/* * Driver for sunxi SD/MMC host controllers * (C) Copyright 2007-2011 Reuuimlla Technology Co., Ltd. * (C) Copyright 2007-2011 Aaron Maoye * (C) Copyright 2013-2014 O2S GmbH * (C) Copyright 2013-2014 David Lanzendörfer * (C) Copyright 2013-2014 Hans de Goede * (C) Copyright 2017 Sootech SA * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License as * published by the Free Software Foundation; either version 2 of * the License, or (at your option) any later version. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* register offset definitions */ #define SDXC_REG_GCTRL (0x00) /* SMC Global Control Register */ #define SDXC_REG_CLKCR (0x04) /* SMC Clock Control Register */ #define SDXC_REG_TMOUT (0x08) /* SMC Time Out Register */ #define SDXC_REG_WIDTH (0x0C) /* SMC Bus Width Register */ #define SDXC_REG_BLKSZ (0x10) /* SMC Block Size Register */ #define SDXC_REG_BCNTR (0x14) /* SMC Byte Count Register */ #define SDXC_REG_CMDR (0x18) /* SMC Command Register */ #define SDXC_REG_CARG (0x1C) /* SMC Argument Register */ #define SDXC_REG_RESP0 (0x20) /* SMC Response Register 0 */ #define SDXC_REG_RESP1 (0x24) /* SMC Response Register 1 */ #define SDXC_REG_RESP2 (0x28) /* SMC Response Register 2 */ #define SDXC_REG_RESP3 (0x2C) /* SMC Response Register 3 */ #define SDXC_REG_IMASK (0x30) /* SMC Interrupt Mask Register */ #define SDXC_REG_MISTA (0x34) /* SMC Masked Interrupt Status Register */ #define SDXC_REG_RINTR (0x38) /* SMC Raw Interrupt Status Register */ #define SDXC_REG_STAS (0x3C) /* SMC Status Register */ #define SDXC_REG_FTRGL (0x40) /* SMC FIFO Threshold Watermark Registe */ #define SDXC_REG_FUNS (0x44) /* SMC Function Select Register */ #define SDXC_REG_CBCR (0x48) /* SMC CIU Byte Count Register */ #define SDXC_REG_BBCR (0x4C) /* SMC BIU Byte Count Register */ #define SDXC_REG_DBGC (0x50) /* SMC Debug Enable Register */ #define SDXC_REG_HWRST (0x78) /* SMC Card Hardware Reset for Register */ #define SDXC_REG_DMAC (0x80) /* SMC IDMAC Control Register */ #define SDXC_REG_DLBA (0x84) /* SMC IDMAC Descriptor List Base Addre */ #define SDXC_REG_IDST (0x88) /* SMC IDMAC Status Register */ #define SDXC_REG_IDIE (0x8C) /* SMC IDMAC Interrupt Enable Register */ #define SDXC_REG_CHDA (0x90) #define SDXC_REG_CBDA (0x94) /* New registers introduced in A64 */ #define SDXC_REG_A12A 0x058 /* SMC Auto Command 12 Register */ #define SDXC_REG_SD_NTSR 0x05C /* SMC New Timing Set Register */ #define SDXC_REG_DRV_DL 0x140 /* Drive Delay Control Register */ #define SDXC_REG_SAMP_DL_REG 0x144 /* SMC sample delay control */ #define SDXC_REG_DS_DL_REG 0x148 /* SMC data strobe delay control */ #define mmc_readl(host, reg) \ readl((host)->reg_base + SDXC_##reg) #define mmc_writel(host, reg, value) \ writel((value), (host)->reg_base + SDXC_##reg) /* global control register bits */ #define SDXC_SOFT_RESET BIT(0) #define SDXC_FIFO_RESET BIT(1) #define SDXC_DMA_RESET BIT(2) #define SDXC_INTERRUPT_ENABLE_BIT BIT(4) #define SDXC_DMA_ENABLE_BIT BIT(5) #define SDXC_DEBOUNCE_ENABLE_BIT BIT(8) #define SDXC_POSEDGE_LATCH_DATA BIT(9) #define SDXC_DDR_MODE BIT(10) #define SDXC_MEMORY_ACCESS_DONE BIT(29) #define SDXC_ACCESS_DONE_DIRECT BIT(30) #define SDXC_ACCESS_BY_AHB BIT(31) #define SDXC_ACCESS_BY_DMA (0 << 31) #define SDXC_HARDWARE_RESET \ (SDXC_SOFT_RESET | SDXC_FIFO_RESET | SDXC_DMA_RESET) /* clock control bits */ #define SDXC_MASK_DATA0 BIT(31) #define SDXC_CARD_CLOCK_ON BIT(16) #define SDXC_LOW_POWER_ON BIT(17) /* bus width */ #define SDXC_WIDTH1 0 #define SDXC_WIDTH4 1 #define SDXC_WIDTH8 2 /* smc command bits */ #define SDXC_RESP_EXPIRE BIT(6) #define SDXC_LONG_RESPONSE BIT(7) #define SDXC_CHECK_RESPONSE_CRC BIT(8) #define SDXC_DATA_EXPIRE BIT(9) #define SDXC_WRITE BIT(10) #define SDXC_SEQUENCE_MODE BIT(11) #define SDXC_SEND_AUTO_STOP BIT(12) #define SDXC_WAIT_PRE_OVER BIT(13) #define SDXC_STOP_ABORT_CMD BIT(14) #define SDXC_SEND_INIT_SEQUENCE BIT(15) #define SDXC_UPCLK_ONLY BIT(21) #define SDXC_READ_CEATA_DEV BIT(22) #define SDXC_CCS_EXPIRE BIT(23) #define SDXC_ENABLE_BIT_BOOT BIT(24) #define SDXC_ALT_BOOT_OPTIONS BIT(25) #define SDXC_BOOT_ACK_EXPIRE BIT(26) #define SDXC_BOOT_ABORT BIT(27) #define SDXC_VOLTAGE_SWITCH BIT(28) #define SDXC_USE_HOLD_REGISTER BIT(29) #define SDXC_START BIT(31) /* interrupt bits */ #define SDXC_RESP_ERROR BIT(1) #define SDXC_COMMAND_DONE BIT(2) #define SDXC_DATA_OVER BIT(3) #define SDXC_TX_DATA_REQUEST BIT(4) #define SDXC_RX_DATA_REQUEST BIT(5) #define SDXC_RESP_CRC_ERROR BIT(6) #define SDXC_DATA_CRC_ERROR BIT(7) #define SDXC_RESP_TIMEOUT BIT(8) #define SDXC_DATA_TIMEOUT BIT(9) #define SDXC_VOLTAGE_CHANGE_DONE BIT(10) #define SDXC_FIFO_RUN_ERROR BIT(11) #define SDXC_HARD_WARE_LOCKED BIT(12) #define SDXC_START_BIT_ERROR BIT(13) #define SDXC_AUTO_COMMAND_DONE BIT(14) #define SDXC_END_BIT_ERROR BIT(15) #define SDXC_SDIO_INTERRUPT BIT(16) #define SDXC_CARD_INSERT BIT(30) #define