/* * Network device driver for the BMAC ethernet controller on * Apple Powermacs. Assumes it's under a DBDMA controller. * * Copyright (C) 1998 Randy Gobbel. * * May 1999, Al Viro: proper release of /proc/net/bmac entry, switched to * dynamic procfs inode. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bmac.h" #define trunc_page(x) ((void *)(((unsigned long)(x)) & ~((unsigned long)(PAGE_SIZE - 1)))) #define round_page(x) trunc_page(((unsigned long)(x)) + ((unsigned long)(PAGE_SIZE - 1))) /* * CRC polynomial - used in working out multicast filter bits. */ #define ENET_CRCPOLY 0x04c11db7 /* switch to use multicast code lifted from sunhme driver */ #define SUNHME_MULTICAST #define N_RX_RING 64 #define N_TX_RING 32 #define MAX_TX_ACTIVE 1 #define ETHERCRC 4 #define ETHERMINPACKET 64 #define ETHERMTU 1500 #define RX_BUFLEN (ETHERMTU + 14 + ETHERCRC + 2) #define TX_TIMEOUT HZ /* 1 second */ /* Bits in transmit DMA status */ #define TX_DMA_ERR 0x80 #define XXDEBUG(args) struct bmac_data { /* volatile struct bmac *bmac; */ struct sk_buff_head *queue; volatile struct dbdma_regs __iomem *tx_dma; int tx_dma_intr; volatile struct dbdma_regs __iomem *rx_dma; int rx_dma_intr; volatile struct dbdma_cmd *tx_cmds; /* xmit dma command list */ volatile struct dbdma_cmd *rx_cmds; /* recv dma command list */ struct macio_dev *mdev; int is_bmac_plus; struct sk_buff *rx_bufs[N_RX_RING]; int rx_fill; int rx_empty; struct sk_buff *tx_bufs[N_TX_RING]; int tx_fill; int tx_empty; unsigned char tx_fullup; struct timer_list tx_timeout; int timeout_active; int sleeping; int opened; unsigned short hash_use_count[64]; unsigned short hash_table_mask[4]; spinlock_t lock; }; #if 0 /* Move that to ethtool */ typedef struct bmac_reg_entry { char *name; unsigned short reg_offset; } bmac_reg_entry_t; #define N_REG_ENTRIES 31 static bmac_reg_entry_t reg_entries[N_REG_ENTRIES] = { {"MEMADD", MEMADD}, {"MEMDATAHI", MEMDATAHI}, {"MEMDATALO", MEMDATALO}, {"TXPNTR", TXPNTR}, {"RXPNTR", RXPNTR}, {"IPG1", IPG1}, {"IPG2", IPG2}, {"ALIMIT", ALIMIT}, {"SLOT", SLOT}, {"PALEN", PALEN}, {"PAPAT", PAPAT}, {"TXSFD", TXSFD}, {"JAM", JAM}, {"TXCFG", TXCFG}, {"TXMAX", TXMAX}, {"TXMIN", TXMIN}, {"PAREG", PAREG}, {"DCNT", DCNT}, {"NCCNT", NCCNT}, {"NTCNT", NTCNT}, {"EXCNT", EXCNT}, {"LTCNT", LTCNT}, {"TXSM", TXSM}, {"RXCFG", RXCFG}, {"RXMAX", RXMAX}, {"RXMIN", RXMIN}, {"FRCNT", FRCNT}, {"AECNT", AECNT}, {"FECNT", FECNT}, {"RXSM", RXSM}, {"RXCV", RXCV} }; #endif static unsigned char *bmac_emergency_rxbuf; /* * Number of bytes of private data per BMAC: allow enough for * the rx and tx dma commands plus a branch dma command each, * and another 16 bytes to allow us to align the dma command * buffers on a 16 byte boundary. */ #define PRIV_BYTES (sizeof(struct bmac_data) \ + (N_RX_RING + N_TX_RING + 4) * sizeof(struct dbdma_cmd) \ + sizeof(struct sk_buff_head)) static int bmac_open(struct net_device *dev); static int bmac_close(struct net_device *dev); static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev); static void bmac_set_multicast(struct net_device *dev); static void bmac_reset_and_enable(struct net_device *dev); static void bmac_start_chip(struct net_device *dev); static void bmac_init_chip(struct net_device *dev); static void bmac_init_registers(struct net_device *dev); static void bmac_enable_and_reset_chip(struct net_device *dev); static int bmac_set_address(struct net_device *dev, void *addr); static irqreturn_t bmac_misc_intr(int irq, void *dev_id); static irqreturn_t bmac_txdma_intr(int irq, void *dev_id); static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id); static void bmac_set_timeout(struct net_device *dev); static void bmac_tx_timeout(unsigned long data); static int bmac_output(struct sk_buff *skb, struct net_device *dev); static void bmac_start(struct net_device *dev); #define DBDMA_SET(x) ( ((x) | (x) << 16) ) #define DBDMA_CLEAR(x) ( (x) << 16) static inline void dbdma_st32(volatile __u32 __iomem *a, unsigned long x) { __asm__ volatile( "stwbrx %0,0,%1" : : "r" (x), "r" (a) : "memory"); return; } static inline unsigned long dbdma_ld32(volatile __u32 __iomem *a) { __u32 swap; __asm__ volatile ("lwbrx %0,0,%1" : "=r" (swap) : "r" (a)); return swap; } static void dbdma_continue(volatile struct dbdma_regs __iomem *dmap) { dbdma_st32(&dmap->control, DBDMA_SET(RUN|WAKE) | DBDMA_CLEAR(PAUSE|DEAD)); eieio(); } static void dbdma_reset(volatile struct dbdma_regs __iomem *dmap) { dbdma_st32(&dmap->control, DBDMA_CLEAR(ACTIVE|DEAD|WAKE|FLUSH|PAUSE|RUN)); eieio(); while (dbdma_ld32(&dmap->status) & RUN) eieio(); } static void dbdma_setcmd(volatile struct dbdma_cmd *cp, unsigned short cmd, unsigned count, unsigned long addr, unsigned long cmd_dep) { out_le16(&cp->command, cmd); out_le16(&cp->req_count, count); out_le32(&cp->phy_addr, addr); out_le32(&cp->cmd_dep, cmd_dep); out_le16(&cp->xfer_status, 0); out_le16(&cp->res_count, 0); } static inline void