// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) STMicroelectronics 2018 - All Rights Reserved * Author: Ludovic.barre@st.com for STMicroelectronics. */ #include #include #include #include #include #include #include "mmci.h" #define SDMMC_LLI_BUF_LEN PAGE_SIZE #define SDMMC_IDMA_BURST BIT(MMCI_STM32_IDMABNDT_SHIFT) struct sdmmc_lli_desc { u32 idmalar; u32 idmabase; u32 idmasize; }; struct sdmmc_priv { dma_addr_t sg_dma; void *sg_cpu; }; int sdmmc_idma_validate_data(struct mmci_host *host, struct mmc_data *data) { struct scatterlist *sg; int i; /* * idma has constraints on idmabase & idmasize for each element * excepted the last element which has no constraint on idmasize */ for_each_sg(data->sg, sg, data->sg_len - 1, i) { if (!IS_ALIGNED(sg_dma_address(data->sg), sizeof(u32)) || !IS_ALIGNED(sg_dma_len(data->sg), SDMMC_IDMA_BURST)) { dev_err(mmc_dev(host->mmc), "unaligned scatterlist: ofst:%x length:%d\n", data->sg->offset, data->sg->length); return -EINVAL; } } if (!IS_ALIGNED(sg_dma_address(data->sg), sizeof(u32))) { dev_err(mmc_dev(host->mmc), "unaligned last scatterlist: ofst:%x length:%d\n", data->sg->offset, data->sg->length); return -EINVAL; } return 0; } static int _sdmmc_idma_prep_data(struct mmci_host *host, struct mmc_data *data) { int n_elem; n_elem = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); if (!n_elem) { dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n"); return -EINVAL; } return 0; } static int sdmmc_idma_prep_data(struct mmci_host *host, struct mmc_data *data, bool next) { /* Check if job is already prepared. */ if (!next && data->host_cookie == host->next_cookie) return 0; return _sdmmc_idma_prep_data(host, data); } static void sdmmc_idma_unprep_data(struct mmci_host *host, struct mmc_data *data, int err) { dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); } static int sdmmc_idma_setup(struct mmci_host *host) { struct sdmmc_priv *idma; idma = devm_kzalloc(mmc_dev(host->mmc), sizeof(*idma), GFP_KERNEL); if (!idma) return -ENOMEM; host->dma_priv = idma; if (host->variant->dma_lli) { idma->sg_cpu = dmam_alloc_coherent(mmc_dev(host->mmc), SDMMC_LLI_BUF_LEN, &idma->sg_dma, GFP_KERNEL); if (!idma->sg_cpu) { dev_err(mmc_dev(host->mmc), "Failed to alloc IDMA descriptor\n"); return -ENOMEM; } host->mmc->max_segs = SDMMC_LLI_BUF_LEN / sizeof(struct sdmmc_lli_desc); host->mmc->max_seg_size = host->variant->stm32_idmabsize_mask; } else { host->mmc->max_segs = 1; host->mmc->max_seg_size = host->mmc->max_req_size; } return 0; } static int sdmmc_idma_start(struct mmci_host *host, unsigned int *datactrl) { struct sdmmc_priv *idma = host->dma_priv; struct sdmmc_lli_desc *desc = (struct sdmmc_lli_desc *)idma->sg_cpu; struct mmc_data *data = host->data; struct scatterlist *sg; int i; if (!host->variant->dma_lli || data->sg_len == 1) { writel_relaxed(sg_dma_address(data->sg), host->base + MMCI_STM32_IDMABASE0R); writel_relaxed(MMCI_STM32_IDMAEN, host->base + MMCI_STM32_IDMACTRLR); return 0; } for_each_sg(data->sg, sg, data->sg_len, i) { desc[i].idmalar = (i + 1) * sizeof(struct sdmmc_lli_desc); desc[i].idmalar |= MMCI_STM32_ULA | MMCI_STM32_ULS | MMCI_STM32_ABR; desc[i].idmabase = sg_dma_address(sg); desc[i].idmasize = sg_dma_len(sg); } /* notice the end of link list */ desc[data->sg_len - 1].idmalar &= ~MMCI_STM32_ULA; dma_wmb(); writel_relaxed(idma->sg_dma, host->base + MMCI_STM32_IDMABAR); writel_relaxed(desc[0].idmalar, host->base + MMCI_STM32_IDMALAR); writel_relaxed(desc[0].idmabase, host->base + MMCI_STM32_IDMABASE0R); writel_relaxed(desc[0].idmasize, host->base + MMCI_STM32_IDMABSIZER); writel_relaxed(MMCI_STM32_IDMAEN | MMCI_STM32_IDMALLIEN, host->base + MMCI_STM32_IDMACTRLR); return 0; } static void sdmmc_idma_finalize(struct mmci_host *host, struct mmc_data *data) { writel_relaxed(0, host->base + MMCI_STM32_IDMACTRLR); } static void mmci_sdmmc_set_clkreg(struct mmci_host *host, unsigned int desired) { unsigned int clk = 0, ddr = 0; if (host->mmc->ios.timing == MMC_TIMING_MMC_DDR52 || host->mmc->ios.timing == MMC_TIMING_UHS_DDR50) ddr = MCI_STM32_CLK_DDR; /* * cclk = mclk / (2 * clkdiv) * clkdiv 0 => bypass * in ddr mode bypass is not possible */ if (desired) { if (desired >= host->mclk && !ddr) { host->cclk = host->mclk; } else { clk = DIV_ROUND_UP(host->mclk, 2 * desired); if (clk > MCI_STM32_CLK_CLKDIV_MSK) clk = MCI_STM32_CLK_CLKDIV_MSK; host->cclk = host->mclk / (2 * clk); } } else { /* * while power-on phase the clock can't be define to 0, * Only power-off and power-cyc deactivate the clock. * if desired clock is 0, set max divider */ clk = MCI_STM32_CLK_CLKDIV_MSK; host->cclk = host->mclk / (2 * clk); } /* Set actual clock for debug */ if (host->mmc->ios.power_mode == MMC_POWER_ON) host->mmc->actual_clock = host->cclk; else host->mmc->actual_clock = 0; if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) clk |= MCI_STM32_CLK_WIDEBUS_4; if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) clk |= MCI_STM32_CLK_WIDEBUS_8; clk |= MCI_STM32_CLK_HWFCEN; clk |= host->clk_reg_add; clk |= ddr; /* * SDMMC_FBCK is selected when an external Delay Block is needed * with SDR104. */ if (host->mmc->ios.timing >= MMC_TIMING_UHS_SDR50) { clk |= MCI_STM32_CLK_BUSSPEED; if (host->mmc->ios.timing == MMC_TIMING_UHS_SDR104) { clk &= ~MCI_STM32_CLK_SEL_MSK; clk |= MCI_STM32_CLK_SELFBCK; } } mmci_write_clkreg(host, clk); } static void mmci_sdmmc_set_pwrreg(struct mmci_host *host, unsigned int pwr) { struct mmc_ios ios = host->mmc->ios; pwr = host->pwr_reg_add; if (ios.power_mode == MMC_POWER_OFF) { /* Only a reset could power-off sdmmc */ reset_control_assert(host->rst); udelay(2); reset_control_deassert(host->rst); /* * Set the SDMMC in Power-cycle state. * This will make that the SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK * are driven low, to prevent the Card from being supplied * through the signal lines. */ mmci_write_pwrreg(host, MCI_STM32_PWR_CYC | pwr); } else if (ios.power_mode == MMC_POWER_ON) { /* * After power-off (reset): the irq mask defined in probe * functionis lost * ault irq mask (probe) must be activated */ writel(MCI_IRQENABLE | host->variant->start_err, host->base + MMCIMASK0); /* * After a power-cycle state, we must set the SDMMC in * Power-off. The SDMMC_D[7:0], SDMMC_CMD and SDMMC_CK are * driven high. Then we can set the SDMMC to Power-on state */ mmci_write_pwrreg(host, MCI_PWR_OFF | pwr); mdelay(1); mmci_write_pwrreg(host, MCI_PWR_ON | pwr); } } static u32 sdmmc_get_dctrl_cfg(struct mmci_host *host) { u32 datactrl; datactrl = mmci_dctrl_blksz(host); if (host->mmc->card && mmc_card_sdio(host->mmc->card) && host->data->blocks == 1) datactrl |= MCI_DPSM_STM32_MODE_SDIO; else if (host->data->stop && !host->mrq->sbc) datactrl |= MCI_DPSM_STM32_MODE_BLOCK_STOP; else datactrl |= MCI_DPSM_STM32_MODE_BLOCK; return datactrl; } static struct mmci_host_ops sdmmc_variant_ops = { .validate_data = sdmmc_idma_validate_data, .prep_data = sdmmc_idma_prep_data, .unprep_data = sdmmc_idma_unprep_data, .get_datactrl_cfg = sdmmc_get_dctrl_cfg, .dma_setup = sdmmc_idma_setup, .dma_start = sdmmc_idma_start, .dma_finalize = sdmmc_idma_finalize, .set_clkreg = mmci_sdmmc_set_clkreg, .set_pwrreg = mmci_sdmmc_set_pwrreg, }; void sdmmc_variant_init(struct mmci_host *host) { host->ops = &sdmmc_variant_ops; }