SDXC_CARD_REMOVE BIT(31) #define SDXC_INTERRUPT_ERROR_BIT \ (SDXC_RESP_ERROR | SDXC_RESP_CRC_ERROR | SDXC_DATA_CRC_ERROR | \ SDXC_RESP_TIMEOUT | SDXC_DATA_TIMEOUT | SDXC_FIFO_RUN_ERROR | \ SDXC_HARD_WARE_LOCKED | SDXC_START_BIT_ERROR | SDXC_END_BIT_ERROR) #define SDXC_INTERRUPT_DONE_BIT \ (SDXC_AUTO_COMMAND_DONE | SDXC_DATA_OVER | \ SDXC_COMMAND_DONE | SDXC_VOLTAGE_CHANGE_DONE) /* status */ #define SDXC_RXWL_FLAG BIT(0) #define SDXC_TXWL_FLAG BIT(1) #define SDXC_FIFO_EMPTY BIT(2) #define SDXC_FIFO_FULL BIT(3) #define SDXC_CARD_PRESENT BIT(8) #define SDXC_CARD_DATA_BUSY BIT(9) #define SDXC_DATA_FSM_BUSY BIT(10) #define SDXC_DMA_REQUEST BIT(31) #define SDXC_FIFO_SIZE 16 /* Function select */ #define SDXC_CEATA_ON (0xceaa << 16) #define SDXC_SEND_IRQ_RESPONSE BIT(0) #define SDXC_SDIO_READ_WAIT BIT(1) #define SDXC_ABORT_READ_DATA BIT(2) #define SDXC_SEND_CCSD BIT(8) #define SDXC_SEND_AUTO_STOPCCSD BIT(9) #define SDXC_CEATA_DEV_IRQ_ENABLE BIT(10) /* IDMA controller bus mod bit field */ #define SDXC_IDMAC_SOFT_RESET BIT(0) #define SDXC_IDMAC_FIX_BURST BIT(1) #define SDXC_IDMAC_IDMA_ON BIT(7) #define SDXC_IDMAC_REFETCH_DES BIT(31) /* IDMA status bit field */ #define SDXC_IDMAC_TRANSMIT_INTERRUPT BIT(0) #define SDXC_IDMAC_RECEIVE_INTERRUPT BIT(1) #define SDXC_IDMAC_FATAL_BUS_ERROR BIT(2) #define SDXC_IDMAC_DESTINATION_INVALID BIT(4) #define SDXC_IDMAC_CARD_ERROR_SUM BIT(5) #define SDXC_IDMAC_NORMAL_INTERRUPT_SUM BIT(8) #define SDXC_IDMAC_ABNORMAL_INTERRUPT_SUM BIT(9) #define SDXC_IDMAC_HOST_ABORT_INTERRUPT BIT(10) #define SDXC_IDMAC_IDLE (0 << 13) #define SDXC_IDMAC_SUSPEND (1 << 13) #define SDXC_IDMAC_DESC_READ (2 << 13) #define SDXC_IDMAC_DESC_CHECK (3 << 13) #define SDXC_IDMAC_READ_REQUEST_WAIT (4 << 13) #define SDXC_IDMAC_WRITE_REQUEST_WAIT (5 << 13) #define SDXC_IDMAC_READ (6 << 13) #define SDXC_IDMAC_WRITE (7 << 13) #define SDXC_IDMAC_DESC_CLOSE (8 << 13) /* * If the idma-des-size-bits of property is ie 13, bufsize bits are: * Bits 0-12: buf1 size * Bits 13-25: buf2 size * Bits 26-31: not used * Since we only ever set buf1 size, we can simply store it directly. */ #define SDXC_IDMAC_DES0_DIC BIT(1) /* disable interrupt on completion */ #define SDXC_IDMAC_DES0_LD BIT(2) /* last descriptor */ #define SDXC_IDMAC_DES0_FD BIT(3) /* first descriptor */ #define SDXC_IDMAC_DES0_CH BIT(4) /* chain mode */ #define SDXC_IDMAC_DES0_ER BIT(5) /* end of ring */ #define SDXC_IDMAC_DES0_CES BIT(30) /* card error summary */ #define SDXC_IDMAC_DES0_OWN BIT(31) /* 1-idma owns it, 0-host owns it */ #define SDXC_CLK_400K 0 #define SDXC_CLK_25M 1 #define SDXC_CLK_50M 2 #define SDXC_CLK_50M_DDR 3 #define SDXC_CLK_50M_DDR_8BIT 4 #define SDXC_2X_TIMING_MODE BIT(31) #define SDXC_CAL_START BIT(15) #define SDXC_CAL_DONE BIT(14) #define SDXC_CAL_DL_SHIFT 8 #define SDXC_CAL_DL_SW_EN BIT(7) #define SDXC_CAL_DL_SW_SHIFT 0 #define SDXC_CAL_DL_MASK 0x3f #define SDXC_CAL_TIMEOUT 3 /* in seconds, 3s is enough*/ struct sunxi_mmc_clk_delay { u32 output; u32 sample; }; struct sunxi_idma_des { __le32 config; __le32 buf_size; __le32 buf_addr_ptr1; __le32 buf_addr_ptr2; }; struct sunxi_mmc_cfg { u32 idma_des_size_bits; const struct sunxi_mmc_clk_delay *clk_delays; /* does the IP block support autocalibration? */ bool can_calibrate; /* Does DATA0 needs to be masked while the clock is updated */ bool mask_data0; /* * hardware only supports new timing mode, either due to lack of * a mode switch in the clock controller, or the mmc controller * is permanently configured in the new timing mode, without the * NTSR mode switch. */ bool needs_new_timings; /* clock hardware can switch between old and new timing modes */ bool ccu_has_timings_switch; }; struct sunxi_mmc_host { struct device *dev; struct mmc_host *mmc; struct reset_control *reset; const struct sunxi_mmc_cfg *cfg; /* IO mapping base */ void __iomem *reg_base; /* clock management */ struct clk *clk_ahb; struct clk *clk_mmc; struct clk *clk_sample; struct clk *clk_output; /* irq */ spinlock_t lock; int irq; u32 int_sum; u32 sdio_imask; /* dma */ dma_addr_t sg_dma; void *sg_cpu; bool wait_dma; struct mmc_request *mrq; struct mmc_request *manual_stop_mrq; int ferror; /* vqmmc */ bool vqmmc_enabled; /* timings */ bool use_new_timings; }; static int sunxi_mmc_reset_host(struct sunxi_mmc_host *host) { unsigned long expire = jiffies + msecs_to_jiffies(250); u32 rval; mmc_writel(host, REG_GCTRL, SDXC_HARDWARE_RESET); do { rval = mmc_readl(host, REG_GCTRL); } while (time_before(jiffies, expire) && (rval & SDXC_HARDWARE_RESET)); if (rval & SDXC_HARDWARE_RESET) { dev_err(mmc_dev(host->mmc), "fatal err reset timeout\n"); return -EIO; } return 0; } static int sunxi_mmc_init_host(struct sunxi_mmc_host *host) { u32 rval; if (sunxi_mmc_reset_host(host)) return -EIO; /* * Burst 8 transfers, RX trigger level: 7, TX trigger level: 8 * * TODO: sun9i has a larger FIFO and supports higher trigger values */ mmc_writel(host, REG_FTRGL, 0x20070008); /* Maximum timeout value */ mmc_writel(host, REG_TMOUT, 0xffffffff); /* Unmask SDIO interrupt if needed */ mmc_writel(host, REG_IMASK, host->sdio_imask); /* Clear all pending interrupts */ mmc_writel(host, REG_RINTR, 0xffffffff); /* Debug register? undocumented */ mmc_writel(host, REG_DBGC, 0xdeb); /* Enable CEATA support */ mmc_writel(host, REG_FUNS, SDXC_CEATA_ON); /* Set DMA descriptor list base address */ mmc_writel(host, REG_DLBA, host->sg_dma); rval = mmc_readl(host, REG_GCTRL); rval |= SDXC_INTERRUPT_ENABLE_BIT; /* Undocumented, but found in Allwinner code */ rval &= ~SDXC_ACCESS_DONE_DIRECT; mmc_writel(host, REG_GCTRL, rval); return 0; } static void sunxi_mmc_init_idma_des(struct sunxi_mmc_host *host, struct mmc_data *data) { struct sunxi_idma_des *pdes = (struct sunxi_idma_des *)host->sg_cpu; dma_addr_t next_desc = host->sg_dma; int i, max_len = (1 << host->cfg->idma_des_size_bits); for (i = 0; i < data->sg_len; i++) { pdes[i].config = cpu_to_le32(SDXC_IDMAC_DES0_CH | SDXC_IDMAC_DES0_OWN | SDXC_IDMAC_DES0_DIC); if (data->sg[i].length == max_len) pdes[i].buf_size = 0; /* 0 == max_len */ else pdes[i].buf_size = cpu_to_le32(data->sg[i].length); next_desc += sizeof(struct sunxi_idma_des); pdes[i].buf_addr_ptr1 = cpu_to_le32(sg_dma_address(&data->sg[i])); pdes[i].buf_addr_ptr2 = cpu_to_le32((u32)next_desc); } pdes[0].config |= cpu_to_le32(SDXC_IDMAC_DES0_FD); pdes[i - 1].config |= cpu_to_le32(SDXC_IDMAC_DES0_LD | SDXC_IDMAC_DES0_ER); pdes[i - 1].config &= cpu_to_le32(~SDXC_IDMAC_DES0_DIC); pdes[i - 1].buf_addr_ptr2 = 0; /* * Avoid the io-store starting the idmac hitting io-mem before the * descriptors hit the main-mem. */ wmb(); } static int sunxi_mmc_map_dma(struct sunxi_mmc_host *host, struct mmc_data *data) { u32 i, dma_len; struct scatterlist *sg; dma_len = dma_map_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); if (dma_len == 0) { dev_err(mmc_dev(host->mmc), "dma_map_sg failed\n"); return -ENOMEM; } for_each_sg(data->sg, sg, data->sg_len, i) { if (sg->offset & 3 || sg->length & 3) { dev_err(mmc_dev(host->mmc), "unaligned scatterlist: os %x length %d\n", sg->offset, sg->length); return -EINVAL; } } return 0; } static void sunxi_mmc_start_dma(struct sunxi_mmc_host *host, struct mmc_data *data) { u32 rval; sunxi_mmc_init_idma_des(host, data); rval = mmc_readl(host, REG_GCTRL); rval |= SDXC_DMA_ENABLE_BIT; mmc_writel(host, REG_GCTRL, rval); rval |= SDXC_DMA_RESET; mmc_writel(host, REG_GCTRL, rval); mmc_writel(host, REG_DMAC, SDXC_IDMAC_SOFT_RESET); if (!(data->flags & MMC_DATA_WRITE)) mmc_writel(host, REG_IDIE, SDXC_IDMAC_RECEIVE_INTERRUPT); mmc_writel(host, REG_DMAC, SDXC_IDMAC_FIX_BURST | SDXC_IDMAC_IDMA_ON); } static void sunxi_mmc_send_manual_stop(struct sunxi_mmc_host *host, struct mmc_request *req) { u32 arg, cmd_val, ri; unsigned long expire = jiffies + msecs_to_jiffies(1000); cmd_val = SDXC_START | SDXC_RESP_EXPIRE | SDXC_STOP_ABORT_CMD | SDXC_CHECK_RESPONSE_CRC; if (req->cmd->opcode == SD_IO_RW_EXTENDED) { cmd_val |= SD_IO_RW_DIRECT; arg = (1 << 31) | (0 << 28) | (SDIO_CCCR_ABORT << 9) | ((req->cmd->arg >> 28) & 0x7); } else { cmd_val |= MMC_STOP_TRANSMISSION; arg = 0; } mmc_writel(host, REG_CARG, arg); mmc_writel(host, REG_CMDR, cmd_val); do { ri = mmc_readl(host, REG_RINTR); } while (!(ri & (SDXC_COMMAND_DONE | SDXC_INTERRUPT_ERROR_BIT)) && time_before(jiffies, expire)); if (!(ri & SDXC_COMMAND_DONE) || (ri & SDXC_INTERRUPT_ERROR_BIT)) { dev_err(mmc_dev(host->mmc), "send stop command failed\n"); if (req->stop) req->stop->resp[0] = -ETIMEDOUT; } else { if (req->stop) req->stop->resp[0] = mmc_readl(host, REG_RESP0); } mmc_writel(host, REG_RINTR, 0xffff); } static void sunxi_mmc_dump_errinfo(struct sunxi_mmc_host *host) { struct mmc_command *cmd = host->mrq->cmd; struct mmc_data *data = host->mrq->data; /* For some cmds timeout is normal with sd/mmc cards */ if ((host->int_sum & SDXC_INTERRUPT_ERROR_BIT) == SDXC_RESP_TIMEOUT && (cmd->opcode == SD_IO_SEND_OP_COND || cmd->opcode == SD_IO_RW_DIRECT)) return; dev_dbg(mmc_dev(host->mmc), "smc %d err, cmd %d,%s%s%s%s%s%s%s%s%s%s !!\n", host->mmc->index, cmd->opcode, data ? (data->flags & MMC_DATA_WRITE ? " WR" : " RD") : "", host->int_sum & SDXC_RESP_ERROR ? " RE" : "", host->int_sum & SDXC_RESP_CRC_ERROR ? " RCE" : "", host->int_sum & SDXC_DATA_CRC_ERROR ? " DCE" : "", host->int_sum & SDXC_RESP_TIMEOUT ? " RTO" : "", host->int_sum & SDXC_DATA_TIMEOUT ? " DTO" : "", host->int_sum & SDXC_FIFO_RUN_ERROR ? " FE" : "", host->int_sum & SDXC_HARD_WARE_LOCKED ? " HL" : "", host->int_sum & SDXC_START_BIT_ERROR ? " SBE" : "", host->int_sum & SDXC_END_BIT_ERROR ? " EBE" : "" ); } /* Called in interrupt context! */ static irqreturn_t sunxi_mmc_finalize_request(struct sunxi_mmc_host *host) { struct mmc_request *mrq = host->mrq; struct mmc_data *data = mrq->data; u32 