bmwrite(struct net_device *dev, unsigned long reg_offset, unsigned data ) { out_le16((void __iomem *)dev->base_addr + reg_offset, data); } static inline unsigned short bmread(struct net_device *dev, unsigned long reg_offset ) { return in_le16((void __iomem *)dev->base_addr + reg_offset); } static void bmac_enable_and_reset_chip(struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); volatile struct dbdma_regs __iomem *rd = bp->rx_dma; volatile struct dbdma_regs __iomem *td = bp->tx_dma; if (rd) dbdma_reset(rd); if (td) dbdma_reset(td); pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 1); } #define MIFDELAY udelay(10) static unsigned int bmac_mif_readbits(struct net_device *dev, int nb) { unsigned int val = 0; while (--nb >= 0) { bmwrite(dev, MIFCSR, 0); MIFDELAY; if (bmread(dev, MIFCSR) & 8) val |= 1 << nb; bmwrite(dev, MIFCSR, 1); MIFDELAY; } bmwrite(dev, MIFCSR, 0); MIFDELAY; bmwrite(dev, MIFCSR, 1); MIFDELAY; return val; } static void bmac_mif_writebits(struct net_device *dev, unsigned int val, int nb) { int b; while (--nb >= 0) { b = (val & (1 << nb))? 6: 4; bmwrite(dev, MIFCSR, b); MIFDELAY; bmwrite(dev, MIFCSR, b|1); MIFDELAY; } } static unsigned int bmac_mif_read(struct net_device *dev, unsigned int addr) { unsigned int val; bmwrite(dev, MIFCSR, 4); MIFDELAY; bmac_mif_writebits(dev, ~0U, 32); bmac_mif_writebits(dev, 6, 4); bmac_mif_writebits(dev, addr, 10); bmwrite(dev, MIFCSR, 2); MIFDELAY; bmwrite(dev, MIFCSR, 1); MIFDELAY; val = bmac_mif_readbits(dev, 17); bmwrite(dev, MIFCSR, 4); MIFDELAY; return val; } static void bmac_mif_write(struct net_device *dev, unsigned int addr, unsigned int val) { bmwrite(dev, MIFCSR, 4); MIFDELAY; bmac_mif_writebits(dev, ~0U, 32); bmac_mif_writebits(dev, 5, 4); bmac_mif_writebits(dev, addr, 10); bmac_mif_writebits(dev, 2, 2); bmac_mif_writebits(dev, val, 16); bmac_mif_writebits(dev, 3, 2); } static void bmac_init_registers(struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); volatile unsigned short regValue; unsigned short *pWord16; int i; /* XXDEBUG(("bmac: enter init_registers\n")); */ bmwrite(dev, RXRST, RxResetValue); bmwrite(dev, TXRST, TxResetBit); i = 100; do { --i; udelay(10000); regValue = bmread(dev, TXRST); /* wait for reset to clear..acknowledge */ } while ((regValue & TxResetBit) && i > 0); if (!bp->is_bmac_plus) { regValue = bmread(dev, XCVRIF); regValue |= ClkBit | SerialMode | COLActiveLow; bmwrite(dev, XCVRIF, regValue); udelay(10000); } bmwrite(dev, RSEED, (unsigned short)0x1968); regValue = bmread(dev, XIFC); regValue |= TxOutputEnable; bmwrite(dev, XIFC, regValue); bmread(dev, PAREG); /* set collision counters to 0 */ bmwrite(dev, NCCNT, 0); bmwrite(dev, NTCNT, 0); bmwrite(dev, EXCNT, 0); bmwrite(dev, LTCNT, 0); /* set rx counters to 0 */ bmwrite(dev, FRCNT, 0); bmwrite(dev, LECNT, 0); bmwrite(dev, AECNT, 0); bmwrite(dev, FECNT, 0); bmwrite(dev, RXCV, 0); /* set tx fifo information */ bmwrite(dev, TXTH, 4); /* 4 octets before tx starts */ bmwrite(dev, TXFIFOCSR, 0); /* first disable txFIFO */ bmwrite(dev, TXFIFOCSR, TxFIFOEnable ); /* set rx fifo information */ bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */ bmwrite(dev, RXFIFOCSR, RxFIFOEnable ); //bmwrite(dev, TXCFG, TxMACEnable); /* TxNeverGiveUp maybe later */ bmread(dev, STATUS); /* read it just to clear it */ /* zero out the chip Hash Filter registers */ for (i=0; i<4; i++) bp->hash_table_mask[i] = 0; bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */ bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */ bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */ bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */ pWord16 = (unsigned short *)dev->dev_addr; bmwrite(dev, MADD0, *pWord16++); bmwrite(dev, MADD1, *pWord16++); bmwrite(dev, MADD2, *pWord16); bmwrite(dev, RXCFG, RxCRCNoStrip | RxHashFilterEnable | RxRejectOwnPackets); bmwrite(dev, INTDISABLE, EnableNormal); return; } #if 0 static void bmac_disable_interrupts(struct net_device *dev) { bmwrite(dev, INTDISABLE, DisableAll); } static void bmac_enable_interrupts(struct net_device *dev) { bmwrite(dev, INTDISABLE, EnableNormal); } #endif static void bmac_start_chip(struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); volatile struct dbdma_regs __iomem *rd = bp->rx_dma; unsigned short oldConfig; /* enable rx dma channel */ dbdma_continue(rd); oldConfig = bmread(dev, TXCFG); bmwrite(dev, TXCFG, oldConfig | TxMACEnable ); /* turn on rx plus any other bits already on (promiscuous possibly) */ oldConfig = bmread(dev, RXCFG); bmwrite(dev, RXCFG, oldConfig | RxMACEnable ); udelay(20000); } static void bmac_init_phy(struct net_device *dev) { unsigned int addr; struct bmac_data *bp = netdev_priv(dev); printk(KERN_DEBUG "phy registers:"); for (addr = 0; addr < 32; ++addr) { if ((addr & 7) == 0) printk(KERN_DEBUG); printk(KERN_CONT " %.4x", bmac_mif_read(dev, addr)); } printk(KERN_CONT "\n"); if (bp->is_bmac_plus) { unsigned