMMC_CMD_VOLT_SWITCH; slot->mmc->actual_clock = 0; if (!clock) { mci_writel(host, CLKENA, 0); mci_send_cmd(slot, sdmmc_cmd_bits, 0); } else if (clock != host->current_speed || force_clkinit) { div = host->bus_hz / clock; if (host->bus_hz % clock && host->bus_hz > clock) /* * move the + 1 after the divide to prevent * over-clocking the card. */ div += 1; div = (host->bus_hz != clock) ? DIV_ROUND_UP(div, 2) : 0; if ((clock != slot->__clk_old && !test_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags)) || force_clkinit) { /* Silent the verbose log if calling from PM context */ if (!force_clkinit) dev_info(&slot->mmc->class_dev, "Bus speed (slot %d) = %dHz (slot req %dHz, actual %dHZ div = %d)\n", slot->id, host->bus_hz, clock, div ? ((host->bus_hz / div) >> 1) : host->bus_hz, div); /* * If card is polling, display the message only * one time at boot time. */ if (slot->mmc->caps & MMC_CAP_NEEDS_POLL && slot->mmc->f_min == clock) set_bit(DW_MMC_CARD_NEEDS_POLL, &slot->flags); } /* disable clock */ mci_writel(host, CLKENA, 0); mci_writel(host, CLKSRC, 0); /* inform CIU */ mci_send_cmd(slot, sdmmc_cmd_bits, 0); /* set clock to desired speed */ mci_writel(host, CLKDIV, div); /* inform CIU */ mci_send_cmd(slot, sdmmc_cmd_bits, 0); /* enable clock; only low power if no SDIO */ clk_en_a = SDMMC_CLKEN_ENABLE << slot->id; if (!test_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags)) clk_en_a |= SDMMC_CLKEN_LOW_PWR << slot->id; mci_writel(host, CLKENA, clk_en_a); /* inform CIU */ mci_send_cmd(slot, sdmmc_cmd_bits, 0); /* keep the last clock value that was requested from core */ slot->__clk_old = clock; slot->mmc->actual_clock = div ? ((host->bus_hz / div) >> 1) : host->bus_hz; } host->current_speed = clock; /* Set the current slot bus width */ mci_writel(host, CTYPE, (slot->ctype << slot->id)); } static void __dw_mci_start_request(struct dw_mci *host, struct dw_mci_slot *slot, struct mmc_command *cmd) { struct mmc_request *mrq; struct mmc_data *data; u32 cmdflags; mrq = slot->mrq; host->mrq = mrq; host->pending_events = 0; host->completed_events = 0; host->cmd_status = 0; host->data_status = 0; host->dir_status = 0; data = cmd->data; if (data) { mci_writel(host, TMOUT, 0xFFFFFFFF); mci_writel(host, BYTCNT, data->blksz*data->blocks); mci_writel(host, BLKSIZ, data->blksz); } cmdflags = dw_mci_prepare_command(slot->mmc, cmd); /* this is the first command, send the initialization clock */ if (test_and_clear_bit(DW_MMC_CARD_NEED_INIT, &slot->flags)) cmdflags |= SDMMC_CMD_INIT; if (data) { dw_mci_submit_data(host, data); wmb(); /* drain writebuffer */ } dw_mci_start_command(host, cmd, cmdflags); if (cmd->opcode == SD_SWITCH_VOLTAGE) { unsigned long irqflags; /* * Databook says to fail after 2ms w/ no response, but evidence * shows that sometimes the cmd11 interrupt takes over 130ms. * We'll set to 500ms, plus an extra jiffy just in case jiffies * is just about to roll over. * * We do this whole thing under spinlock and only if the * command hasn't already completed (indicating the the irq * already ran so we don't want the timeout). */ spin_lock_irqsave(&host->irq_lock, irqflags); if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) mod_timer(&host->cmd11_timer, jiffies + msecs_to_jiffies(500) + 1); spin_unlock_irqrestore(&host->irq_lock, irqflags); } host->stop_cmdr = dw_mci_prep_stop_abort(host, cmd); } static void dw_mci_start_request(struct dw_mci *host, struct dw_mci_slot *slot) { struct mmc_request *mrq = slot->mrq; struct mmc_command *cmd; cmd = mrq->sbc ? mrq->sbc : mrq->cmd; __dw_mci_start_request(host, slot, cmd); } /* must be called with host->lock held */ static void dw_mci_queue_request(struct dw_mci *host, struct dw_mci_slot *slot, struct mmc_request *mrq) { dev_vdbg(&slot->mmc->class_dev, "queue request: state=%d\n", host->state); slot->mrq = mrq; if (host->state == STATE_WAITING_CMD11_DONE) { dev_warn(&slot->mmc->class_dev, "Voltage change didn't complete\n"); /* * this case isn't expected to happen, so we can * either crash here or just try to continue on * in the closest possible state */ host->state = STATE_IDLE; } if (host->state == STATE_IDLE) { host->state = STATE_SENDING_CMD; dw_mci_start_request(host, slot); } else { list_add_tail(&slot->queue_node, &host->queue); } } static void dw_mci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct dw_mci_slot *slot = mmc_priv(mmc); struct dw_mci *host = slot->host; WARN_ON(slot->mrq); /* * The check for card presence and queueing of the request must be * atomic, otherwise the card could be removed in between and the * request wouldn't fail until another card was inserted. */ if (!dw_mci_get_cd(mmc)) { mrq->cmd->error = -ENOMEDIUM; mmc_request_done(mmc, mrq); return; } spin_lock_bh(&host->lock); dw_mci_queue_request(host, slot, mrq); spin_unlock_bh(&host->lock); } static void dw_mci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct dw_mci_slot *slot = mmc_priv(mmc); const struct dw_mci_drv_data *drv_data = slot->host->drv_data; u32 regs; int ret; switch (ios->bus_width) { case MMC_BUS_WIDTH_4: slot->ctype = SDMMC_CTYPE_4BIT; break; case MMC_BUS_WIDTH_8: slot->ctype = SDMMC_CTYPE_8BIT; break; default: /* set default 1 bit mode */ slot->ctype = SDMMC_CTYPE_1BIT; } regs = mci_readl(slot->host, UHS_REG); /* DDR mode set */ if (ios->timing == MMC_TIMING_MMC_DDR52 || ios->timing == MMC_TIMING_UHS_DDR50 || ios->timing == MMC_TIMING_MMC_HS400) regs |= ((0x1 << slot->id) << 16); else regs &= ~((0x1 << slot->id) << 16); mci_writel(slot->host, UHS_REG, regs); slot->host->timing = ios->timing; /* * Use mirror of ios->clock to prevent race with mmc * core ios update when finding the minimum. */ slot->clock = ios->clock; if (drv_data && drv_data->set_ios) drv_data->set_ios(slot->host, ios); switch (ios->power_mode) { case MMC_POWER_UP: if (!IS_ERR(mmc->supply.vmmc)) { ret = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); if (ret) { dev_err(slot->host->dev, "failed to enable vmmc regulator\n"); /*return, if failed turn on vmmc*/ return; } } set_bit(DW_MMC_CARD_NEED_INIT, &slot->flags); regs = mci_readl(slot->host, PWREN); regs |= (1 << slot->id); mci_writel(slot->host, PWREN, regs); break; case MMC_POWER_ON: if (!slot->host->vqmmc_enabled) { if (!IS_ERR(mmc->supply.vqmmc)) { ret = regulator_enable(mmc->supply.vqmmc); if (ret < 0) dev_err(slot->host->dev, "failed to enable vqmmc\n"); else slot->host->vqmmc_enabled = true; } else { /* Keep track so we don't reset again */ slot->host->vqmmc_enabled = true; } /* Reset our state machine after powering on */ dw_mci_ctrl_reset(slot->host, SDMMC_CTRL_ALL_RESET_FLAGS); } /* Adjust clock / bus width after power is up */ dw_mci_setup_bus(slot, false); break; case MMC_POWER_OFF: /* Turn clock off before power goes down */ dw_mci_setup_bus(slot, false); if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (!IS_ERR(mmc->supply.vqmmc) && slot->host->vqmmc_enabled) regulator_disable(mmc->supply.vqmmc); slot->host->vqmmc_enabled = false; regs = mci_readl(slot->host, PWREN); regs &= ~(1 << slot->id); mci_writel(slot->host, PWREN, regs); break; default: break; } if (slot->host->state == STATE_WAITING_CMD11_DONE && ios->clock != 0) slot->host->state = STATE_IDLE; } static int dw_mci_card_busy(struct mmc_host *mmc) { struct dw_mci_slot *slot = mmc_priv(mmc); u32 status; /* * Check the busy bit which is low when DAT[3:0] * (the data lines) are 0000 */ status = mci_readl(slot->host, STATUS); return !!