rval; mmc_writel(host, REG_IMASK, host->sdio_imask); mmc_writel(host, REG_IDIE, 0); if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) { sunxi_mmc_dump_errinfo(host); mrq->cmd->error = -ETIMEDOUT; if (data) { data->error = -ETIMEDOUT; host->manual_stop_mrq = mrq; } if (mrq->stop) mrq->stop->error = -ETIMEDOUT; } else { if (mrq->cmd->flags & MMC_RSP_136) { mrq->cmd->resp[0] = mmc_readl(host, REG_RESP3); mrq->cmd->resp[1] = mmc_readl(host, REG_RESP2); mrq->cmd->resp[2] = mmc_readl(host, REG_RESP1); mrq->cmd->resp[3] = mmc_readl(host, REG_RESP0); } else { mrq->cmd->resp[0] = mmc_readl(host, REG_RESP0); } if (data) data->bytes_xfered = data->blocks * data->blksz; } if (data) { mmc_writel(host, REG_IDST, 0x337); mmc_writel(host, REG_DMAC, 0); rval = mmc_readl(host, REG_GCTRL); rval |= SDXC_DMA_RESET; mmc_writel(host, REG_GCTRL, rval); rval &= ~SDXC_DMA_ENABLE_BIT; mmc_writel(host, REG_GCTRL, rval); rval |= SDXC_FIFO_RESET; mmc_writel(host, REG_GCTRL, rval); dma_unmap_sg(mmc_dev(host->mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); } mmc_writel(host, REG_RINTR, 0xffff); host->mrq = NULL; host->int_sum = 0; host->wait_dma = false; return host->manual_stop_mrq ? IRQ_WAKE_THREAD : IRQ_HANDLED; } static irqreturn_t sunxi_mmc_irq(int irq, void *dev_id) { struct sunxi_mmc_host *host = dev_id; struct mmc_request *mrq; u32 msk_int, idma_int; bool finalize = false; bool sdio_int = false; irqreturn_t ret = IRQ_HANDLED; spin_lock(&host->lock); idma_int = mmc_readl(host, REG_IDST); msk_int = mmc_readl(host, REG_MISTA); dev_dbg(mmc_dev(host->mmc), "irq: rq %p mi %08x idi %08x\n", host->mrq, msk_int, idma_int); mrq = host->mrq; if (mrq) { if (idma_int & SDXC_IDMAC_RECEIVE_INTERRUPT) host->wait_dma = false; host->int_sum |= msk_int; /* Wait for COMMAND_DONE on RESPONSE_TIMEOUT before finalize */ if ((host->int_sum & SDXC_RESP_TIMEOUT) && !(host->int_sum & SDXC_COMMAND_DONE)) mmc_writel(host, REG_IMASK, host->sdio_imask | SDXC_COMMAND_DONE); /* Don't wait for dma on error */ else if (host->int_sum & SDXC_INTERRUPT_ERROR_BIT) finalize = true; else if ((host->int_sum & SDXC_INTERRUPT_DONE_BIT) && !host->wait_dma) finalize = true; } if (msk_int & SDXC_SDIO_INTERRUPT) sdio_int = true; mmc_writel(host, REG_RINTR, msk_int); mmc_writel(host, REG_IDST, idma_int); if (finalize) ret = sunxi_mmc_finalize_request(host); spin_unlock(&host->lock); if (finalize && ret == IRQ_HANDLED) mmc_request_done(host->mmc, mrq); if (sdio_int) mmc_signal_sdio_irq(host->mmc); return ret; } static irqreturn_t sunxi_mmc_handle_manual_stop(int irq, void *dev_id) { struct sunxi_mmc_host *host = dev_id; struct mmc_request *mrq; unsigned long iflags; spin_lock_irqsave(&host->lock, iflags); mrq = host->manual_stop_mrq; spin_unlock_irqrestore(&host->lock, iflags); if (!mrq) { dev_err(mmc_dev(host->mmc), "no request for manual stop\n"); return IRQ_HANDLED; } dev_err(mmc_dev(host->mmc), "data error, sending stop command\n"); /* * We will never have more than one outstanding request, * and we do not complete the request until after * we've cleared host->manual_stop_mrq so we do not need to * spin lock this function. * Additionally we have wait states within this function * so having it in a lock is a very bad idea. */ sunxi_mmc_send_manual_stop(host, mrq); spin_lock_irqsave(&host->lock, iflags); host->manual_stop_mrq = NULL; spin_unlock_irqrestore(&host->lock, iflags); mmc_request_done(host->mmc, mrq); return IRQ_HANDLED; } static int sunxi_mmc_oclk_onoff(struct sunxi_mmc_host *host, u32 oclk_en) { unsigned long expire = jiffies + msecs_to_jiffies(750); u32 rval; dev_dbg(mmc_dev(host->mmc), "%sabling the clock\n", oclk_en ? "en" : "dis"); rval = mmc_readl(host, REG_CLKCR); rval &= ~(SDXC_CARD_CLOCK_ON | SDXC_LOW_POWER_ON | SDXC_MASK_DATA0); if (oclk_en) rval |= SDXC_CARD_CLOCK_ON; if (host->cfg->mask_data0) rval |= SDXC_MASK_DATA0; mmc_writel(host, REG_CLKCR, rval); rval = SDXC_START | SDXC_UPCLK_ONLY | SDXC_WAIT_PRE_OVER; mmc_writel(host, REG_CMDR, rval); do { rval = mmc_readl(host, REG_CMDR); } while (time_before(jiffies, expire) && (rval & SDXC_START)); /* clear irq status bits set by the command */ mmc_writel(host, REG_RINTR, mmc_readl(host, REG_RINTR) & ~SDXC_SDIO_INTERRUPT); if (rval & SDXC_START) { dev_err(mmc_dev(host->mmc), "fatal err update clk timeout\n"); return -EIO; } if (host->cfg->mask_data0) { rval = mmc_readl(host, REG_CLKCR); mmc_writel(host, REG_CLKCR, rval & ~SDXC_MASK_DATA0); } return 0; } static int sunxi_mmc_calibrate(struct sunxi_mmc_host *host, int reg_off) { if (!host->cfg->can_calibrate) return 0; /* * FIXME: * This is not clear how the calibration is supposed to work * yet. The best rate have been obtained by simply setting the * delay to 0, as Allwinner does in its BSP. * * The only mode that doesn't have such a delay is HS400, that * is in itself a TODO. */ writel(SDXC_CAL_DL_SW_EN, host->reg_base + reg_off); return 0; } static