int capable, ctrl; ctrl = bmac_mif_read(dev, 0); capable = ((bmac_mif_read(dev, 1) & 0xf800) >> 6) | 1; if (bmac_mif_read(dev, 4) != capable || (ctrl & 0x1000) == 0) { bmac_mif_write(dev, 4, capable); bmac_mif_write(dev, 0, 0x1200); } else bmac_mif_write(dev, 0, 0x1000); } } static void bmac_init_chip(struct net_device *dev) { bmac_init_phy(dev); bmac_init_registers(dev); } #ifdef CONFIG_PM static int bmac_suspend(struct macio_dev *mdev, pm_message_t state) { struct net_device* dev = macio_get_drvdata(mdev); struct bmac_data *bp = netdev_priv(dev); unsigned long flags; unsigned short config; int i; netif_device_detach(dev); /* prolly should wait for dma to finish & turn off the chip */ spin_lock_irqsave(&bp->lock, flags); if (bp->timeout_active) { del_timer(&bp->tx_timeout); bp->timeout_active = 0; } disable_irq(dev->irq); disable_irq(bp->tx_dma_intr); disable_irq(bp->rx_dma_intr); bp->sleeping = 1; spin_unlock_irqrestore(&bp->lock, flags); if (bp->opened) { volatile struct dbdma_regs __iomem *rd = bp->rx_dma; volatile struct dbdma_regs __iomem *td = bp->tx_dma; config = bmread(dev, RXCFG); bmwrite(dev, RXCFG, (config & ~RxMACEnable)); config = bmread(dev, TXCFG); bmwrite(dev, TXCFG, (config & ~TxMACEnable)); bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */ /* disable rx and tx dma */ st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ /* free some skb's */ for (i=0; irx_bufs[i] != NULL) { dev_kfree_skb(bp->rx_bufs[i]); bp->rx_bufs[i] = NULL; } } for (i = 0; itx_bufs[i] != NULL) { dev_kfree_skb(bp->tx_bufs[i]); bp->tx_bufs[i] = NULL; } } } pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); return 0; } static int bmac_resume(struct macio_dev *mdev) { struct net_device* dev = macio_get_drvdata(mdev); struct bmac_data *bp = netdev_priv(dev); /* see if this is enough */ if (bp->opened) bmac_reset_and_enable(dev); enable_irq(dev->irq); enable_irq(bp->tx_dma_intr); enable_irq(bp->rx_dma_intr); netif_device_attach(dev); return 0; } #endif /* CONFIG_PM */ static int bmac_set_address(struct net_device *dev, void *addr) { struct bmac_data *bp = netdev_priv(dev); unsigned char *p = addr; unsigned short *pWord16; unsigned long flags; int i; XXDEBUG(("bmac: enter set_address\n")); spin_lock_irqsave(&bp->lock, flags); for (i = 0; i < 6; ++i) { dev->dev_addr[i] = p[i]; } /* load up the hardware address */ pWord16 = (unsigned short *)dev->dev_addr; bmwrite(dev, MADD0, *pWord16++); bmwrite(dev, MADD1, *pWord16++); bmwrite(dev, MADD2, *pWord16); spin_unlock_irqrestore(&bp->lock, flags); XXDEBUG(("bmac: exit set_address\n")); return 0; } static inline void bmac_set_timeout(struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); unsigned long flags; spin_lock_irqsave(&bp->lock, flags); if (bp->timeout_active) del_timer(&bp->tx_timeout); bp->tx_timeout.expires = jiffies + TX_TIMEOUT; bp->tx_timeout.function = bmac_tx_timeout; bp->tx_timeout.data = (unsigned long) dev; add_timer(&bp->tx_timeout); bp->timeout_active = 1; spin_unlock_irqrestore(&bp->lock, flags); } static void bmac_construct_xmt(struct sk_buff *skb, volatile struct dbdma_cmd *cp) { void *vaddr; unsigned long baddr; unsigned long len; len = skb->len; vaddr = skb->data; baddr = virt_to_bus(vaddr); dbdma_setcmd(cp, (OUTPUT_LAST | INTR_ALWAYS | WAIT_IFCLR), len, baddr, 0); } static void bmac_construct_rxbuff(struct sk_buff *skb, volatile struct dbdma_cmd *cp) { unsigned char *addr = skb? skb->data: bmac_emergency_rxbuf; dbdma_setcmd(cp, (INPUT_LAST | INTR_ALWAYS), RX_BUFLEN, virt_to_bus(addr), 0); } static void bmac_init_tx_ring(struct bmac_data *bp) { volatile struct dbdma_regs __iomem *td = bp->tx_dma; memset((char *)bp->tx_cmds, 0, (N_TX_RING+1) * sizeof(struct dbdma_cmd)); bp->tx_empty = 0; bp->tx_fill = 0; bp->tx_fullup = 0; /* put a branch at the end of the tx command list */ dbdma_setcmd(&bp->tx_cmds[N_TX_RING], (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->tx_cmds)); /* reset tx dma */ dbdma_reset(td); out_le32(&td->wait_sel, 0x00200020); out_le32(&td->cmdptr, virt_to_bus(bp->tx_cmds)); } static int bmac_init_rx_ring(struct bmac_data *bp) { volatile struct dbdma_regs __iomem *rd = bp->rx_dma; int i; struct sk_buff *skb; /* initialize list of sk_buffs for receiving and set up recv dma */ memset((char *)bp->rx_cmds, 0, (N_RX_RING + 1) * sizeof(struct dbdma_cmd)); for (i = 0; i < N_RX_RING; i++) { if ((skb = bp->rx_bufs[i]) == NULL) { bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2); if (skb != NULL) skb_reserve(skb, 2); } bmac_construct_rxbuff(skb, &bp->rx_cmds[i]); } bp->rx_empty = 0; bp->rx_fill = i; /* Put a branch back to the beginning of the receive command list */ dbdma_setcmd(&bp->rx_cmds[N_RX_RING], (DBDMA_NOP | BR_ALWAYS), 0, 0, virt_to_bus(bp->rx_cmds)); /* start rx dma */ dbdma_reset(rd); out_le32(&rd->cmdptr, virt_to_bus(bp->rx_cmds)); return 1; } static int bmac_transmit_packet(struct sk_buff *skb, struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); volatile struct dbdma_regs __iomem *td = bp->tx_dma; int i; /* see if there's a free slot in the tx ring */ /* XXDEBUG(("bmac_xmit_start: empty=%d fill=%d\n", */ /* bp->tx_empty, bp->tx_fill)); */ i = bp->tx_fill + 1; if (i >= N_TX_RING) i = 0; if (i == bp->tx_empty) { netif_stop_queue(dev); bp->tx_fullup = 1; XXDEBUG(("bmac_transmit_packet: tx ring full\n")); return -1; /* can't take it at the moment */ } dbdma_setcmd(&bp->tx_cmds[i], DBDMA_STOP, 0, 0, 0); bmac_construct_xmt(skb, &bp->tx_cmds[bp->tx_fill]); bp->tx_bufs[bp->tx_fill] = skb; bp->tx_fill = i; dev->stats.tx_bytes += skb->len; dbdma_continue(td); return 0; } static int rxintcount; static irqreturn_t bmac_rxdma_intr(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct bmac_data *bp = netdev_priv(dev); volatile struct dbdma_regs __iomem *rd = bp->rx_dma; volatile struct dbdma_cmd *cp; int i, nb, stat; struct sk_buff *skb; unsigned int residual; int last; unsigned long flags; spin_lock_irqsave(&bp->lock, flags); if (++rxintcount < 10) { XXDEBUG(("bmac_rxdma_intr\n")); } last = -1; i = bp->rx_empty; while (1) { cp = &bp->rx_cmds[i]; stat = ld_le16(&cp->xfer_status); residual = ld_le16(&cp->res_count); if ((stat & ACTIVE) == 0) break; nb = RX_BUFLEN - residual - 2; if (nb < (ETHERMINPACKET - ETHERCRC)) { skb = NULL; dev->stats.rx_length_errors++; dev->stats.rx_errors++; } else { skb = bp->rx_bufs[i]; bp->rx_bufs[i] = NULL; } if (skb != NULL) { nb -= ETHERCRC; skb_put(skb, nb); skb->protocol = eth_type_trans(skb, dev); netif_rx(skb); ++dev->stats.rx_packets; dev->stats.rx_bytes += nb; } else { ++dev->stats.rx_dropped; } if ((skb = bp->rx_bufs[i]) == NULL) { bp->rx_bufs[i] = skb = dev_alloc_skb(RX_BUFLEN+2); if (skb != NULL) skb_reserve(bp->rx_bufs[i], 2); } bmac_construct_rxbuff(skb, &bp->rx_cmds[i]); st_le16(&cp->res_count, 0); st_le16(&cp->xfer_status, 0); last = i; if (++i >= N_RX_RING) i = 0; } if (last != -1) { bp->rx_fill = last; bp->rx_empty = i; } dbdma_continue(rd); spin_unlock_irqrestore(&bp->lock, flags); if (rxintcount < 10) { XXDEBUG(("bmac_rxdma_intr done\n")); } return IRQ_HANDLED; } static int txintcount; static irqreturn_t bmac_txdma_intr(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; struct bmac_data *bp = netdev_priv(dev); volatile struct dbdma_cmd *cp; int stat; unsigned long flags; spin_lock_irqsave(&bp->lock, flags); if (txintcount++ < 10) { XXDEBUG(("bmac_txdma_intr\n")); } /* del_timer(&bp->tx_timeout); */ /* bp->timeout_active = 0; */ while (1) { cp = &bp->tx_cmds[bp->tx_empty]; stat = ld_le16(&cp->xfer_status); if (txintcount < 10) { XXDEBUG(("bmac_txdma_xfer_stat=%#0x\n", stat)); } if (!(stat & ACTIVE)) { /* * status field might not have been filled by DBDMA */ if (cp == bus_to_virt(in_le32(&bp->tx_dma->cmdptr))) break; } if (bp->tx_bufs[bp->tx_empty]) { ++dev->stats.tx_packets; dev_kfree_skb_irq(bp->tx_bufs[bp->tx_empty]); } bp->tx_bufs[bp->tx_empty] = NULL; bp->tx_fullup = 0; netif_wake_queue(dev); if (++bp->tx_empty >= N_TX_RING) bp->tx_empty = 0; if (bp->tx_empty == bp->tx_fill) break; } spin_unlock_irqrestore(&bp->lock, flags); if (txintcount < 10) { XXDEBUG(("bmac_txdma_intr done->bmac_start\n")); } bmac_start(dev); return IRQ_HANDLED; } #ifndef SUNHME_MULTICAST /* Real fast bit-reversal algorithm, 6-bit values */ static int reverse6[64] = { 0x0,0x20,0x10,0x30,0x8,0x28,0x18,0x38, 0x4,0x24,0x14,0x34,0xc,0x2c,0x1c,0x3c, 0x2,0x22,0x12,0x32,0xa,0x2a,0x1a,0x3a, 0x6,0x26,0x16,0x36,0xe,0x2e,0x1e,0x3e, 0x1,0x21,0x11,0x31,0x9,0x29,0x19,0x39, 0x5,0x25,0x15,0x35,0xd,0x2d,0x1d,0x3d, 0x3,0x23,0x13,0x33,0xb,0x2b,0x1b,0x3b, 0x7,0x27,0x17,0x37,0xf,0x2f,0x1f,0x3f }; static unsigned int crc416(unsigned int curval, unsigned short nxtval) { register unsigned int counter, cur = curval, next = nxtval; register int high_crc_set, low_data_set; /* Swap bytes */ next = ((next & 0x00FF) << 8) | (next >> 8); /* Compute bit-by-bit */ for (counter = 0; counter < 16; ++counter) { /* is high CRC bit set? */ if ((cur & 0x80000000) == 0) high_crc_set = 0; else high_crc_set = 1; cur = cur << 1; if ((next & 0x0001) == 0) low_data_set = 0; else low_data_set = 1; next = next >> 1; /* do the XOR */ if (high_crc_set ^ low_data_set) cur = cur ^ ENET_CRCPOLY; } return cur; } static unsigned int bmac_crc(unsigned short *address) { unsigned int newcrc; XXDEBUG(("bmac_crc: addr=%#04x, %#04x, %#04x\n", *address, address[1], address[2])); newcrc = crc416(0xffffffff, *address); /* address bits 47 - 32 */ newcrc = crc416(newcrc, address[1]); /* address bits 31 - 16 */ newcrc = crc416(newcrc, address[2]); /* address bits 15 - 0 */ return(newcrc); } /* * Add requested mcast addr to BMac's hash table filter. * */ static void bmac_addhash(struct bmac_data *bp, unsigned char *addr) { unsigned int crc; unsigned short mask; if (!