(status & SDMMC_STATUS_BUSY); } static int dw_mci_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios) { struct dw_mci_slot *slot = mmc_priv(mmc); struct dw_mci *host = slot->host; const struct dw_mci_drv_data *drv_data = host->drv_data; u32 uhs; u32 v18 = SDMMC_UHS_18V << slot->id; int ret; if (drv_data && drv_data->switch_voltage) return drv_data->switch_voltage(mmc, ios); /* * Program the voltage. Note that some instances of dw_mmc may use * the UHS_REG for this. For other instances (like exynos) the UHS_REG * does no harm but you need to set the regulator directly. Try both. */ uhs = mci_readl(host, UHS_REG); if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) uhs &= ~v18; else uhs |= v18; if (!IS_ERR(mmc->supply.vqmmc)) { ret = mmc_regulator_set_vqmmc(mmc, ios); if (ret) { dev_dbg(&mmc->class_dev, "Regulator set error %d - %s V\n", ret, uhs & v18 ? "1.8" : "3.3"); return ret; } } mci_writel(host, UHS_REG, uhs); return 0; } static int dw_mci_get_ro(struct mmc_host *mmc) { int read_only; struct dw_mci_slot *slot = mmc_priv(mmc); int gpio_ro = mmc_gpio_get_ro(mmc); /* Use platform get_ro function, else try on board write protect */ if (gpio_ro >= 0) read_only = gpio_ro; else read_only = mci_readl(slot->host, WRTPRT) & (1 << slot->id) ? 1 : 0; dev_dbg(&mmc->class_dev, "card is %s\n", read_only ? "read-only" : "read-write"); return read_only; } static void dw_mci_hw_reset(struct mmc_host *mmc) { struct dw_mci_slot *slot = mmc_priv(mmc); struct dw_mci *host = slot->host; int reset; if (host->use_dma == TRANS_MODE_IDMAC) dw_mci_idmac_reset(host); if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_DMA_RESET | SDMMC_CTRL_FIFO_RESET)) return; /* * According to eMMC spec, card reset procedure: * tRstW >= 1us: RST_n pulse width * tRSCA >= 200us: RST_n to Command time * tRSTH >= 1us: RST_n high period */ reset = mci_readl(host, RST_N); reset &= ~(SDMMC_RST_HWACTIVE << slot->id); mci_writel(host, RST_N, reset); usleep_range(1, 2); reset |= SDMMC_RST_HWACTIVE << slot->id; mci_writel(host, RST_N, reset); usleep_range(200, 300); } static void dw_mci_init_card(struct mmc_host *mmc, struct mmc_card *card) { struct dw_mci_slot *slot = mmc_priv(mmc); struct dw_mci *host = slot->host; /* * Low power mode will stop the card clock when idle. According to the * description of the CLKENA register we should disable low power mode * for SDIO cards if we need SDIO interrupts to work. */ if (mmc->caps & MMC_CAP_SDIO_IRQ) { const u32 clken_low_pwr = SDMMC_CLKEN_LOW_PWR << slot->id; u32 clk_en_a_old; u32 clk_en_a; clk_en_a_old = mci_readl(host, CLKENA); if (card->type == MMC_TYPE_SDIO || card->type == MMC_TYPE_SD_COMBO) { set_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); clk_en_a = clk_en_a_old & ~clken_low_pwr; } else { clear_bit(DW_MMC_CARD_NO_LOW_PWR, &slot->flags); clk_en_a = clk_en_a_old | clken_low_pwr; } if (clk_en_a != clk_en_a_old) { mci_writel(host, CLKENA, clk_en_a); mci_send_cmd(slot, SDMMC_CMD_UPD_CLK | SDMMC_CMD_PRV_DAT_WAIT, 0); } } } static void __dw_mci_enable_sdio_irq(struct dw_mci_slot *slot, int enb) { struct dw_mci *host = slot->host; unsigned long irqflags; u32 int_mask; spin_lock_irqsave(&host->irq_lock, irqflags); /* Enable/disable Slot Specific SDIO interrupt */ int_mask = mci_readl(host, INTMASK); if (enb) int_mask |= SDMMC_INT_SDIO(slot->sdio_id); else int_mask &= ~SDMMC_INT_SDIO(slot->sdio_id); mci_writel(host, INTMASK, int_mask); spin_unlock_irqrestore(&host->irq_lock, irqflags); } static void dw_mci_enable_sdio_irq(struct mmc_host *mmc, int enb) { struct dw_mci_slot *slot = mmc_priv(mmc); struct dw_mci *host = slot->host; __dw_mci_enable_sdio_irq(slot, enb); /* Avoid runtime suspending the device when SDIO IRQ is enabled */ if (enb) pm_runtime_get_noresume(host->dev); else pm_runtime_put_noidle(host->dev); } static void dw_mci_ack_sdio_irq(struct mmc_host *mmc) { struct dw_mci_slot *slot = mmc_priv(mmc); __dw_mci_enable_sdio_irq(slot, 1); } static int dw_mci_execute_tuning(struct mmc_host *mmc, u32 opcode) { struct dw_mci_slot *slot = mmc_priv(mmc); struct dw_mci *host = slot->host; const struct dw_mci_drv_data *drv_data = host->drv_data; int err = -EINVAL; if (drv_data && drv_data->execute_tuning) err = drv_data->execute_tuning(slot, opcode); return err; } static int dw_mci_prepare_hs400_tuning(struct mmc_host *mmc, struct mmc_ios *ios) { struct dw_mci_slot *slot = mmc_priv(mmc); struct dw_mci *host = slot->host; const struct dw_mci_drv_data *drv_data = host->drv_data; if (drv_data && drv_data->prepare_hs400_tuning) return drv_data->prepare_hs400_tuning(host, ios); return 0; } static bool dw_mci_reset(struct dw_mci *host) { u32 flags = SDMMC_CTRL_RESET | SDMMC_CTRL_FIFO_RESET; bool ret = false; u32 status = 0; /* * Resetting generates a block interrupt, hence setting * the scatter-gather pointer to NULL. */ if (host->sg) { sg_miter_stop(&host->sg_miter); host->sg = NULL; } if (host->use_dma) flags |= SDMMC_CTRL_DMA_RESET; if (dw_mci_ctrl_reset(host, flags)) { /* * In all cases we clear the RAWINTS * register to clear any interrupts. */ mci_writel(host, RINTSTS, 0xFFFFFFFF); if (!host->use_dma) { ret = true; goto ciu_out; } /* Wait for dma_req to be cleared */ if (readl_poll_timeout_atomic(host->regs + SDMMC_STATUS, status, !(status & SDMMC_STATUS_DMA_REQ), 1, 500 * USEC_PER_MSEC)) { dev_err(host->dev, "%s: Timeout waiting for dma_req to be cleared\n", __func__); goto ciu_out; } /* when using DMA next we reset the fifo again */ if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_FIFO_RESET)) goto ciu_out; } else { /* if the controller reset bit did clear, then set clock regs */ if (!