int sunxi_mmc_clk_set_phase(struct sunxi_mmc_host *host, struct mmc_ios *ios, u32 rate) { int index; /* clk controller delays not used under new timings mode */ if (host->use_new_timings) return 0; /* some old controllers don't support delays */ if (!host->cfg->clk_delays) return 0; /* determine delays */ if (rate <= 400000) { index = SDXC_CLK_400K; } else if (rate <= 25000000) { index = SDXC_CLK_25M; } else if (rate <= 52000000) { if (ios->timing != MMC_TIMING_UHS_DDR50 && ios->timing != MMC_TIMING_MMC_DDR52) { index = SDXC_CLK_50M; } else if (ios->bus_width == MMC_BUS_WIDTH_8) { index = SDXC_CLK_50M_DDR_8BIT; } else { index = SDXC_CLK_50M_DDR; } } else { dev_dbg(mmc_dev(host->mmc), "Invalid clock... returning\n"); return -EINVAL; } clk_set_phase(host->clk_sample, host->cfg->clk_delays[index].sample); clk_set_phase(host->clk_output, host->cfg->clk_delays[index].output); return 0; } static int sunxi_mmc_clk_set_rate(struct sunxi_mmc_host *host, struct mmc_ios *ios) { struct mmc_host *mmc = host->mmc; long rate; u32 rval, clock = ios->clock, div = 1; int ret; ret = sunxi_mmc_oclk_onoff(host, 0); if (ret) return ret; /* Our clock is gated now */ mmc->actual_clock = 0; if (!ios->clock) return 0; /* * Under the old timing mode, 8 bit DDR requires the module * clock to be double the card clock. Under the new timing * mode, all DDR modes require a doubled module clock. * * We currently only support the standard MMC DDR52 mode. * This block should be updated once support for other DDR * modes is added. */ if (ios->timing == MMC_TIMING_MMC_DDR52 && (host->use_new_timings || ios->bus_width == MMC_BUS_WIDTH_8)) { div = 2; clock <<= 1; } if (host->use_new_timings && host->cfg->ccu_has_timings_switch) { ret = sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true); if (ret) { dev_err(mmc_dev(mmc), "error setting new timing mode\n"); return ret; } } rate = clk_round_rate(host->clk_mmc, clock); if (rate < 0) { dev_err(mmc_dev(mmc), "error rounding clk to %d: %ld\n", clock, rate); return rate; } dev_dbg(mmc_dev(mmc), "setting clk to %d, rounded %ld\n", clock, rate); /* setting clock rate */ ret = clk_set_rate(host->clk_mmc, rate); if (ret) { dev_err(mmc_dev(mmc), "error setting clk to %ld: %d\n", rate, ret); return ret; } /* set internal divider */ rval = mmc_readl(host, REG_CLKCR); rval &= ~0xff; rval |= div - 1; mmc_writel(host, REG_CLKCR, rval); /* update card clock rate to account for internal divider */ rate /= div; /* * Configure the controller to use the new timing mode if needed. * On controllers that only support the new timing mode, such as * the eMMC controller on the A64, this register does not exist, * and any writes to it are ignored. */ if (host->use_new_timings) { /* Don't touch the delay bits */ rval = mmc_readl(host, REG_SD_NTSR); rval |= SDXC_2X_TIMING_MODE; mmc_writel(host, REG_SD_NTSR, rval); } /* sunxi_mmc_clk_set_phase expects the actual card clock rate */ ret = sunxi_mmc_clk_set_phase(host, ios, rate); if (ret) return ret; ret = sunxi_mmc_calibrate(host, SDXC_REG_SAMP_DL_REG); if (ret) return ret; /* * FIXME: * * In HS400 we'll also need to calibrate the data strobe * signal. This should only happen on the MMC2 controller (at * least on the A64). */ ret = sunxi_mmc_oclk_onoff(host, 1); if (ret) return ret; /* And we just enabled our clock back */ mmc->actual_clock = rate; return 0; } static void sunxi_mmc_set_bus_width(struct sunxi_mmc_host *host, unsigned char width) { switch (width) { case MMC_BUS_WIDTH_1: mmc_writel(host, REG_WIDTH, SDXC_WIDTH1); break; case MMC_BUS_WIDTH_4: mmc_writel(host, REG_WIDTH, SDXC_WIDTH4); break; case MMC_BUS_WIDTH_8: mmc_writel(host, REG_WIDTH, SDXC_WIDTH8); break; } } static void sunxi_mmc_set_clk(struct sunxi_mmc_host *host, struct mmc_ios *ios) { u32 rval; /* set ddr mode */ rval = mmc_readl(host, REG_GCTRL); if (ios->timing == MMC_TIMING_UHS_DDR50 || ios->timing == MMC_TIMING_MMC_DDR52) rval |= SDXC_DDR_MODE; else rval &= ~SDXC_DDR_MODE; mmc_writel(host, REG_GCTRL, rval); host->ferror = sunxi_mmc_clk_set_rate(host, ios); /* Android code had a usleep_range(50000, 55000); here */ } static void sunxi_mmc_card_power(struct sunxi_mmc_host *host, struct mmc_ios *ios) { struct mmc_host *mmc = host->mmc; switch (ios->power_mode) { case MMC_POWER_UP: dev_dbg(mmc_dev(mmc), "Powering card up\n"); if (!IS_ERR(mmc->supply.vmmc)) { host->ferror = mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); if (host->ferror) return; } if (!IS_ERR(mmc->supply.vqmmc)) { host->ferror = regulator_enable(mmc->supply.vqmmc); if (host->ferror) { dev_err(mmc_dev(mmc), "failed to enable vqmmc\n"); return; } host->vqmmc_enabled = true; } break; case MMC_POWER_OFF: dev_dbg(mmc_dev(mmc), "Powering card off\n"); if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) regulator_disable(mmc->supply.vqmmc); host->vqmmc_enabled = false; break; default: dev_dbg(mmc_dev(mmc), "Ignoring