(*addr)) return; crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */ crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */ if (bp->hash_use_count[crc]++) return; /* This bit is already set */ mask = crc % 16; mask = (unsigned char)1 << mask; bp->hash_use_count[crc/16] |= mask; } static void bmac_removehash(struct bmac_data *bp, unsigned char *addr) { unsigned int crc; unsigned char mask; /* Now, delete the address from the filter copy, as indicated */ crc = bmac_crc((unsigned short *)addr) & 0x3f; /* Big-endian alert! */ crc = reverse6[crc]; /* Hyperfast bit-reversing algorithm */ if (bp->hash_use_count[crc] == 0) return; /* That bit wasn't in use! */ if (--bp->hash_use_count[crc]) return; /* That bit is still in use */ mask = crc % 16; mask = ((unsigned char)1 << mask) ^ 0xffff; /* To turn off bit */ bp->hash_table_mask[crc/16] &= mask; } /* * Sync the adapter with the software copy of the multicast mask * (logical address filter). */ static void bmac_rx_off(struct net_device *dev) { unsigned short rx_cfg; rx_cfg = bmread(dev, RXCFG); rx_cfg &= ~RxMACEnable; bmwrite(dev, RXCFG, rx_cfg); do { rx_cfg = bmread(dev, RXCFG); } while (rx_cfg & RxMACEnable); } unsigned short bmac_rx_on(struct net_device *dev, int hash_enable, int promisc_enable) { unsigned short rx_cfg; rx_cfg = bmread(dev, RXCFG); rx_cfg |= RxMACEnable; if (hash_enable) rx_cfg |= RxHashFilterEnable; else rx_cfg &= ~RxHashFilterEnable; if (promisc_enable) rx_cfg |= RxPromiscEnable; else rx_cfg &= ~RxPromiscEnable; bmwrite(dev, RXRST, RxResetValue); bmwrite(dev, RXFIFOCSR, 0); /* first disable rxFIFO */ bmwrite(dev, RXFIFOCSR, RxFIFOEnable ); bmwrite(dev, RXCFG, rx_cfg ); return rx_cfg; } static void bmac_update_hash_table_mask(struct net_device *dev, struct bmac_data *bp) { bmwrite(dev, BHASH3, bp->hash_table_mask[0]); /* bits 15 - 0 */ bmwrite(dev, BHASH2, bp->hash_table_mask[1]); /* bits 31 - 16 */ bmwrite(dev, BHASH1, bp->hash_table_mask[2]); /* bits 47 - 32 */ bmwrite(dev, BHASH0, bp->hash_table_mask[3]); /* bits 63 - 48 */ } #if 0 static void bmac_add_multi(struct net_device *dev, struct bmac_data *bp, unsigned char *addr) { /* XXDEBUG(("bmac: enter bmac_add_multi\n")); */ bmac_addhash(bp, addr); bmac_rx_off(dev); bmac_update_hash_table_mask(dev, bp); bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0); /* XXDEBUG(("bmac: exit bmac_add_multi\n")); */ } static void bmac_remove_multi(struct net_device *dev, struct bmac_data *bp, unsigned char *addr) { bmac_removehash(bp, addr); bmac_rx_off(dev); bmac_update_hash_table_mask(dev, bp); bmac_rx_on(dev, 1, (dev->flags & IFF_PROMISC)? 1 : 0); } #endif /* Set or clear the multicast filter for this adaptor. num_addrs == -1 Promiscuous mode, receive all packets num_addrs == 0 Normal mode, clear multicast list num_addrs > 0 Multicast mode, receive normal and MC packets, and do best-effort filtering. */ static void bmac_set_multicast(struct net_device *dev) { struct dev_mc_list *dmi; struct bmac_data *bp = netdev_priv(dev); int num_addrs = dev->mc_count; unsigned short rx_cfg; int i; if (bp->sleeping) return; XXDEBUG(("bmac: enter bmac_set_multicast, n_addrs=%d\n", num_addrs)); if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { for (i=0; i<4; i++) bp->hash_table_mask[i] = 0xffff; bmac_update_hash_table_mask(dev, bp); rx_cfg = bmac_rx_on(dev, 1, 0); XXDEBUG(("bmac: all multi, rx_cfg=%#08x\n")); } else if ((dev->flags & IFF_PROMISC) || (num_addrs < 0)) { rx_cfg = bmread(dev, RXCFG); rx_cfg |= RxPromiscEnable; bmwrite(dev, RXCFG, rx_cfg); rx_cfg = bmac_rx_on(dev, 0, 1); XXDEBUG(("bmac: promisc mode enabled, rx_cfg=%#08x\n", rx_cfg)); } else { for (i=0; i<4; i++) bp->hash_table_mask[i] = 0; for (i=0; i<64; i++) bp->hash_use_count[i] = 0; if (num_addrs == 0) { rx_cfg = bmac_rx_on(dev, 0, 0); XXDEBUG(("bmac: multi disabled, rx_cfg=%#08x\n", rx_cfg)); } else { for (dmi=dev->mc_list; dmi!=NULL; dmi=dmi->next) bmac_addhash(bp, dmi->dmi_addr); bmac_update_hash_table_mask(dev, bp); rx_cfg = bmac_rx_on(dev, 1, 0); XXDEBUG(("bmac: multi enabled, rx_cfg=%#08x\n", rx_cfg)); } } /* XXDEBUG(("bmac: exit bmac_set_multicast\n")); */ } #else /* ifdef SUNHME_MULTICAST */ /* The version of set_multicast below was lifted from sunhme.c */ static void bmac_set_multicast(struct net_device *dev) { struct dev_mc_list *dmi = dev->mc_list; char *addrs; int i; unsigned short rx_cfg; u32 crc; if((dev->flags & IFF_ALLMULTI) || (dev->mc_count > 64)) { bmwrite(dev, BHASH0, 0xffff); bmwrite(dev, BHASH1, 0xffff); bmwrite(dev, BHASH2, 0xffff); bmwrite(dev, BHASH3, 0xffff); } else if(dev->flags & IFF_PROMISC) { rx_cfg = bmread(dev, RXCFG); rx_cfg |= RxPromiscEnable; bmwrite(dev, RXCFG, rx_cfg); } else { u16 hash_table[4]; rx_cfg = bmread(dev, RXCFG); rx_cfg &= ~RxPromiscEnable; bmwrite(dev, RXCFG, rx_cfg); for(i = 0; i < 4; i++) hash_table[i] = 0; for(i = 0; i < dev->mc_count; i++) { addrs = dmi->dmi_addr; dmi = dmi->next; if(!