(mci_readl(host, CTRL) & SDMMC_CTRL_RESET)) { dev_err(host->dev, "%s: fifo/dma reset bits didn't clear but ciu was reset, doing clock update\n", __func__); goto ciu_out; } } if (host->use_dma == TRANS_MODE_IDMAC) /* It is also required that we reinit idmac */ dw_mci_idmac_init(host); ret = true; ciu_out: /* After a CTRL reset we need to have CIU set clock registers */ mci_send_cmd(host->slot, SDMMC_CMD_UPD_CLK, 0); return ret; } static const struct mmc_host_ops dw_mci_ops = { .request = dw_mci_request, .pre_req = dw_mci_pre_req, .post_req = dw_mci_post_req, .set_ios = dw_mci_set_ios, .get_ro = dw_mci_get_ro, .get_cd = dw_mci_get_cd, .hw_reset = dw_mci_hw_reset, .enable_sdio_irq = dw_mci_enable_sdio_irq, .ack_sdio_irq = dw_mci_ack_sdio_irq, .execute_tuning = dw_mci_execute_tuning, .card_busy = dw_mci_card_busy, .start_signal_voltage_switch = dw_mci_switch_voltage, .init_card = dw_mci_init_card, .prepare_hs400_tuning = dw_mci_prepare_hs400_tuning, }; static void dw_mci_request_end(struct dw_mci *host, struct mmc_request *mrq) __releases(&host->lock) __acquires(&host->lock) { struct dw_mci_slot *slot; struct mmc_host *prev_mmc = host->slot->mmc; WARN_ON(host->cmd || host->data); host->slot->mrq = NULL; host->mrq = NULL; if (!list_empty(&host->queue)) { slot = list_entry(host->queue.next, struct dw_mci_slot, queue_node); list_del(&slot->queue_node); dev_vdbg(host->dev, "list not empty: %s is next\n", mmc_hostname(slot->mmc)); host->state = STATE_SENDING_CMD; dw_mci_start_request(host, slot); } else { dev_vdbg(host->dev, "list empty\n"); if (host->state == STATE_SENDING_CMD11) host->state = STATE_WAITING_CMD11_DONE; else host->state = STATE_IDLE; } spin_unlock(&host->lock); mmc_request_done(prev_mmc, mrq); spin_lock(&host->lock); } static int dw_mci_command_complete(struct dw_mci *host, struct mmc_command *cmd) { u32 status = host->cmd_status; host->cmd_status = 0; /* Read the response from the card (up to 16 bytes) */ if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) { cmd->resp[3] = mci_readl(host, RESP0); cmd->resp[2] = mci_readl(host, RESP1); cmd->resp[1] = mci_readl(host, RESP2); cmd->resp[0] = mci_readl(host, RESP3); } else { cmd->resp[0] = mci_readl(host, RESP0); cmd->resp[1] = 0; cmd->resp[2] = 0; cmd->resp[3] = 0; } } if (status & SDMMC_INT_RTO) cmd->error = -ETIMEDOUT; else if ((cmd->flags & MMC_RSP_CRC) && (status & SDMMC_INT_RCRC)) cmd->error = -EILSEQ; else if (status & SDMMC_INT_RESP_ERR) cmd->error = -EIO; else cmd->error = 0; return cmd->error; } static int dw_mci_data_complete(struct dw_mci *host, struct mmc_data *data) { u32 status = host->data_status; if (status & DW_MCI_DATA_ERROR_FLAGS) { if (status & SDMMC_INT_DRTO) { data->error = -ETIMEDOUT; } else if (status & SDMMC_INT_DCRC) { data->error = -EILSEQ; } else if (status & SDMMC_INT_EBE) { if (host->dir_status == DW_MCI_SEND_STATUS) { /* * No data CRC status was returned. * The number of bytes transferred * will be exaggerated in PIO mode. */ data->bytes_xfered = 0; data->error = -ETIMEDOUT; } else if (host->dir_status == DW_MCI_RECV_STATUS) { data->error = -EILSEQ; } } else { /* SDMMC_INT_SBE is included */ data->error = -EILSEQ; } dev_dbg(host->dev, "data error, status 0x%08x\n", status); /* * After an error, there may be data lingering * in the FIFO */ dw_mci_reset(host); } else { data->bytes_xfered = data->blocks * data->blksz; data->error = 0; } return data->error; } static void dw_mci_set_drto(struct dw_mci *host) { unsigned int drto_clks; unsigned int drto_div; unsigned int drto_ms; unsigned long irqflags; drto_clks = mci_readl(host, TMOUT) >> 8; drto_div = (mci_readl(host, CLKDIV) & 0xff) * 2; if (drto_div == 0) drto_div = 1; drto_ms = DIV_ROUND_UP_ULL((u64)MSEC_PER_SEC * drto_clks * drto_div, host->bus_hz); /* add a bit spare time */ drto_ms += 10; spin_lock_irqsave(&host->irq_lock, irqflags); if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) mod_timer(&host->dto_timer, jiffies + msecs_to_jiffies(drto_ms)); spin_unlock_irqrestore(&host->irq_lock, irqflags); } static bool dw_mci_clear_pending_cmd_complete(struct dw_mci *host) { if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) return false; /* * Really be certain that the timer has stopped. This is a bit of * paranoia and could only really happen if we had really bad * interrupt latency and the interrupt routine and timeout were * running concurrently so that the del_timer() in the interrupt * handler couldn't run. */ WARN_ON(del_timer_sync(&host->cto_timer)); clear_bit(EVENT_CMD_COMPLETE, &host->pending_events); return true; } static bool dw_mci_clear_pending_data_complete(struct dw_mci *host) { if (!test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) return false; /* Extra paranoia just like dw_mci_clear_pending_cmd_complete() */ WARN_ON(del_timer_sync(&host->dto_timer)); clear_bit(EVENT_DATA_COMPLETE, &host->pending_events); return true; } static void dw_mci_tasklet_func(unsigned long priv) { struct dw_mci *host = (struct dw_mci *)priv; struct mmc_data *data; struct mmc_command *cmd; struct mmc_request *mrq; enum dw_mci_state state; enum dw_mci_state prev_state; unsigned int err; spin_lock(&host->lock); state = host->state; data = host->data; mrq = host->mrq; do { prev_state = state; switch (state) { case STATE_IDLE: case STATE_WAITING_CMD11_DONE: break; case STATE_SENDING_CMD11: case STATE_SENDING_CMD: if (!dw_mci_clear_pending_cmd_complete(host)) break; cmd = host->cmd; host->cmd = NULL; set_bit(EVENT_CMD_COMPLETE, &host->completed_events); err = dw_mci_command_complete(host, cmd); if (cmd == mrq->sbc && !err) { __dw_mci_start_request(host, host->slot, mrq->cmd); goto unlock; } if (cmd->data && err) { /* * During UHS tuning sequence, sending the stop * command after the response CRC error would * throw the system into a confused state * causing all future tuning phases to report * failure. * * In such case controller will move into a data * transfer state after a response error or * response CRC error. Let's let that finish * before trying to send a stop, so we'll go to * STATE_SENDING_DATA. * * Although letting the data transfer take place * will waste a bit of time (we already know * the command was bad), it can't cause any * errors since it's possible it would have * taken place anyway if this tasklet got * delayed. Allowing the transfer to take place * avoids races and keeps things simple. */ if ((err != -ETIMEDOUT) && (cmd->opcode == MMC_SEND_TUNING_BLOCK)) { state = STATE_SENDING_DATA; continue; } dw_mci_stop_dma(host); send_stop_abort(host, data); state = STATE_SENDING_STOP; break; } if (!cmd->data || err) { dw_mci_request_end(host, mrq); goto unlock; } prev_state = state = STATE_SENDING_DATA; /* fall through */ case STATE_SENDING_DATA: /* * We could get a data error and never a transfer * complete so we'd better check for it here. * * Note that we don't really care if we also got a * transfer complete; stopping the DMA and sending an * abort won't hurt. */ if (test_and_clear_bit(EVENT_DATA_ERROR, &host->pending_events)) { dw_mci_stop_dma(host); if (!(host->data_status & (SDMMC_INT_DRTO | SDMMC_INT_EBE))) send_stop_abort(host, data); state = STATE_DATA_ERROR; break; } if (!test_and_clear_bit(EVENT_XFER_COMPLETE, &host->pending_events)) { /* * If all data-related interrupts don't come * within the given time in reading data state. */ if (host->dir_status == DW_MCI_RECV_STATUS) dw_mci_set_drto(host); break; } set_bit(EVENT_XFER_COMPLETE, &host->completed_events); /* * Handle an EVENT_DATA_ERROR that might have shown up * before the transfer completed. This might not have * been caught by the check above because the interrupt * could have gone off between the previous check and * the check for transfer complete. * * Technically this ought not be needed assuming we * get a DATA_COMPLETE eventually (we'll notice the * error and end the request), but it shouldn't hurt. * * This has the advantage of sending the stop command. */ if (test_and_clear_bit(EVENT_DATA_ERROR, &host->pending_events)) { dw_mci_stop_dma(host); if (!