unknown card power state\n"); break; } } static void sunxi_mmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct sunxi_mmc_host *host = mmc_priv(mmc); sunxi_mmc_card_power(host, ios); sunxi_mmc_set_bus_width(host, ios->bus_width); sunxi_mmc_set_clk(host, ios); } static int sunxi_mmc_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) { /* vqmmc regulator is available */ if (!IS_ERR(mmc->supply.vqmmc)) return mmc_regulator_set_vqmmc(mmc, ios); /* no vqmmc regulator, assume fixed regulator at 3/3.3V */ if (mmc->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) return 0; return -EINVAL; } static void sunxi_mmc_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct sunxi_mmc_host *host = mmc_priv(mmc); unsigned long flags; u32 imask; if (enable) pm_runtime_get_noresume(host->dev); spin_lock_irqsave(&host->lock, flags); imask = mmc_readl(host, REG_IMASK); if (enable) { host->sdio_imask = SDXC_SDIO_INTERRUPT; imask |= SDXC_SDIO_INTERRUPT; } else { host->sdio_imask = 0; imask &= ~SDXC_SDIO_INTERRUPT; } mmc_writel(host, REG_IMASK, imask); spin_unlock_irqrestore(&host->lock, flags); if (!enable) pm_runtime_put_noidle(host->mmc->parent); } static void sunxi_mmc_hw_reset(struct mmc_host *mmc) { struct sunxi_mmc_host *host = mmc_priv(mmc); mmc_writel(host, REG_HWRST, 0); udelay(10); mmc_writel(host, REG_HWRST, 1); udelay(300); } static void sunxi_mmc_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct sunxi_mmc_host *host = mmc_priv(mmc); struct mmc_command *cmd = mrq->cmd; struct mmc_data *data = mrq->data; unsigned long iflags; u32 imask = SDXC_INTERRUPT_ERROR_BIT; u32 cmd_val = SDXC_START | (cmd->opcode & 0x3f); bool wait_dma = host->wait_dma; int ret; /* Check for set_ios errors (should never happen) */ if (host->ferror) { mrq->cmd->error = host->ferror; mmc_request_done(mmc, mrq); return; } if (data) { ret = sunxi_mmc_map_dma(host, data); if (ret < 0) { dev_err(mmc_dev(mmc), "map DMA failed\n"); cmd->error = ret; data->error = ret; mmc_request_done(mmc, mrq); return; } } if (cmd->opcode == MMC_GO_IDLE_STATE) { cmd_val |= SDXC_SEND_INIT_SEQUENCE; imask |= SDXC_COMMAND_DONE; } if (cmd->flags & MMC_RSP_PRESENT) { cmd_val |= SDXC_RESP_EXPIRE; if (cmd->flags & MMC_RSP_136) cmd_val |= SDXC_LONG_RESPONSE; if (cmd->flags & MMC_RSP_CRC) cmd_val |= SDXC_CHECK_RESPONSE_CRC; if ((cmd->flags & MMC_CMD_MASK) == MMC_CMD_ADTC) { cmd_val |= SDXC_DATA_EXPIRE | SDXC_WAIT_PRE_OVER; if (cmd->data->stop) { imask |= SDXC_AUTO_COMMAND_DONE; cmd_val |= SDXC_SEND_AUTO_STOP; } else { imask |= SDXC_DATA_OVER; } if (cmd->data->flags & MMC_DATA_WRITE) cmd_val |= SDXC_WRITE; else wait_dma = true; } else { imask |= SDXC_COMMAND_DONE; } } else { imask |= SDXC_COMMAND_DONE; } dev_dbg(mmc_dev(mmc), "cmd %d(%08x) arg %x ie 0x%08x len %d\n", cmd_val & 0x3f, cmd_val, cmd->arg, imask, mrq->data ? mrq->data->blksz * mrq->data->blocks : 0); spin_lock_irqsave(&host->lock, iflags); if (host->mrq || host->manual_stop_mrq) { spin_unlock_irqrestore(&host->lock, iflags); if (data) dma_unmap_sg(mmc_dev(mmc), data->sg, data->sg_len, mmc_get_dma_dir(data)); dev_err(mmc_dev(mmc), "request already pending\n"); mrq->cmd->error = -EBUSY; mmc_request_done(mmc, mrq); return; } if (data) { mmc_writel(host, REG_BLKSZ, data->blksz); mmc_writel(host, REG_BCNTR, data->blksz * data->blocks); sunxi_mmc_start_dma(host, data); } host->mrq = mrq; host->wait_dma = wait_dma; mmc_writel(host, REG_IMASK, host->sdio_imask | imask); mmc_writel(host, REG_CARG, cmd->arg); mmc_writel(host, REG_CMDR, cmd_val); spin_unlock_irqrestore(&host->lock, iflags); } static int sunxi_mmc_card_busy(struct mmc_host *mmc) { struct sunxi_mmc_host *host = mmc_priv(mmc); return !!(mmc_readl(host, REG_STAS) & SDXC_CARD_DATA_BUSY); } static const struct mmc_host_ops sunxi_mmc_ops = { .request = sunxi_mmc_request, .set_ios = sunxi_mmc_set_ios, .get_ro = mmc_gpio_get_ro, .get_cd = mmc_gpio_get_cd, .enable_sdio_irq = sunxi_mmc_enable_sdio_irq, .start_signal_voltage_switch = sunxi_mmc_volt_switch, .hw_reset = sunxi_mmc_hw_reset, .card_busy = sunxi_mmc_card_busy, }; static const struct sunxi_mmc_clk_delay sunxi_mmc_clk_delays[] = { [SDXC_CLK_400K] = { .output = 180, .sample = 180 }, [SDXC_CLK_25M] = { .output = 180, .sample = 75 }, [SDXC_CLK_50M] = { .output = 90, .sample = 120 }, [SDXC_CLK_50M_DDR] = { .output = 60, .sample = 120 }, /* Value from A83T "new timing mode". Works but might not be right. */ [SDXC_CLK_50M_DDR_8BIT] = { .output = 90, .sample = 180 }, }; static const struct sunxi_mmc_clk_delay sun9i_mmc_clk_delays[] = { [SDXC_CLK_400K] = { .output = 180, .sample = 180 }, [SDXC_CLK_25M] = { .output = 180, .sample = 75 }, [SDXC_CLK_50M] = { .output = 150, .sample = 120 }, [SDXC_CLK_50M_DDR] = { .output = 54, .sample = 36 }, [SDXC_CLK_50M_DDR_8BIT] = { .output = 72, .sample = 72 }, }; static const struct sunxi_mmc_cfg sun4i_a10_cfg = { .idma_des_size_bits = 