(*addrs & 1)) continue; crc = ether_crc_le(6, addrs); crc >>= 26; hash_table[crc >> 4] |= 1 << (crc & 0xf); } bmwrite(dev, BHASH0, hash_table[0]); bmwrite(dev, BHASH1, hash_table[1]); bmwrite(dev, BHASH2, hash_table[2]); bmwrite(dev, BHASH3, hash_table[3]); } } #endif /* SUNHME_MULTICAST */ static int miscintcount; static irqreturn_t bmac_misc_intr(int irq, void *dev_id) { struct net_device *dev = (struct net_device *) dev_id; unsigned int status = bmread(dev, STATUS); if (miscintcount++ < 10) { XXDEBUG(("bmac_misc_intr\n")); } /* XXDEBUG(("bmac_misc_intr, status=%#08x\n", status)); */ /* bmac_txdma_intr_inner(irq, dev_id); */ /* if (status & FrameReceived) dev->stats.rx_dropped++; */ if (status & RxErrorMask) dev->stats.rx_errors++; if (status & RxCRCCntExp) dev->stats.rx_crc_errors++; if (status & RxLenCntExp) dev->stats.rx_length_errors++; if (status & RxOverFlow) dev->stats.rx_over_errors++; if (status & RxAlignCntExp) dev->stats.rx_frame_errors++; /* if (status & FrameSent) dev->stats.tx_dropped++; */ if (status & TxErrorMask) dev->stats.tx_errors++; if (status & TxUnderrun) dev->stats.tx_fifo_errors++; if (status & TxNormalCollExp) dev->stats.collisions++; return IRQ_HANDLED; } /* * Procedure for reading EEPROM */ #define SROMAddressLength 5 #define DataInOn 0x0008 #define DataInOff 0x0000 #define Clk 0x0002 #define ChipSelect 0x0001 #define SDIShiftCount 3 #define SD0ShiftCount 2 #define DelayValue 1000 /* number of microseconds */ #define SROMStartOffset 10 /* this is in words */ #define SROMReadCount 3 /* number of words to read from SROM */ #define SROMAddressBits 6 #define EnetAddressOffset 20 static unsigned char bmac_clock_out_bit(struct net_device *dev) { unsigned short data; unsigned short val; bmwrite(dev, SROMCSR, ChipSelect | Clk); udelay(DelayValue); data = bmread(dev, SROMCSR); udelay(DelayValue); val = (data >> SD0ShiftCount) & 1; bmwrite(dev, SROMCSR, ChipSelect); udelay(DelayValue); return val; } static void bmac_clock_in_bit(struct net_device *dev, unsigned int val) { unsigned short data; if (val != 0 && val != 1) return; data = (val << SDIShiftCount); bmwrite(dev, SROMCSR, data | ChipSelect ); udelay(DelayValue); bmwrite(dev, SROMCSR, data | ChipSelect | Clk ); udelay(DelayValue); bmwrite(dev, SROMCSR, data | ChipSelect); udelay(DelayValue); } static void reset_and_select_srom(struct net_device *dev) { /* first reset */ bmwrite(dev, SROMCSR, 0); udelay(DelayValue); /* send it the read command (110) */ bmac_clock_in_bit(dev, 1); bmac_clock_in_bit(dev, 1); bmac_clock_in_bit(dev, 0); } static unsigned short read_srom(struct net_device *dev, unsigned int addr, unsigned int addr_len) { unsigned short data, val; int i; /* send out the address we want to read from */ for (i = 0; i < addr_len; i++) { val = addr >> (addr_len-i-1); bmac_clock_in_bit(dev, val & 1); } /* Now read in the 16-bit data */ data = 0; for (i = 0; i < 16; i++) { val = bmac_clock_out_bit(dev); data <<= 1; data |= val; } bmwrite(dev, SROMCSR, 0); return data; } /* * It looks like Cogent and SMC use different methods for calculating * checksums. What a pain.. */ static int bmac_verify_checksum(struct net_device *dev) { unsigned short data, storedCS; reset_and_select_srom(dev); data = read_srom(dev, 3, SROMAddressBits); storedCS = ((data >> 8) & 0x0ff) | ((data << 8) & 0xff00); return 0; } static void bmac_get_station_address(struct net_device *dev, unsigned char *ea) { int i; unsigned short data; for (i = 0; i < 6; i++) { reset_and_select_srom(dev); data = read_srom(dev, i + EnetAddressOffset/2, SROMAddressBits); ea[2*i] = bitrev8(data & 0x0ff); ea[2*i+1] = bitrev8((data >> 8) & 0x0ff); } } static void bmac_reset_and_enable(struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); unsigned long flags; struct sk_buff *skb; unsigned char *data; spin_lock_irqsave(&bp->lock, flags); bmac_enable_and_reset_chip(dev); bmac_init_tx_ring(bp); bmac_init_rx_ring(bp); bmac_init_chip(dev); bmac_start_chip(dev); bmwrite(dev, INTDISABLE, EnableNormal); bp->sleeping = 0; /* * It seems that the bmac can't receive until it's transmitted * a packet. So we give it a dummy packet to transmit. */ skb = dev_alloc_skb(ETHERMINPACKET); if (skb != NULL) { data = skb_put(skb, ETHERMINPACKET); memset(data, 0, ETHERMINPACKET); memcpy(data, dev->dev_addr, 6); memcpy(data+6, dev->dev_addr, 6); bmac_transmit_packet(skb, dev); } spin_unlock_irqrestore(&bp->lock, flags); } static void bmac_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct bmac_data *bp = netdev_priv(dev); strcpy(info->driver, "bmac"); strcpy(info->bus_info, dev_name(&bp->mdev->ofdev.dev)); } static const struct ethtool_ops bmac_ethtool_ops = { .get_drvinfo = bmac_get_drvinfo, .get_link = ethtool_op_get_link, }; static const struct net_device_ops bmac_netdev_ops = { .ndo_open = bmac_open, .ndo_stop = bmac_close, .ndo_start_xmit = bmac_output, .ndo_set_multicast_list = bmac_set_multicast, .ndo_set_mac_address = bmac_set_address, .ndo_change_mtu = eth_change_mtu, .ndo_validate_addr = eth_validate_addr, }; static