(host->data_status & (SDMMC_INT_DRTO | SDMMC_INT_EBE))) send_stop_abort(host, data); state = STATE_DATA_ERROR; break; } prev_state = state = STATE_DATA_BUSY; /* fall through */ case STATE_DATA_BUSY: if (!dw_mci_clear_pending_data_complete(host)) { /* * If data error interrupt comes but data over * interrupt doesn't come within the given time. * in reading data state. */ if (host->dir_status == DW_MCI_RECV_STATUS) dw_mci_set_drto(host); break; } host->data = NULL; set_bit(EVENT_DATA_COMPLETE, &host->completed_events); err = dw_mci_data_complete(host, data); if (!err) { if (!data->stop || mrq->sbc) { if (mrq->sbc && data->stop) data->stop->error = 0; dw_mci_request_end(host, mrq); goto unlock; } /* stop command for open-ended transfer*/ if (data->stop) send_stop_abort(host, data); } else { /* * If we don't have a command complete now we'll * never get one since we just reset everything; * better end the request. * * If we do have a command complete we'll fall * through to the SENDING_STOP command and * everything will be peachy keen. */ if (!test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) { host->cmd = NULL; dw_mci_request_end(host, mrq); goto unlock; } } /* * If err has non-zero, * stop-abort command has been already issued. */ prev_state = state = STATE_SENDING_STOP; /* fall through */ case STATE_SENDING_STOP: if (!dw_mci_clear_pending_cmd_complete(host)) break; /* CMD error in data command */ if (mrq->cmd->error && mrq->data) dw_mci_reset(host); host->cmd = NULL; host->data = NULL; if (!mrq->sbc && mrq->stop) dw_mci_command_complete(host, mrq->stop); else host->cmd_status = 0; dw_mci_request_end(host, mrq); goto unlock; case STATE_DATA_ERROR: if (!test_and_clear_bit(EVENT_XFER_COMPLETE, &host->pending_events)) break; state = STATE_DATA_BUSY; break; } } while (state != prev_state); host->state = state; unlock: spin_unlock(&host->lock); } /* push final bytes to part_buf, only use during push */ static void dw_mci_set_part_bytes(struct dw_mci *host, void *buf, int cnt) { memcpy((void *)&host->part_buf, buf, cnt); host->part_buf_count = cnt; } /* append bytes to part_buf, only use during push */ static int dw_mci_push_part_bytes(struct dw_mci *host, void *buf, int cnt) { cnt = min(cnt, (1 << host->data_shift) - host->part_buf_count); memcpy((void *)&host->part_buf + host->part_buf_count, buf, cnt); host->part_buf_count += cnt; return cnt; } /* pull first bytes from part_buf, only use during pull */ static int dw_mci_pull_part_bytes(struct dw_mci *host, void *buf, int cnt) { cnt = min_t(int, cnt, host->part_buf_count); if (cnt) { memcpy(buf, (void *)&host->part_buf + host->part_buf_start, cnt); host->part_buf_count -= cnt; host->part_buf_start += cnt; } return cnt; } /* pull final bytes from the part_buf, assuming it's just been filled */ static void dw_mci_pull_final_bytes(struct dw_mci *host, void *buf, int cnt) { memcpy(buf, &host->part_buf, cnt); host->part_buf_start = cnt; host->part_buf_count = (1 << host->data_shift) - cnt; } static void dw_mci_push_data16(struct dw_mci *host, void *buf, int cnt) { struct mmc_data *data = host->data; int init_cnt = cnt; /* try and push anything in the part_buf */ if (unlikely(host->part_buf_count)) { int len = dw_mci_push_part_bytes(host, buf, cnt); buf += len; cnt -= len; if (host->part_buf_count == 2) { mci_fifo_writew(host->fifo_reg, host->part_buf16); host->part_buf_count = 0; } } #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (unlikely((unsigned long)buf & 0x1)) { while (cnt >= 2) { u16 aligned_buf[64]; int len = min(cnt & -2, (int)sizeof(aligned_buf)); int items = len >> 1; int i; /* memcpy from input buffer into aligned buffer */ memcpy(aligned_buf, buf, len); buf += len; cnt -= len; /* push data from aligned buffer into fifo */ for (i = 0; i < items; ++i) mci_fifo_writew(host->fifo_reg, aligned_buf[i]); } } else #endif { u16 *pdata = buf; for (; cnt >= 2; cnt -= 2) mci_fifo_writew(host->fifo_reg, *pdata++); buf = pdata; } /* put anything remaining in the part_buf */ if (cnt) { dw_mci_set_part_bytes(host, buf, cnt); /* Push data if we have reached the expected data length */ if ((data->bytes_xfered + init_cnt) == (data->blksz * data->blocks)) mci_fifo_writew(host->fifo_reg, host->part_buf16); } } static void dw_mci_pull_data16(struct dw_mci *host, void *buf, int cnt) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (unlikely((unsigned long)buf & 0x1)) { while (cnt >= 2) { /* pull data from fifo into aligned buffer */ u16 aligned_buf[64]; int len = min(cnt & -2, (int)sizeof(aligned_buf)); int items = len >> 1; int i; for (i = 0; i < items; ++i) aligned_buf[i] = mci_fifo_readw(host->fifo_reg); /* memcpy from aligned buffer into output buffer */ memcpy(buf, aligned_buf, len); buf += len; cnt -= len; } } else #endif { u16 *pdata = buf; for (; cnt >= 2; cnt -= 2) *pdata++ = mci_fifo_readw(host->fifo_reg); buf = pdata; } if (cnt) { host->part_buf16 = mci_fifo_readw(host->fifo_reg); dw_mci_pull_final_bytes(host, buf, cnt); } } static void dw_mci_push_data32(struct dw_mci *host, void *buf, int cnt) { struct mmc_data *data = host->data; int init_cnt = cnt; /* try and push anything in the part_buf */ if (unlikely(host->part_buf_count)) { int len = dw_mci_push_part_bytes(host, buf, cnt); buf += len; cnt -= len; if (host->part_buf_count == 4) { mci_fifo_writel(host->fifo_reg, host->part_buf32); host->part_buf_count = 0; } } #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (unlikely((unsigned long)buf & 0x3)) { while (cnt >= 4) { u32 aligned_buf[32]; int len = min(cnt & -4, (int)sizeof(aligned_buf)); int items = len >> 2; int i; /* memcpy from input buffer into aligned buffer */ memcpy(aligned_buf, buf, len); buf += len; cnt -= len; /* push data from aligned buffer into fifo */ for (i = 0; i < items; ++i) mci_fifo_writel(host->fifo_reg, aligned_buf[i]); } } else #endif { u32 *pdata = buf; for (; cnt >= 4; cnt -= 4) mci_fifo_writel(host->fifo_reg, *pdata++); buf = pdata; } /* put anything remaining in the part_buf */ if (cnt) { dw_mci_set_part_bytes(host, buf, cnt); /* Push data if we have reached the expected data length */ if ((data->bytes_xfered + init_cnt) == (data->blksz * data->blocks)) mci_fifo_writel(host->fifo_reg, host->part_buf32); } } static void dw_mci_pull_data32(struct dw_mci *host, void *buf, int cnt) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (unlikely((unsigned long)buf & 0x3)) { while (cnt >= 4) { /* pull data from fifo into aligned buffer */ u32 aligned_buf[32]; int len = min(cnt & -4, (int)sizeof(aligned_buf)); int items = len >> 2; int