13, .clk_delays = NULL, .can_calibrate = false, }; static const struct sunxi_mmc_cfg sun5i_a13_cfg = { .idma_des_size_bits = 16, .clk_delays = NULL, .can_calibrate = false, }; static const struct sunxi_mmc_cfg sun7i_a20_cfg = { .idma_des_size_bits = 16, .clk_delays = sunxi_mmc_clk_delays, .can_calibrate = false, }; static const struct sunxi_mmc_cfg sun8i_a83t_emmc_cfg = { .idma_des_size_bits = 16, .clk_delays = sunxi_mmc_clk_delays, .can_calibrate = false, .ccu_has_timings_switch = true, }; static const struct sunxi_mmc_cfg sun9i_a80_cfg = { .idma_des_size_bits = 16, .clk_delays = sun9i_mmc_clk_delays, .can_calibrate = false, }; static const struct sunxi_mmc_cfg sun50i_a64_cfg = { .idma_des_size_bits = 16, .clk_delays = NULL, .can_calibrate = true, .mask_data0 = true, .needs_new_timings = true, }; static const struct sunxi_mmc_cfg sun50i_a64_emmc_cfg = { .idma_des_size_bits = 13, .clk_delays = NULL, .can_calibrate = true, .needs_new_timings = true, }; static const struct of_device_id sunxi_mmc_of_match[] = { { .compatible = "allwinner,sun4i-a10-mmc", .data = &sun4i_a10_cfg }, { .compatible = "allwinner,sun5i-a13-mmc", .data = &sun5i_a13_cfg }, { .compatible = "allwinner,sun7i-a20-mmc", .data = &sun7i_a20_cfg }, { .compatible = "allwinner,sun8i-a83t-emmc", .data = &sun8i_a83t_emmc_cfg }, { .compatible = "allwinner,sun9i-a80-mmc", .data = &sun9i_a80_cfg }, { .compatible = "allwinner,sun50i-a64-mmc", .data = &sun50i_a64_cfg }, { .compatible = "allwinner,sun50i-a64-emmc", .data = &sun50i_a64_emmc_cfg }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, sunxi_mmc_of_match); static int sunxi_mmc_enable(struct sunxi_mmc_host *host) { int ret; if (!IS_ERR(host->reset)) { ret = reset_control_reset(host->reset); if (ret) { dev_err(host->dev, "Couldn't reset the MMC controller (%d)\n", ret); return ret; } } ret = clk_prepare_enable(host->clk_ahb); if (ret) { dev_err(host->dev, "Couldn't enable the bus clocks (%d)\n", ret); goto error_assert_reset; } ret = clk_prepare_enable(host->clk_mmc); if (ret) { dev_err(host->dev, "Enable mmc clk err %d\n", ret); goto error_disable_clk_ahb; } ret = clk_prepare_enable(host->clk_output); if (ret) { dev_err(host->dev, "Enable output clk err %d\n", ret); goto error_disable_clk_mmc; } ret = clk_prepare_enable(host->clk_sample); if (ret) { dev_err(host->dev, "Enable sample clk err %d\n", ret); goto error_disable_clk_output; } /* * Sometimes the controller asserts the irq on boot for some reason, * make sure the controller is in a sane state before enabling irqs. */ ret = sunxi_mmc_reset_host(host); if (ret) goto error_disable_clk_sample; return 0; error_disable_clk_sample: clk_disable_unprepare(host->clk_sample); error_disable_clk_output: clk_disable_unprepare(host->clk_output); error_disable_clk_mmc: clk_disable_unprepare(host->clk_mmc); error_disable_clk_ahb: clk_disable_unprepare(host->clk_ahb); error_assert_reset: if (!IS_ERR(host->reset)) reset_control_assert(host->reset); return ret; } static void sunxi_mmc_disable(struct sunxi_mmc_host *host) { sunxi_mmc_reset_host(host); clk_disable_unprepare(host->clk_sample); clk_disable_unprepare(host->clk_output); clk_disable_unprepare(host->clk_mmc); clk_disable_unprepare(host->clk_ahb); if (!IS_ERR(host->reset)) reset_control_assert(host->reset); } static int sunxi_mmc_resource_request(struct sunxi_mmc_host *host, struct platform_device *pdev) { int ret; host->cfg = of_device_get_match_data(&pdev->dev); if (!host->cfg) return -EINVAL; ret = mmc_regulator_get_supply(host->mmc); if (ret) return ret; host->reg_base = devm_ioremap_resource(&pdev->dev, platform_get_resource(pdev, IORESOURCE_MEM, 0)); if (IS_ERR(host->reg_base)) return PTR_ERR(host->reg_base); host->clk_ahb = devm_clk_get(&pdev->dev, "ahb"); if (IS_ERR(host->clk_ahb)) { dev_err(&pdev->dev, "Could not get ahb clock\n"); return PTR_ERR(host->clk_ahb); } host->clk_mmc = devm_clk_get(&pdev->dev, "mmc"); if (IS_ERR(host->clk_mmc)) { dev_err(&pdev->dev, "Could not get mmc clock\n"); return PTR_ERR(host->clk_mmc); } if (host->cfg->clk_delays) { host->clk_output = devm_clk_get(&pdev->dev, "output"); if (IS_ERR(host->clk_output)) { dev_err(&pdev->dev, "Could not get output clock\n"); return PTR_ERR(host->clk_output); } host->clk_sample = devm_clk_get(&pdev->dev, "sample"); if (IS_ERR(host->clk_sample)) { dev_err(&pdev->dev, "Could not get sample clock\n"); return PTR_ERR(host->clk_sample); } } host->reset = devm_reset_control_get_optional_exclusive(&pdev->dev, "ahb"); if (PTR_ERR(host->reset) == -EPROBE_DEFER) return PTR_ERR(host->reset); ret = sunxi_mmc_enable(host); if (ret) return ret; host->irq = platform_get_irq(pdev, 0); if (host->irq <= 0) { ret = -EINVAL; goto error_disable_mmc; } return devm_request_threaded_irq(&pdev->dev, host->irq, sunxi_mmc_irq, sunxi_mmc_handle_manual_stop, 0, "sunxi-mmc", host); error_disable_mmc: sunxi_mmc_disable(host); return ret; } static