// SPDX-License-Identifier: GPL-2.0-only /* CAN driver for Geschwister Schneider USB/CAN devices * and bytewerk.org candleLight USB CAN interfaces. * * Copyright (C) 2013-2016 Geschwister Schneider Technologie-, * Entwicklungs- und Vertriebs UG (Haftungsbeschränkt). * Copyright (C) 2016 Hubert Denkmair * * Many thanks to all socketcan devs! */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include /* Device specific constants */ #define USB_GS_USB_1_VENDOR_ID 0x1d50 #define USB_GS_USB_1_PRODUCT_ID 0x606f #define USB_CANDLELIGHT_VENDOR_ID 0x1209 #define USB_CANDLELIGHT_PRODUCT_ID 0x2323 #define USB_CES_CANEXT_FD_VENDOR_ID 0x1cd2 #define USB_CES_CANEXT_FD_PRODUCT_ID 0x606f #define USB_ABE_CANDEBUGGER_FD_VENDOR_ID 0x16d0 #define USB_ABE_CANDEBUGGER_FD_PRODUCT_ID 0x10b8 #define GS_USB_ENDPOINT_IN 1 #define GS_USB_ENDPOINT_OUT 2 /* Timestamp 32 bit timer runs at 1 MHz (1 µs tick). Worker accounts * for timer overflow (will be after ~71 minutes) */ #define GS_USB_TIMESTAMP_TIMER_HZ (1 * HZ_PER_MHZ) #define GS_USB_TIMESTAMP_WORK_DELAY_SEC 1800 static_assert(GS_USB_TIMESTAMP_WORK_DELAY_SEC < CYCLECOUNTER_MASK(32) / GS_USB_TIMESTAMP_TIMER_HZ / 2); /* Device specific constants */ enum gs_usb_breq { GS_USB_BREQ_HOST_FORMAT = 0, GS_USB_BREQ_BITTIMING, GS_USB_BREQ_MODE, GS_USB_BREQ_BERR, GS_USB_BREQ_BT_CONST, GS_USB_BREQ_DEVICE_CONFIG, GS_USB_BREQ_TIMESTAMP, GS_USB_BREQ_IDENTIFY, GS_USB_BREQ_GET_USER_ID, GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING = GS_USB_BREQ_GET_USER_ID, GS_USB_BREQ_SET_USER_ID, GS_USB_BREQ_DATA_BITTIMING, GS_USB_BREQ_BT_CONST_EXT, GS_USB_BREQ_SET_TERMINATION, GS_USB_BREQ_GET_TERMINATION, }; enum gs_can_mode { /* reset a channel. turns it off */ GS_CAN_MODE_RESET = 0, /* starts a channel */ GS_CAN_MODE_START }; enum gs_can_state { GS_CAN_STATE_ERROR_ACTIVE = 0, GS_CAN_STATE_ERROR_WARNING, GS_CAN_STATE_ERROR_PASSIVE, GS_CAN_STATE_BUS_OFF, GS_CAN_STATE_STOPPED, GS_CAN_STATE_SLEEPING }; enum gs_can_identify_mode { GS_CAN_IDENTIFY_OFF = 0, GS_CAN_IDENTIFY_ON }; enum gs_can_termination_state { GS_CAN_TERMINATION_STATE_OFF = 0, GS_CAN_TERMINATION_STATE_ON }; #define GS_USB_TERMINATION_DISABLED CAN_TERMINATION_DISABLED #define GS_USB_TERMINATION_ENABLED 120 /* data types passed between host and device */ /* The firmware on the original USB2CAN by Geschwister Schneider * Technologie Entwicklungs- und Vertriebs UG exchanges all data * between the host and the device in host byte order. This is done * with the struct gs_host_config::byte_order member, which is sent * first to indicate the desired byte order. * * The widely used open source firmware candleLight doesn't support * this feature and exchanges the data in little endian byte order. */ struct gs_host_config { __le32 byte_order; } __packed; struct gs_device_config { u8 reserved1; u8 reserved2; u8 reserved3; u8 icount; __le32 sw_version; __le32 hw_version; } __packed; #define GS_CAN_MODE_NORMAL 0 #define GS_CAN_MODE_LISTEN_ONLY BIT(0) #define GS_CAN_MODE_LOOP_BACK BIT(1) #define GS_CAN_MODE_TRIPLE_SAMPLE BIT(2) #define GS_CAN_MODE_ONE_SHOT BIT(3) #define GS_CAN_MODE_HW_TIMESTAMP BIT(4) /* GS_CAN_FEATURE_IDENTIFY BIT(5) */ /* GS_CAN_FEATURE_USER_ID BIT(6) */ #define GS_CAN_MODE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) #define GS_CAN_MODE_FD BIT(8) /* GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) */ /* GS_CAN_FEATURE_BT_CONST_EXT BIT(10) */ /* GS_CAN_FEATURE_TERMINATION BIT(11) */ struct gs_device_mode { __le32 mode; __le32 flags; } __packed; struct gs_device_state { __le32 state; __le32 rxerr; __le32 txerr; } __packed; struct gs_device_bittiming { __le32 prop_seg; __le32 phase_seg1; __le32 phase_seg2; __le32 sjw; __le32 brp; } __packed; struct gs_identify_mode { __le32 mode; } __packed; struct gs_device_termination_state { __le32 state; } __packed; #define GS_CAN_FEATURE_LISTEN_ONLY BIT(0) #define