int __devinit bmac_probe(struct macio_dev *mdev, const struct of_device_id *match) { int j, rev, ret; struct bmac_data *bp; const unsigned char *prop_addr; unsigned char addr[6]; struct net_device *dev; int is_bmac_plus = ((int)match->data) != 0; if (macio_resource_count(mdev) != 3 || macio_irq_count(mdev) != 3) { printk(KERN_ERR "BMAC: can't use, need 3 addrs and 3 intrs\n"); return -ENODEV; } prop_addr = of_get_property(macio_get_of_node(mdev), "mac-address", NULL); if (prop_addr == NULL) { prop_addr = of_get_property(macio_get_of_node(mdev), "local-mac-address", NULL); if (prop_addr == NULL) { printk(KERN_ERR "BMAC: Can't get mac-address\n"); return -ENODEV; } } memcpy(addr, prop_addr, sizeof(addr)); dev = alloc_etherdev(PRIV_BYTES); if (!dev) { printk(KERN_ERR "BMAC: alloc_etherdev failed, out of memory\n"); return -ENOMEM; } bp = netdev_priv(dev); SET_NETDEV_DEV(dev, &mdev->ofdev.dev); macio_set_drvdata(mdev, dev); bp->mdev = mdev; spin_lock_init(&bp->lock); if (macio_request_resources(mdev, "bmac")) { printk(KERN_ERR "BMAC: can't request IO resource !\n"); goto out_free; } dev->base_addr = (unsigned long) ioremap(macio_resource_start(mdev, 0), macio_resource_len(mdev, 0)); if (dev->base_addr == 0) goto out_release; dev->irq = macio_irq(mdev, 0); bmac_enable_and_reset_chip(dev); bmwrite(dev, INTDISABLE, DisableAll); rev = addr[0] == 0 && addr[1] == 0xA0; for (j = 0; j < 6; ++j) dev->dev_addr[j] = rev ? bitrev8(addr[j]): addr[j]; /* Enable chip without interrupts for now */ bmac_enable_and_reset_chip(dev); bmwrite(dev, INTDISABLE, DisableAll); dev->netdev_ops = &bmac_netdev_ops; dev->ethtool_ops = &bmac_ethtool_ops; bmac_get_station_address(dev, addr); if (bmac_verify_checksum(dev) != 0) goto err_out_iounmap; bp->is_bmac_plus = is_bmac_plus; bp->tx_dma = ioremap(macio_resource_start(mdev, 1), macio_resource_len(mdev, 1)); if (!bp->tx_dma) goto err_out_iounmap; bp->tx_dma_intr = macio_irq(mdev, 1); bp->rx_dma = ioremap(macio_resource_start(mdev, 2), macio_resource_len(mdev, 2)); if (!bp->rx_dma) goto err_out_iounmap_tx; bp->rx_dma_intr = macio_irq(mdev, 2); bp->tx_cmds = (volatile struct dbdma_cmd *) DBDMA_ALIGN(bp + 1); bp->rx_cmds = bp->tx_cmds + N_TX_RING + 1; bp->queue = (struct sk_buff_head *)(bp->rx_cmds + N_RX_RING + 1); skb_queue_head_init(bp->queue); init_timer(&bp->tx_timeout); ret = request_irq(dev->irq, bmac_misc_intr, 0, "BMAC-misc", dev); if (ret) { printk(KERN_ERR "BMAC: can't get irq %d\n", dev->irq); goto err_out_iounmap_rx; } ret = request_irq(bp->tx_dma_intr, bmac_txdma_intr, 0, "BMAC-txdma", dev); if (ret) { printk(KERN_ERR "BMAC: can't get irq %d\n", bp->tx_dma_intr); goto err_out_irq0; } ret = request_irq(bp->rx_dma_intr, bmac_rxdma_intr, 0, "BMAC-rxdma", dev); if (ret) { printk(KERN_ERR "BMAC: can't get irq %d\n", bp->rx_dma_intr); goto err_out_irq1; } /* Mask chip interrupts and disable chip, will be * re-enabled on open() */ disable_irq(dev->irq); pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); if (register_netdev(dev) != 0) { printk(KERN_ERR "BMAC: Ethernet registration failed\n"); goto err_out_irq2; } printk(KERN_INFO "%s: BMAC%s at %pM", dev->name, (is_bmac_plus ? "+" : ""), dev->dev_addr); XXDEBUG((", base_addr=%#0lx", dev->base_addr)); printk("\n"); return 0; err_out_irq2: free_irq(bp->rx_dma_intr, dev); err_out_irq1: free_irq(bp->tx_dma_intr, dev); err_out_irq0: free_irq(dev->irq, dev); err_out_iounmap_rx: iounmap(bp->rx_dma); err_out_iounmap_tx: iounmap(bp->tx_dma); err_out_iounmap: iounmap((void __iomem *)dev->base_addr); out_release: macio_release_resources(mdev); out_free: pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); free_netdev(dev); return -ENODEV; } static int bmac_open(struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); /* XXDEBUG(("bmac: enter open\n")); */ /* reset the chip */ bp->opened = 1; bmac_reset_and_enable(dev); enable_irq(dev->irq); return 0; } static int bmac_close(struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); volatile struct dbdma_regs __iomem *rd = bp->rx_dma; volatile struct dbdma_regs __iomem *td = bp->tx_dma; unsigned short config; int i; bp->sleeping = 1; /* disable rx and tx */ config = bmread(dev, RXCFG); bmwrite(dev, RXCFG, (config & ~RxMACEnable)); config = bmread(dev, TXCFG); bmwrite(dev, TXCFG, (config & ~TxMACEnable)); bmwrite(dev, INTDISABLE, DisableAll); /* disable all intrs */ /* disable rx and tx dma */ st_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ st_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE)); /* clear run bit */ /* free some skb's */ XXDEBUG(("bmac: free rx bufs\n")); for (i=0; irx_bufs[i] != NULL) { dev_kfree_skb(bp->rx_bufs[i]); bp->rx_bufs[i] = NULL; } } XXDEBUG(("bmac: free tx bufs\n")); for (i = 0; itx_bufs[i] != NULL) { dev_kfree_skb(bp->tx_bufs[i]); bp->tx_bufs[i] = NULL; } } XXDEBUG(("bmac: all bufs freed\n")); bp->opened = 