int sunxi_mmc_probe(struct platform_device *pdev) { struct sunxi_mmc_host *host; struct mmc_host *mmc; int ret; mmc = mmc_alloc_host(sizeof(struct sunxi_mmc_host), &pdev->dev); if (!mmc) { dev_err(&pdev->dev, "mmc alloc host failed\n"); return -ENOMEM; } platform_set_drvdata(pdev, mmc); host = mmc_priv(mmc); host->dev = &pdev->dev; host->mmc = mmc; spin_lock_init(&host->lock); ret = sunxi_mmc_resource_request(host, pdev); if (ret) goto error_free_host; host->sg_cpu = dma_alloc_coherent(&pdev->dev, PAGE_SIZE, &host->sg_dma, GFP_KERNEL); if (!host->sg_cpu) { dev_err(&pdev->dev, "Failed to allocate DMA descriptor mem\n"); ret = -ENOMEM; goto error_free_host; } if (host->cfg->ccu_has_timings_switch) { /* * Supports both old and new timing modes. * Try setting the clk to new timing mode. */ sunxi_ccu_set_mmc_timing_mode(host->clk_mmc, true); /* And check the result */ ret = sunxi_ccu_get_mmc_timing_mode(host->clk_mmc); if (ret < 0) { /* * For whatever reason we were not able to get * the current active mode. Default to old mode. */ dev_warn(&pdev->dev, "MMC clk timing mode unknown\n"); host->use_new_timings = false; } else { host->use_new_timings = !!ret; } } else if (host->cfg->needs_new_timings) { /* Supports new timing mode only */ host->use_new_timings = true; } mmc->ops = &sunxi_mmc_ops; mmc->max_blk_count = 8192; mmc->max_blk_size = 4096; mmc->max_segs = PAGE_SIZE / sizeof(struct sunxi_idma_des); mmc->max_seg_size = (1 << host->cfg->idma_des_size_bits); mmc->max_req_size = mmc->max_seg_size * mmc->max_segs; /* 400kHz ~ 52MHz */ mmc->f_min = 400000; mmc->f_max = 52000000; mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_SD_HIGHSPEED | MMC_CAP_ERASE | MMC_CAP_SDIO_IRQ; /* * Some H5 devices do not have signal traces precise enough to * use HS DDR mode for their eMMC chips. * * We still enable HS DDR modes for all the other controller * variants that support them. */ if ((host->cfg->clk_delays || host->use_new_timings) && !of_device_is_compatible(pdev->dev.of_node, "allwinner,sun50i-h5-emmc")) mmc->caps |= MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR; ret = mmc_of_parse(mmc); if (ret) goto error_free_dma; /* * If we don't support delay chains in the SoC, we can't use any * of the higher speed modes. Mask them out in case the device * tree specifies the properties for them, which gets added to * the caps by mmc_of_parse() above. */ if (!(host->cfg->clk_delays || host->use_new_timings)) { mmc->caps &= ~(MMC_CAP_3_3V_DDR | MMC_CAP_1_8V_DDR | MMC_CAP_1_2V_DDR | MMC_CAP_UHS); mmc->caps2 &= ~MMC_CAP2_HS200; } /* TODO: This driver doesn't support HS400 mode yet */ mmc->caps2 &= ~MMC_CAP2_HS400; ret = sunxi_mmc_init_host(host); if (ret) goto error_free_dma; pm_runtime_set_active(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, 50); pm_runtime_use_autosuspend(&pdev->dev); pm_runtime_enable(&pdev->dev); ret = mmc_add_host(mmc); if (ret) goto error_free_dma; dev_info(&pdev->dev, "initialized, max. request size: %u KB%s\n", mmc->max_req_size >> 10, host->use_new_timings ? ", uses new timings mode" : ""); return 0; error_free_dma: dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); error_free_host: mmc_free_host(mmc); return ret; } static int sunxi_mmc_remove(struct platform_device *pdev) { struct mmc_host *mmc = platform_get_drvdata(pdev); struct sunxi_mmc_host *host = mmc_priv(mmc); mmc_remove_host(mmc); pm_runtime_force_suspend(&pdev->dev); disable_irq(host->irq); sunxi_mmc_disable(host); dma_free_coherent(&pdev->dev, PAGE_SIZE, host->sg_cpu, host->sg_dma); mmc_free_host(mmc); return 0; } #ifdef CONFIG_PM static int sunxi_mmc_runtime_resume(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct sunxi_mmc_host *host = mmc_priv(mmc); int ret; ret = sunxi_mmc_enable(host); if (ret) return ret; sunxi_mmc_init_host(host); sunxi_mmc_set_bus_width(host, mmc->ios.bus_width); sunxi_mmc_set_clk(host, &mmc->ios); enable_irq(host->irq); return 0; } static int sunxi_mmc_runtime_suspend(struct device *dev) { struct mmc_host *mmc = dev_get_drvdata(dev); struct sunxi_mmc_host *host = mmc_priv(mmc); /* * When clocks are off, it's possible receiving * fake interrupts, which will stall the system. * Disabling the irq will prevent this. */ disable_irq(host->irq); sunxi_mmc_reset_host(host); sunxi_mmc_disable(host); return 0; } #endif static const struct dev_pm_ops sunxi_mmc_pm_ops = { SET_RUNTIME_PM_OPS(sunxi_mmc_runtime_suspend, sunxi_mmc_runtime_resume, NULL) }; static struct platform_driver sunxi_mmc_driver = { .driver = { .name = "sunxi-mmc", .of_match_table = of_match_ptr(sunxi_mmc_of_match), .pm = &sunxi_mmc_pm_ops, }, .probe = sunxi_mmc_probe, .remove = sunxi_mmc_remove, }; module_platform_driver(sunxi_mmc_driver); MODULE_DESCRIPTION("Allwinner's SD/MMC Card Controller Driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("David Lanzendörfer "); MODULE_ALIAS("platform:sunxi-mmc");