i; for (i = 0; i < items; ++i) aligned_buf[i] = mci_fifo_readl(host->fifo_reg); /* memcpy from aligned buffer into output buffer */ memcpy(buf, aligned_buf, len); buf += len; cnt -= len; } } else #endif { u32 *pdata = buf; for (; cnt >= 4; cnt -= 4) *pdata++ = mci_fifo_readl(host->fifo_reg); buf = pdata; } if (cnt) { host->part_buf32 = mci_fifo_readl(host->fifo_reg); dw_mci_pull_final_bytes(host, buf, cnt); } } static void dw_mci_push_data64(struct dw_mci *host, void *buf, int cnt) { struct mmc_data *data = host->data; int init_cnt = cnt; /* try and push anything in the part_buf */ if (unlikely(host->part_buf_count)) { int len = dw_mci_push_part_bytes(host, buf, cnt); buf += len; cnt -= len; if (host->part_buf_count == 8) { mci_fifo_writeq(host->fifo_reg, host->part_buf); host->part_buf_count = 0; } } #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (unlikely((unsigned long)buf & 0x7)) { while (cnt >= 8) { u64 aligned_buf[16]; int len = min(cnt & -8, (int)sizeof(aligned_buf)); int items = len >> 3; int i; /* memcpy from input buffer into aligned buffer */ memcpy(aligned_buf, buf, len); buf += len; cnt -= len; /* push data from aligned buffer into fifo */ for (i = 0; i < items; ++i) mci_fifo_writeq(host->fifo_reg, aligned_buf[i]); } } else #endif { u64 *pdata = buf; for (; cnt >= 8; cnt -= 8) mci_fifo_writeq(host->fifo_reg, *pdata++); buf = pdata; } /* put anything remaining in the part_buf */ if (cnt) { dw_mci_set_part_bytes(host, buf, cnt); /* Push data if we have reached the expected data length */ if ((data->bytes_xfered + init_cnt) == (data->blksz * data->blocks)) mci_fifo_writeq(host->fifo_reg, host->part_buf); } } static void dw_mci_pull_data64(struct dw_mci *host, void *buf, int cnt) { #ifndef CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS if (unlikely((unsigned long)buf & 0x7)) { while (cnt >= 8) { /* pull data from fifo into aligned buffer */ u64 aligned_buf[16]; int len = min(cnt & -8, (int)sizeof(aligned_buf)); int items = len >> 3; int i; for (i = 0; i < items; ++i) aligned_buf[i] = mci_fifo_readq(host->fifo_reg); /* memcpy from aligned buffer into output buffer */ memcpy(buf, aligned_buf, len); buf += len; cnt -= len; } } else #endif { u64 *pdata = buf; for (; cnt >= 8; cnt -= 8) *pdata++ = mci_fifo_readq(host->fifo_reg); buf = pdata; } if (cnt) { host->part_buf = mci_fifo_readq(host->fifo_reg); dw_mci_pull_final_bytes(host, buf, cnt); } } static void dw_mci_pull_data(struct dw_mci *host, void *buf, int cnt) { int len; /* get remaining partial bytes */ len = dw_mci_pull_part_bytes(host, buf, cnt); if (unlikely(len == cnt)) return; buf += len; cnt -= len; /* get the rest of the data */ host->pull_data(host, buf, cnt); } static void dw_mci_read_data_pio(struct dw_mci *host, bool dto) { struct sg_mapping_iter *sg_miter = &host->sg_miter; void *buf; unsigned int offset; struct mmc_data *data = host->data; int shift = host->data_shift; u32 status; unsigned int len; unsigned int remain, fcnt; do { if (!sg_miter_next(sg_miter)) goto done; host->sg = sg_miter->piter.sg; buf = sg_miter->addr; remain = sg_miter->length; offset = 0; do { fcnt = (SDMMC_GET_FCNT(mci_readl(host, STATUS)) << shift) + host->part_buf_count; len = min(remain, fcnt); if (!len) break; dw_mci_pull_data(host, (void *)(buf + offset), len); data->bytes_xfered += len; offset += len; remain -= len; } while (remain); sg_miter->consumed = offset; status = mci_readl(host, MINTSTS); mci_writel(host, RINTSTS, SDMMC_INT_RXDR); /* if the RXDR is ready read again */ } while ((status & SDMMC_INT_RXDR) || (dto && SDMMC_GET_FCNT(mci_readl(host, STATUS)))); if (!remain) { if (!sg_miter_next(sg_miter)) goto done; sg_miter->consumed = 0; } sg_miter_stop(sg_miter); return; done: sg_miter_stop(sg_miter); host->sg = NULL; smp_wmb(); /* drain writebuffer */ set_bit(EVENT_XFER_COMPLETE, &host->pending_events); } static void dw_mci_write_data_pio(struct dw_mci *host) { struct sg_mapping_iter *sg_miter = &host->sg_miter; void *buf; unsigned int offset; struct mmc_data *data = host->data; int shift = host->data_shift; u32 status; unsigned int len; unsigned int fifo_depth = host->fifo_depth; unsigned int remain, fcnt; do { if (!sg_miter_next(sg_miter)) goto done; host->sg = sg_miter->piter.sg; buf = sg_miter->addr; remain = sg_miter->length; offset = 0; do { fcnt = ((fifo_depth - SDMMC_GET_FCNT(mci_readl(host, STATUS))) << shift) - host->part_buf_count; len = min(remain, fcnt); if (!len) break; host->push_data(host, (void *)(buf + offset), len); data->bytes_xfered += len; offset += len; remain -= len; } while (remain); sg_miter->consumed = offset; status = mci_readl(host, MINTSTS); mci_writel(host, RINTSTS, SDMMC_INT_TXDR); } while (status & SDMMC_INT_TXDR); /* if TXDR write again */ if (!remain) { if (!sg_miter_next(sg_miter)) goto done; sg_miter->consumed = 0; } sg_miter_stop(sg_miter); return; done: sg_miter_stop(sg_miter); host->sg = NULL; smp_wmb(); /* drain writebuffer */ set_bit(EVENT_XFER_COMPLETE, &host->pending_events); } static void dw_mci_cmd_interrupt(struct dw_mci *host, u32 status) { del_timer(&host->cto_timer); if (!host->cmd_status) host->cmd_status = status; smp_wmb(); /* drain writebuffer */ set_bit(EVENT_CMD_COMPLETE, &host->pending_events); tasklet_schedule(&host->tasklet); } static void dw_mci_handle_cd(struct dw_mci *host) { struct dw_mci_slot *slot = host->slot; if (slot->mmc->ops->card_event) slot->mmc->ops->card_event(slot->mmc); mmc_detect_change(slot->mmc, msecs_to_jiffies(host->pdata->detect_delay_ms)); } static irqreturn_t dw_mci_interrupt(int irq, void *dev_id) { struct dw_mci *host = dev_id; u32 pending; struct dw_mci_slot *slot = host->slot; unsigned long irqflags; pending = mci_readl(host, MINTSTS); /* read-only mask reg */ if (pending) { /* Check volt switch first, since it can look like an error */ if ((host->state == STATE_SENDING_CMD11) && (pending & SDMMC_INT_VOLT_SWITCH)) { mci_writel(host, RINTSTS, SDMMC_INT_VOLT_SWITCH); pending &= ~SDMMC_INT_VOLT_SWITCH; /* * Hold the lock; we know cmd11_timer can't be kicked * off after the lock is released, so safe to delete. */ spin_lock_irqsave(&host->irq_lock, irqflags); dw_mci_cmd_interrupt(host, pending); spin_unlock_irqrestore(&host->irq_lock, irqflags); del_timer(&host->cmd11_timer); } if (pending & DW_MCI_CMD_ERROR_FLAGS) { spin_lock_irqsave(&host->irq_lock, irqflags); del_timer(&host->cto_timer); mci_writel(host, RINTSTS, DW_MCI_CMD_ERROR_FLAGS); host->cmd_status = pending; smp_wmb(); /* drain writebuffer */ set_bit(EVENT_CMD_COMPLETE, &host->pending_events); spin_unlock_irqrestore(&host->irq_lock, irqflags); } if (pending & DW_MCI_DATA_ERROR_FLAGS) { /* if there is an error report DATA_ERROR */ mci_writel(host, RINTSTS, DW_MCI_DATA_ERROR_FLAGS); host->data_status = pending; smp_wmb(); /* drain writebuffer */ set_bit(EVENT_DATA_ERROR, &host->pending_events); tasklet_schedule(&host->tasklet); } if (pending & SDMMC_INT_DATA_OVER) { spin_lock_irqsave(&host->irq_lock, irqflags); del_timer(&host->dto_timer); mci_writel(host, RINTSTS, SDMMC_INT_DATA_OVER); if (!host->data_status) host->data_status = pending; smp_wmb(); /* drain writebuffer */ if (host->dir_status == DW_MCI_RECV_STATUS) { if (host->sg != NULL) dw_mci_read_data_pio(host, true); } set_bit(EVENT_DATA_COMPLETE, &host->pending_events); tasklet_schedule(&host->tasklet); spin_unlock_irqrestore(&host->irq_lock, irqflags); } if (pending & SDMMC_INT_RXDR) { mci_writel(host, RINTSTS, SDMMC_INT_RXDR); if (host->dir_status == DW_MCI_RECV_STATUS && host->sg) dw_mci_read_data_pio(host, false); } if (pending & SDMMC_INT_TXDR) { mci_writel(host, RINTSTS, SDMMC_INT_TXDR); if (host->dir_status == DW_MCI_SEND_STATUS && host->sg) dw_mci_write_data_pio(host); } if (pending & SDMMC_INT_CMD_DONE) { spin_lock_irqsave(&host->irq_lock, irqflags); mci_writel(host, RINTSTS, SDMMC_INT_CMD_DONE); dw_mci_cmd_interrupt(host, pending); spin_unlock_irqrestore(&host->irq_lock, irqflags); } if (pending & SDMMC_INT_CD) { mci_writel(host, RINTSTS, SDMMC_INT_CD); dw_mci_handle_cd(host); } if (pending & SDMMC_INT_SDIO(slot->sdio_id)) { mci_writel(host, RINTSTS, SDMMC_INT_SDIO(slot->sdio_id)); __dw_mci_enable_sdio_irq(slot, 0); sdio_signal_irq(slot->mmc); } } if (host->use_dma != TRANS_MODE_IDMAC) return IRQ_HANDLED; /* Handle IDMA interrupts */ if (host->dma_64bit_address == 1) { pending = mci_readl(host, IDSTS64); if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI); mci_writel(host, IDSTS64, SDMMC_IDMAC_INT_NI); if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) host->dma_ops->complete((void *)host); } } else { pending = mci_readl(host, IDSTS); if (pending & (SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI)) { mci_writel(host, IDSTS, SDMMC_IDMAC_INT_TI | SDMMC_IDMAC_INT_RI); mci_writel(host, IDSTS, SDMMC_IDMAC_INT_NI); if (!test_bit(EVENT_DATA_ERROR, &host->pending_events)) host->dma_ops->complete((void *)host); } } return IRQ_HANDLED; } static int dw_mci_init_slot_caps(struct dw_mci_slot *slot) { struct dw_mci *host = slot->host; const struct dw_mci_drv_data *drv_data = host->drv_data; struct mmc_host *mmc = slot->mmc; int ctrl_id; if (host->pdata->caps) mmc->caps = host->pdata->caps; /* * Support MMC_CAP_ERASE by default. * It needs to use trim/discard/erase commands. */ mmc->caps |= MMC_CAP_ERASE; if (host->pdata->pm_caps) mmc->pm_caps = host->pdata->pm_caps; if (host->dev->of_node) { ctrl_id = of_alias_get_id(host->dev->of_node, "mshc"); if (ctrl_id < 0) ctrl_id = 0; } else { ctrl_id = to_platform_device(host->dev)->id; } if (drv_data && drv_data->caps) { if (ctrl_id >= drv_data->num_caps) { dev_err(host->dev, "invalid controller id %d\n", ctrl_id); return -EINVAL; } mmc->caps |= drv_data->caps[ctrl_id]; } if (host->pdata->caps2) mmc->caps2 = host->pdata->caps2; mmc->f_min = DW_MCI_FREQ_MIN; if (!mmc->f_max) mmc->f_max = DW_MCI_FREQ_MAX; /* Process SDIO IRQs through the sdio_irq_work. */ if (mmc->caps & MMC_CAP_SDIO_IRQ) mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; return 0; } static int dw_mci_init_slot(struct dw_mci *host) { struct mmc_host *mmc; struct dw_mci_slot *slot; int ret; mmc = mmc_alloc_host(sizeof(struct dw_mci_slot), host->dev); if (!mmc) return -ENOMEM; slot = mmc_priv(mmc); slot->id = 0; slot->sdio_id = host->sdio_id0 + slot->id; slot->mmc = mmc; slot->host = host; host->slot = slot; mmc->ops = &dw_mci_ops; /*if there are external regulators, get them*/ ret = mmc_regulator_get_supply(mmc); if (ret) goto err_host_allocated; if (!mmc->ocr_avail) mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34; ret = mmc_of_parse(mmc); if (ret) goto err_host_allocated; ret = dw_mci_init_slot_caps(slot); if (ret) goto err_host_allocated; /* Useful defaults if platform data is unset. */ if (host->use_dma == TRANS_MODE_IDMAC) { mmc->max_segs = host->ring_size; mmc->max_blk_size = 65535; mmc->max_seg_size = 0x1000; mmc->max_req_size = mmc->max_seg_size * host->ring_size; mmc->max_blk_count = mmc->max_req_size / 512; } else if (host->use_dma == TRANS_MODE_EDMAC) { mmc->max_segs = 64; mmc->max_blk_size = 65535; mmc->max_blk_count = 65535; mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; mmc->max_seg_size = mmc->max_req_size; } else { /* TRANS_MODE_PIO */ mmc->max_segs = 64; mmc->max_blk_size = 65535; /* BLKSIZ is 16 bits */ mmc->max_blk_count = 512; mmc->max_req_size = mmc->max_blk_size * mmc->max_blk_count; mmc->max_seg_size = mmc->max_req_size; } dw_mci_get_cd(mmc); ret = mmc_add_host(mmc); if (ret) goto err_host_allocated; #if defined(CONFIG_DEBUG_FS) dw_mci_init_debugfs(slot); #endif return 0; err_host_allocated: mmc_free_host(mmc); return ret; } static void dw_mci_cleanup_slot(struct dw_mci_slot *slot) { /* Debugfs stuff is cleaned up by mmc core */ mmc_remove_host(slot->mmc); slot->host->slot = NULL; mmc_free_host(slot->mmc); } static void dw_mci_init_dma(struct dw_mci *host) { int addr_config; struct device *dev = host->dev; /* * Check tansfer mode from HCON[17:16] * Clear the ambiguous description of dw_mmc databook: * 2b'00: No DMA Interface -> Actually means using Internal DMA block * 2b'01: DesignWare DMA Interface -> Synopsys DW-DMA block * 2b'10: Generic DMA Interface -> non-Synopsys generic DMA block * 2b'11: Non DW DMA Interface -> pio only * Compared to DesignWare DMA Interface, Generic DMA Interface has a * simpler request/acknowledge handshake mechanism and both of them * are regarded as external dma master for dw_mmc. */ host->use_dma = SDMMC_GET_TRANS_MODE(mci_readl(host, HCON)); if (host->use_dma == DMA_INTERFACE_IDMA) { host->use_dma = TRANS_MODE_IDMAC; } else if (host->use_dma == DMA_INTERFACE_DWDMA || host->use_dma == DMA_INTERFACE_GDMA) { host->use_dma = TRANS_MODE_EDMAC; } else { goto no_dma; } /* Determine which DMA interface to use */ if (host->use_dma == TRANS_MODE_IDMAC) { /* * Check ADDR_CONFIG bit in HCON to find * IDMAC address bus width */ addr_config = SDMMC_GET_ADDR_CONFIG(mci_readl(host, HCON)); if (addr_config == 1) { /* host supports IDMAC in 64-bit address mode */ host->dma_64bit_address = 1; dev_info(host->dev, "IDMAC supports 64-bit address mode.\n"); if (!dma_set_mask(host->dev, DMA_BIT_MASK(64))) dma_set_coherent_mask(host->dev, DMA_BIT_MASK(64)); } else { /* host supports IDMAC in 32-bit address mode */ host->dma_64bit_address = 0; dev_info(host->dev, "IDMAC supports 32-bit address mode.\n"); } /* Alloc memory for sg translation */ host->sg_cpu = dmam_alloc_coherent(host->dev, DESC_RING_BUF_SZ, &host->sg_dma, GFP_KERNEL); if (!host->sg_cpu) { dev_err(host->dev, "%s: could not alloc DMA memory\n", __func__); goto no_dma; } host->dma_ops = &dw_mci_idmac_ops; dev_info(host->dev, "Using internal DMA controller.\n"); } else { /* TRANS_MODE_EDMAC: check dma bindings again */ if ((device_property_read_string_array(dev, "dma-names", NULL, 0) < 0) || !device_property_present(dev, "dmas")) { goto no_dma; } host->dma_ops = &dw_mci_edmac_ops; dev_info(host->dev, "Using external DMA controller.