0; disable_irq(dev->irq); pmac_call_feature(PMAC_FTR_BMAC_ENABLE, macio_get_of_node(bp->mdev), 0, 0); return 0; } static void bmac_start(struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); int i; struct sk_buff *skb; unsigned long flags; if (bp->sleeping) return; spin_lock_irqsave(&bp->lock, flags); while (1) { i = bp->tx_fill + 1; if (i >= N_TX_RING) i = 0; if (i == bp->tx_empty) break; skb = skb_dequeue(bp->queue); if (skb == NULL) break; bmac_transmit_packet(skb, dev); } spin_unlock_irqrestore(&bp->lock, flags); } static int bmac_output(struct sk_buff *skb, struct net_device *dev) { struct bmac_data *bp = netdev_priv(dev); skb_queue_tail(bp->queue, skb); bmac_start(dev); return NETDEV_TX_OK; } static void bmac_tx_timeout(unsigned long data) { struct net_device *dev = (struct net_device *) data; struct bmac_data *bp = netdev_priv(dev); volatile struct dbdma_regs __iomem *td = bp->tx_dma; volatile struct dbdma_regs __iomem *rd = bp->rx_dma; volatile struct dbdma_cmd *cp; unsigned long flags; unsigned short config, oldConfig; int i; XXDEBUG(("bmac: tx_timeout called\n")); spin_lock_irqsave(&bp->lock, flags); bp->timeout_active = 0; /* update various counters */ /* bmac_handle_misc_intrs(bp, 0); */ cp = &bp->tx_cmds[bp->tx_empty]; /* XXDEBUG((KERN_DEBUG "bmac: tx dmastat=%x %x runt=%d pr=%x fs=%x fc=%x\n", */ /* ld_le32(&td->status), ld_le16(&cp->xfer_status), bp->tx_bad_runt, */ /* mb->pr, mb->xmtfs, mb->fifofc)); */ /* turn off both tx and rx and reset the chip */ config = bmread(dev, RXCFG); bmwrite(dev, RXCFG, (config & ~RxMACEnable)); config = bmread(dev, TXCFG); bmwrite(dev, TXCFG, (config & ~TxMACEnable)); out_le32(&td->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD)); printk(KERN_ERR "bmac: transmit timeout - resetting\n"); bmac_enable_and_reset_chip(dev); /* restart rx dma */ cp = bus_to_virt(ld_le32(&rd->cmdptr)); out_le32(&rd->control, DBDMA_CLEAR(RUN|PAUSE|FLUSH|WAKE|ACTIVE|DEAD)); out_le16(&cp->xfer_status, 0); out_le32(&rd->cmdptr, virt_to_bus(cp)); out_le32(&rd->control, DBDMA_SET(RUN|WAKE)); /* fix up the transmit side */ XXDEBUG((KERN_DEBUG "bmac: tx empty=%d fill=%d fullup=%d\n", bp->tx_empty, bp->tx_fill, bp->tx_fullup)); i = bp->tx_empty; ++dev->stats.tx_errors; if (i != bp->tx_fill) { dev_kfree_skb(bp->tx_bufs[i]); bp->tx_bufs[i] = NULL; if (++i >= N_TX_RING) i = 0; bp->tx_empty = i; } bp->tx_fullup = 0; netif_wake_queue(dev); if (i != bp->tx_fill) { cp = &bp->tx_cmds[i]; out_le16(&cp->xfer_status, 0); out_le16(&cp->command, OUTPUT_LAST); out_le32(&td->cmdptr, virt_to_bus(cp)); out_le32(&td->control, DBDMA_SET(RUN)); /* bmac_set_timeout(dev); */ XXDEBUG((KERN_DEBUG "bmac: starting %d\n", i)); } /* turn it back on */ oldConfig = bmread(dev, RXCFG); bmwrite(dev, RXCFG, oldConfig | RxMACEnable ); oldConfig = bmread(dev, TXCFG); bmwrite(dev, TXCFG, oldConfig | TxMACEnable ); spin_unlock_irqrestore(&bp->lock, flags); } #if 0 static void dump_dbdma(volatile struct dbdma_cmd *cp,int count) { int i,*ip; for (i=0;i< count;i++) { ip = (int*)(cp+i); printk("dbdma req 0x%x addr 0x%x baddr 0x%x xfer/res 0x%x\n", ld_le32(ip+0), ld_le32(ip+1), ld_le32(ip+2), ld_le32(ip+3)); } } #endif #if 0 static int bmac_proc_info(char *buffer, char **start, off_t offset, int length) { int len = 0; off_t pos = 0; off_t begin = 0; int i; if (bmac_devs == NULL) return (-ENOSYS); len += sprintf(buffer, "BMAC counters & registers\n"); for (i = 0; i offset+length) break; } *start = buffer + (offset - begin); len -= (offset - begin); if (len > length) len = length; return len; } #endif static int __devexit bmac_remove(struct macio_dev *mdev) { struct net_device *dev = macio_get_drvdata(mdev); struct bmac_data *bp = netdev_priv(dev); unregister_netdev(dev); free_irq(dev->irq, dev); free_irq(bp->tx_dma_intr, dev); free_irq(bp->rx_dma_intr, dev); iounmap((void __iomem *)dev->base_addr); iounmap(bp->tx_dma); iounmap(bp->rx_dma); macio_release_resources(mdev); free_netdev(dev); return 0; } static struct of_device_id bmac_match[] = { { .name = "bmac", .data = (void *)0, }, { .type = "network", .compatible = "bmac+", .data = (void *)1, }, {}, }; MODULE_DEVICE_TABLE (of, bmac_match); static struct macio_driver bmac_driver = { .name = "bmac", .match_table = bmac_match, .probe = bmac_probe, .remove = bmac_remove, #ifdef CONFIG_PM .suspend = bmac_suspend, .resume = bmac_resume, #endif }; static int __init bmac_init(void) { if (bmac_emergency_rxbuf == NULL) { bmac_emergency_rxbuf = kmalloc(RX_BUFLEN, GFP_KERNEL); if (bmac_emergency_rxbuf == NULL) { printk(KERN_ERR "BMAC: can't allocate emergency RX buffer\n"); return -ENOMEM; } } return macio_register_driver(&bmac_driver); } static void __exit bmac_exit(void) { macio_unregister_driver(&bmac_driver); kfree(bmac_emergency_rxbuf); bmac_emergency_rxbuf = NULL; } MODULE_AUTHOR("Randy Gobbel/Paul Mackerras"); MODULE_DESCRIPTION("PowerMac BMAC ethernet driver."); MODULE_LICENSE("GPL"); module_init(bmac_init); module_exit(bmac_exit);