\n"); } if (host->dma_ops->init && host->dma_ops->start && host->dma_ops->stop && host->dma_ops->cleanup) { if (host->dma_ops->init(host)) { dev_err(host->dev, "%s: Unable to initialize DMA Controller.\n", __func__); goto no_dma; } } else { dev_err(host->dev, "DMA initialization not found.\n"); goto no_dma; } return; no_dma: dev_info(host->dev, "Using PIO mode.\n"); host->use_dma = TRANS_MODE_PIO; } static void dw_mci_cmd11_timer(struct timer_list *t) { struct dw_mci *host = from_timer(host, t, cmd11_timer); if (host->state != STATE_SENDING_CMD11) { dev_warn(host->dev, "Unexpected CMD11 timeout\n"); return; } host->cmd_status = SDMMC_INT_RTO; set_bit(EVENT_CMD_COMPLETE, &host->pending_events); tasklet_schedule(&host->tasklet); } static void dw_mci_cto_timer(struct timer_list *t) { struct dw_mci *host = from_timer(host, t, cto_timer); unsigned long irqflags; u32 pending; spin_lock_irqsave(&host->irq_lock, irqflags); /* * If somehow we have very bad interrupt latency it's remotely possible * that the timer could fire while the interrupt is still pending or * while the interrupt is midway through running. Let's be paranoid * and detect those two cases. Note that this is paranoia is somewhat * justified because in this function we don't actually cancel the * pending command in the controller--we just assume it will never come. */ pending = mci_readl(host, MINTSTS); /* read-only mask reg */ if (pending & (DW_MCI_CMD_ERROR_FLAGS | SDMMC_INT_CMD_DONE)) { /* The interrupt should fire; no need to act but we can warn */ dev_warn(host->dev, "Unexpected interrupt latency\n"); goto exit; } if (test_bit(EVENT_CMD_COMPLETE, &host->pending_events)) { /* Presumably interrupt handler couldn't delete the timer */ dev_warn(host->dev, "CTO timeout when already completed\n"); goto exit; } /* * Continued paranoia to make sure we're in the state we expect. * This paranoia isn't really justified but it seems good to be safe. */ switch (host->state) { case STATE_SENDING_CMD11: case STATE_SENDING_CMD: case STATE_SENDING_STOP: /* * If CMD_DONE interrupt does NOT come in sending command * state, we should notify the driver to terminate current * transfer and report a command timeout to the core. */ host->cmd_status = SDMMC_INT_RTO; set_bit(EVENT_CMD_COMPLETE, &host->pending_events); tasklet_schedule(&host->tasklet); break; default: dev_warn(host->dev, "Unexpected command timeout, state %d\n", host->state); break; } exit: spin_unlock_irqrestore(&host->irq_lock, irqflags); } static void dw_mci_dto_timer(struct timer_list *t) { struct dw_mci *host = from_timer(host, t, dto_timer); unsigned long irqflags; u32 pending; spin_lock_irqsave(&host->irq_lock, irqflags); /* * The DTO timer is much longer than the CTO timer, so it's even less * likely that we'll these cases, but it pays to be paranoid. */ pending = mci_readl(host, MINTSTS); /* read-only mask reg */ if (pending & SDMMC_INT_DATA_OVER) { /* The interrupt should fire; no need to act but we can warn */ dev_warn(host->dev, "Unexpected data interrupt latency\n"); goto exit; } if (test_bit(EVENT_DATA_COMPLETE, &host->pending_events)) { /* Presumably interrupt handler couldn't delete the timer */ dev_warn(host->dev, "DTO timeout when already completed\n"); goto exit; } /* * Continued paranoia to make sure we're in the state we expect. * This paranoia isn't really justified but it seems good to be safe. */ switch (host->state) { case STATE_SENDING_DATA: case STATE_DATA_BUSY: /* * If DTO interrupt does NOT come in sending data state, * we should notify the driver to terminate current transfer * and report a data timeout to the core. */ host->data_status = SDMMC_INT_DRTO; set_bit(EVENT_DATA_ERROR, &host->pending_events); set_bit(EVENT_DATA_COMPLETE, &host->pending_events); tasklet_schedule(&host->tasklet); break; default: dev_warn(host->dev, "Unexpected data timeout, state %d\n", host->state); break; } exit: spin_unlock_irqrestore(&host->irq_lock, irqflags); } #ifdef CONFIG_OF static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) { struct dw_mci_board *pdata; struct device *dev = host->dev; const struct dw_mci_drv_data *drv_data = host->drv_data; int ret; u32 clock_frequency; pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); /* find reset controller when exist */ pdata->rstc = devm_reset_control_get_optional_exclusive(dev, "reset"); if (IS_ERR(pdata->rstc)) { if (PTR_ERR(pdata->rstc) == -EPROBE_DEFER) return ERR_PTR(-EPROBE_DEFER); } if (device_property_read_u32(dev, "fifo-depth", &pdata->fifo_depth)) dev_info(dev, "fifo-depth property not found, using value of FIFOTH register as default\n"); device_property_read_u32(dev, "card-detect-delay", &pdata->detect_delay_ms); device_property_read_u32(dev, "data-addr", &host->data_addr_override); if (device_property_present(dev, "fifo-watermark-aligned")) host->wm_aligned = true; if (!device_property_read_u32(dev, "clock-frequency", &clock_frequency)) pdata->bus_hz = clock_frequency; if (drv_data && drv_data->parse_dt) { ret = drv_data->parse_dt(host); if (ret) return ERR_PTR(ret); } return pdata; } #else /* CONFIG_OF */ static struct dw_mci_board *dw_mci_parse_dt(struct dw_mci *host) { return ERR_PTR(-EINVAL); } #endif /* CONFIG_OF */ static void dw_mci_enable_cd(struct dw_mci *host) { unsigned long irqflags; u32 temp; /* * No need for CD if all slots have a non-error GPIO * as well as broken card detection is found. */ if (host->slot->mmc->caps & MMC_CAP_NEEDS_POLL) return; if (mmc_gpio_get_cd(host->slot->mmc) < 0) { spin_lock_irqsave(&host->irq_lock, irqflags); temp = mci_readl(host, INTMASK); temp |= SDMMC_INT_CD; mci_writel(host, INTMASK, temp); spin_unlock_irqrestore(&host->irq_lock, irqflags); } } int dw_mci_probe(struct dw_mci *host) { const struct dw_mci_drv_data *drv_data = host->drv_data; int width, i, ret = 0; u32 fifo_size; if (!host->pdata) { host->pdata = dw_mci_parse_dt(host); if (PTR_ERR(host->pdata) == -EPROBE_DEFER) { return -EPROBE_DEFER; } else if (IS_ERR(host->pdata)) { dev_err(host->dev, "platform data not available\n"); return -EINVAL; } } host->biu_clk = devm_clk_get(host->dev, "biu"); if (IS_ERR(host->biu_clk)) { dev_dbg(host->dev, "biu clock not available\n"); } else { ret = clk_prepare_enable(host->biu_clk); if (ret) { dev_err(host->dev, "failed to enable biu clock\n"); return ret; } } host->ciu_clk = devm_clk_get(host->dev, "ciu"); if (IS_ERR(host->ciu_clk)) { dev_dbg(host->dev, "ciu clock not available\n"); host->bus_hz = host->pdata->bus_hz; } else { ret = clk_prepare_enable(host->ciu_clk); if (ret) { dev_err(host->dev, "failed to enable ciu clock\n"); goto err_clk_biu; } if (host->pdata->bus_hz) { ret = clk_set_rate(host->ciu_clk, host->pdata->bus_hz); if (ret) dev_warn(host->dev, "Unable to set bus rate to %uHz\n", host->pdata->bus_hz); } host->bus_hz = clk_get_rate(host->ciu_clk); } if (!host->bus_hz) { dev_err(host->dev, "Platform data must supply bus speed\n"); ret = -ENODEV; goto err_clk_ciu; } if (!IS_ERR(host->pdata->rstc)) { reset_control_assert(host->pdata->rstc); usleep_range(10, 50); reset_control_deassert(host->pdata->rstc); } if (drv_data && drv_data->init) { ret = drv_data->init(host); if (ret) { dev_err(host->dev, "implementation specific init failed\n"); goto err_clk_ciu; } } timer_setup(&host->cmd11_timer, dw_mci_cmd11_timer, 0); timer_setup(&host->cto_timer, dw_mci_cto_timer, 0); timer_setup(&host->dto_timer, dw_mci_dto_timer, 0); spin_lock_init(&host->lock); spin_lock_init(&host->irq_lock); INIT_LIST_HEAD(&host->queue); /* * Get the host data width - this assumes that HCON has been set with * the correct values. */ i = SDMMC_GET_HDATA_WIDTH(mci_readl(host, HCON)); if (!i) { host->push_data = dw_mci_push_data16; host->pull_data = dw_mci_pull_data16; width = 16; host->data_shift = 1; } else if (i == 2) { host->push_data = dw_mci_push_data64; host->pull_data = dw_mci_pull_data64; width = 64; host->data_shift = 3; } else { /* Check for a reserved value, and warn if it is */ WARN((i != 1), "HCON reports a reserved host data width!\n" "Defaulting to 32-bit access.\n"); host->push_data = dw_mci_push_data32; host->pull_data = dw_mci_pull_data32; width = 32; host->data_shift = 2; } /* Reset all blocks */ if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { ret = -ENODEV; goto err_clk_ciu; } host->dma_ops = host->pdata->dma_ops; dw_mci_init_dma(host); /* Clear the interrupts for the host controller */ mci_writel(host, RINTSTS, 0xFFFFFFFF); mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ /* Put in max timeout */ mci_writel(host, TMOUT, 0xFFFFFFFF); /* * FIFO threshold settings RxMark = fifo_size / 2 - 1, * Tx Mark = fifo_size / 2 DMA Size = 8 */ if (!host->pdata->fifo_depth) { /* * Power-on value of RX_WMark is FIFO_DEPTH-1, but this may * have been overwritten by the bootloader, just like we're * about to do, so if you know the value for your hardware, you * should put it in the platform data. */ fifo_size = mci_readl(host, FIFOTH); fifo_size = 1 + ((fifo_size >> 16) & 0xfff); } else { fifo_size = host->pdata->fifo_depth; } host->fifo_depth = fifo_size; host->fifoth_val = SDMMC_SET_FIFOTH(0x2, fifo_size / 2 - 1, fifo_size / 2); mci_writel(host, FIFOTH, host->fifoth_val); /* disable clock to CIU */ mci_writel(host, CLKENA, 0); mci_writel(host, CLKSRC, 0); /* * In 2.40a spec, Data offset is changed. * Need to check the version-id and set data-offset for DATA register. */ host->verid = SDMMC_GET_VERID(mci_readl(host, VERID)); dev_info(host->dev, "Version ID is %04x\n", host->verid); if (host->data_addr_override) host->fifo_reg = host->regs + host->data_addr_override; else if (host->verid < DW_MMC_240A) host->fifo_reg = host->regs + DATA_OFFSET; else host->fifo_reg = host->regs + DATA_240A_OFFSET; tasklet_init(&host->tasklet, dw_mci_tasklet_func, (unsigned long)host); ret = devm_request_irq(host->dev, host->irq, dw_mci_interrupt, host->irq_flags, "dw-mci", host); if (ret) goto err_dmaunmap; /* * Enable interrupts for command done, data over, data empty, * receive ready and error such as transmit, receive timeout, crc error */ mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | SDMMC_INT_TXDR | SDMMC_INT_RXDR | DW_MCI_ERROR_FLAGS); /* Enable mci interrupt */ mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); dev_info(host->dev, "DW MMC controller at irq %d,%d bit host data width,%u deep fifo\n", host->irq, width, fifo_size); /* We need at least one slot to succeed */ ret = dw_mci_init_slot(host); if (ret) { dev_dbg(host->dev, "slot %d init failed\n", i); goto err_dmaunmap; } /* Now that slots are all setup, we can enable card detect */ dw_mci_enable_cd(host); return 0; err_dmaunmap: if (host->use_dma && host->dma_ops->exit) host->dma_ops->exit(host); if (!IS_ERR(host->pdata->rstc)) reset_control_assert(host->pdata->rstc); err_clk_ciu: clk_disable_unprepare(host->ciu_clk); err_clk_biu: clk_disable_unprepare(host->biu_clk); return ret; } EXPORT_SYMBOL(dw_mci_probe); void dw_mci_remove(struct dw_mci *host) { dev_dbg(host->dev, "remove slot\n"); if (host->slot) dw_mci_cleanup_slot(host->slot); mci_writel(host, RINTSTS, 0xFFFFFFFF); mci_writel(host, INTMASK, 0); /* disable all mmc interrupt first */ /* disable clock to CIU */ mci_writel(host, CLKENA, 0); mci_writel(host, CLKSRC, 0); if (host->use_dma && host->dma_ops->exit) host->dma_ops->exit(host); if (!IS_ERR(host->pdata->rstc)) reset_control_assert(host->pdata->rstc); clk_disable_unprepare(host->ciu_clk); clk_disable_unprepare(host->biu_clk); } EXPORT_SYMBOL(dw_mci_remove); #ifdef CONFIG_PM int dw_mci_runtime_suspend(struct device *dev) { struct dw_mci *host = dev_get_drvdata(dev); if (host->use_dma && host->dma_ops->exit) host->dma_ops->exit(host); clk_disable_unprepare(host->ciu_clk); if (host->slot && (mmc_can_gpio_cd(host->slot->mmc) || !mmc_card_is_removable(host->slot->mmc))) clk_disable_unprepare(host->biu_clk); return 0; } EXPORT_SYMBOL(dw_mci_runtime_suspend); int dw_mci_runtime_resume(struct device *dev) { int ret = 0; struct dw_mci *host = dev_get_drvdata(dev); if (host->slot && (mmc_can_gpio_cd(host->slot->mmc) || !mmc_card_is_removable(host->slot->mmc))) { ret = clk_prepare_enable(host->biu_clk); if (ret) return ret; } ret = clk_prepare_enable(host->ciu_clk); if (ret) goto err; if (!dw_mci_ctrl_reset(host, SDMMC_CTRL_ALL_RESET_FLAGS)) { clk_disable_unprepare(host->ciu_clk); ret = -ENODEV; goto err; } if (host->use_dma && host->dma_ops->init) host->dma_ops->init(host); /* * Restore the initial value at FIFOTH register * And Invalidate the prev_blksz with zero */ mci_writel(host, FIFOTH, host->fifoth_val); host->prev_blksz = 0; /* Put in max timeout */ mci_writel(host, TMOUT, 0xFFFFFFFF); mci_writel(host, RINTSTS, 0xFFFFFFFF); mci_writel(host, INTMASK, SDMMC_INT_CMD_DONE | SDMMC_INT_DATA_OVER | SDMMC_INT_TXDR | SDMMC_INT_RXDR | DW_MCI_ERROR_FLAGS); mci_writel(host, CTRL, SDMMC_CTRL_INT_ENABLE); if (host->slot->mmc->pm_flags & MMC_PM_KEEP_POWER) dw_mci_set_ios(host->slot->mmc, &host->slot->mmc->ios); /* Force setup bus to guarantee available clock output */ dw_mci_setup_bus(host->slot, true); /* Now that slots are all setup, we can enable card detect */ dw_mci_enable_cd(host); return 0; err: if (host->slot && (mmc_can_gpio_cd(host->slot->mmc) || !mmc_card_is_removable(host->slot->mmc))) clk_disable_unprepare(host->biu_clk); return ret; } EXPORT_SYMBOL(dw_mci_runtime_resume); #endif /* CONFIG_PM */ static int __init dw_mci_init(void) { pr_info("Synopsys Designware Multimedia Card Interface Driver\n"); return 0; } static void __exit dw_mci_exit(void) { } module_init(dw_mci_init); module_exit(dw_mci_exit); MODULE_DESCRIPTION("DW Multimedia Card Interface driver"); MODULE_AUTHOR("NXP Semiconductor VietNam"); MODULE_AUTHOR("Imagination Technologies Ltd"); MODULE_LICENSE("GPL v2");