GS_CAN_FEATURE_LOOP_BACK BIT(1) #define GS_CAN_FEATURE_TRIPLE_SAMPLE BIT(2) #define GS_CAN_FEATURE_ONE_SHOT BIT(3) #define GS_CAN_FEATURE_HW_TIMESTAMP BIT(4) #define GS_CAN_FEATURE_IDENTIFY BIT(5) #define GS_CAN_FEATURE_USER_ID BIT(6) #define GS_CAN_FEATURE_PAD_PKTS_TO_MAX_PKT_SIZE BIT(7) #define GS_CAN_FEATURE_FD BIT(8) #define GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX BIT(9) #define GS_CAN_FEATURE_BT_CONST_EXT BIT(10) #define GS_CAN_FEATURE_TERMINATION BIT(11) #define GS_CAN_FEATURE_MASK GENMASK(11, 0) /* internal quirks - keep in GS_CAN_FEATURE space for now */ /* CANtact Pro original firmware: * BREQ DATA_BITTIMING overlaps with GET_USER_ID */ #define GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO BIT(31) struct gs_device_bt_const { __le32 feature; __le32 fclk_can; __le32 tseg1_min; __le32 tseg1_max; __le32 tseg2_min; __le32 tseg2_max; __le32 sjw_max; __le32 brp_min; __le32 brp_max; __le32 brp_inc; } __packed; struct gs_device_bt_const_extended { __le32 feature; __le32 fclk_can; __le32 tseg1_min; __le32 tseg1_max; __le32 tseg2_min; __le32 tseg2_max; __le32 sjw_max; __le32 brp_min; __le32 brp_max; __le32 brp_inc; __le32 dtseg1_min; __le32 dtseg1_max; __le32 dtseg2_min; __le32 dtseg2_max; __le32 dsjw_max; __le32 dbrp_min; __le32 dbrp_max; __le32 dbrp_inc; } __packed; #define GS_CAN_FLAG_OVERFLOW BIT(0) #define GS_CAN_FLAG_FD BIT(1) #define GS_CAN_FLAG_BRS BIT(2) #define GS_CAN_FLAG_ESI BIT(3) struct classic_can { u8 data[8]; } __packed; struct classic_can_ts { u8 data[8]; __le32 timestamp_us; } __packed; struct classic_can_quirk { u8 data[8]; u8 quirk; } __packed; struct canfd { u8 data[64]; } __packed; struct canfd_ts { u8 data[64]; __le32 timestamp_us; } __packed; struct canfd_quirk { u8 data[64]; u8 quirk; } __packed; struct gs_host_frame { u32 echo_id; __le32 can_id; u8 can_dlc; u8 channel; u8 flags; u8 reserved; union { DECLARE_FLEX_ARRAY(struct classic_can, classic_can); DECLARE_FLEX_ARRAY(struct classic_can_ts, classic_can_ts); DECLARE_FLEX_ARRAY(struct classic_can_quirk, classic_can_quirk); DECLARE_FLEX_ARRAY(struct canfd, canfd); DECLARE_FLEX_ARRAY(struct canfd_ts, canfd_ts); DECLARE_FLEX_ARRAY(struct canfd_quirk, canfd_quirk); }; } __packed; /* The GS USB devices make use of the same flags and masks as in * linux/can.h and linux/can/error.h, and no additional mapping is necessary. */ /* Only send a max of GS_MAX_TX_URBS frames per channel at a time. */ #define GS_MAX_TX_URBS 10 /* Only launch a max of GS_MAX_RX_URBS usb requests at a time. */ #define GS_MAX_RX_URBS 30 /* Maximum number of interfaces the driver supports per device. * Current hardware only supports 3 interfaces. The future may vary. */ #define GS_MAX_INTF 3 struct gs_tx_context { struct gs_can *dev; unsigned int echo_id; }; struct gs_can { struct can_priv can; /* must be the first member */ struct gs_usb *parent; struct net_device *netdev; struct usb_device *udev; struct usb_interface *iface; struct can_bittiming_const bt_const, data_bt_const; unsigned int channel; /* channel number */ /* time counter for hardware timestamps */ struct cyclecounter cc; struct timecounter tc; spinlock_t tc_lock; /* spinlock to guard access tc->cycle_last */ struct delayed_work timestamp; u32 feature; unsigned int hf_size_tx; /* This lock prevents a race condition between xmit and receive. */ spinlock_t tx_ctx_lock; struct gs_tx_context tx_context[GS_MAX_TX_URBS]; struct usb_anchor tx_submitted; atomic_t active_tx_urbs; }; /* usb interface struct */ struct gs_usb { struct gs_can *canch[GS_MAX_INTF]; struct usb_anchor rx_submitted; struct usb_device *udev; unsigned int hf_size_rx; u8 active_channels; }; /* 'allocate' a tx context. * returns a valid tx context or NULL if there is no space. */ static struct gs_tx_context *gs_alloc_tx_context(struct gs_can *dev) { int i = 0; unsigned long flags; spin_lock_irqsave(&dev->tx_ctx_lock, flags); for (; i < GS_MAX_TX_URBS; i++) { if (dev->tx_context[i].echo_id == GS_MAX_TX_URBS) { dev->tx_context[i].echo_id = i; spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); return &dev->tx_context[i]; } } spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); return NULL; } /* releases a tx context */ static void gs_free_tx_context(struct gs_tx_context *txc) { txc->echo_id = GS_MAX_TX_URBS; } /* Get a tx context by id. */ static struct gs_tx_context *gs_get_tx_context(struct gs_can *dev, unsigned int id) { unsigned long flags; if (id < GS_MAX_TX_URBS) { spin_lock_irqsave(&dev->tx_ctx_lock, flags); if (dev->tx_context[id].echo_id == id) { spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); return &dev->tx_context[id]; } spin_unlock_irqrestore(&dev->tx_ctx_lock, flags); } return NULL; } static int gs_cmd_reset(struct gs_can *dev) { struct gs_device_mode dm = { .mode = GS_CAN_MODE_RESET, }; return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, GS_USB_BREQ_MODE, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, dev->channel, 0, &dm, sizeof(dm), 1000, GFP_KERNEL); } static inline int gs_usb_get_timestamp(const struct gs_can *dev, u32 *timestamp_p) { __le32 timestamp; int rc; rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0, GS_USB_BREQ_TIMESTAMP, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, dev->channel, 0, ×tamp, sizeof(timestamp), USB_CTRL_GET_TIMEOUT, GFP_KERNEL); if (rc) return rc; *timestamp_p = le32_to_cpu(timestamp); return 0; } static u64 gs_usb_timestamp_read(const struct cyclecounter *cc) __must_hold(&dev->tc_lock) { struct gs_can *dev = container_of(cc, struct gs_can, cc); u32 timestamp = 0; int err; lockdep_assert_held(&dev->tc_lock); /* drop lock for synchronous USB transfer */ spin_unlock_bh(&dev->tc_lock); err = gs_usb_get_timestamp(dev, ×tamp); spin_lock_bh(&dev->tc_lock); if (err) netdev_err(dev->netdev, "Error %d while reading timestamp. HW timestamps may be inaccurate.", err); return timestamp; } static void gs_usb_timestamp_work(struct work_struct *work) { struct delayed_work *delayed_work = to_delayed_work(work); struct gs_can *dev; dev = container_of(delayed_work, struct gs_can, timestamp); spin_lock_bh(&dev->tc_lock); timecounter_read(&dev->tc); spin_unlock_bh(&dev->tc_lock); schedule_delayed_work(&dev->timestamp, GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); } static void gs_usb_skb_set_timestamp(struct gs_can *dev, struct sk_buff *skb, u32 timestamp) { struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb); u64 ns; spin_lock_bh(&dev->tc_lock); ns = timecounter_cyc2time(&dev->tc, timestamp); spin_unlock_bh(&dev->tc_lock); hwtstamps->hwtstamp = ns_to_ktime(ns); } static void gs_usb_timestamp_init(struct gs_can *dev) { struct cyclecounter *cc = &dev->cc; cc->read = gs_usb_timestamp_read; cc->mask = CYCLECOUNTER_MASK(32); cc->shift = 32 - bits_per(NSEC_PER_SEC / GS_USB_TIMESTAMP_TIMER_HZ); cc->mult = clocksource_hz2mult(GS_USB_TIMESTAMP_TIMER_HZ, cc->shift); spin_lock_init(&dev->tc_lock); spin_lock_bh(&dev->tc_lock); timecounter_init(&dev->tc, &dev->cc, ktime_get_real_ns()); spin_unlock_bh(&dev->tc_lock); INIT_DELAYED_WORK(&dev->timestamp, gs_usb_timestamp_work); schedule_delayed_work(&dev->timestamp, GS_USB_TIMESTAMP_WORK_DELAY_SEC * HZ); } static void gs_usb_timestamp_stop(struct gs_can *dev) { cancel_delayed_work_sync(&dev->timestamp); } static void gs_update_state(struct gs_can *dev, struct can_frame *cf) { struct can_device_stats *can_stats = &dev->can.can_stats; if (cf->can_id & CAN_ERR_RESTARTED) { dev->can.state = CAN_STATE_ERROR_ACTIVE; can_stats->restarts++; } else if (cf->can_id & CAN_ERR_BUSOFF) { dev->can.state = CAN_STATE_BUS_OFF; can_stats->bus_off++; } else if (cf->can_id & CAN_ERR_CRTL) { if ((cf->data[1] & CAN_ERR_CRTL_TX_WARNING) || (cf->data[1] & CAN_ERR_CRTL_RX_WARNING)) { dev->can.state = CAN_STATE_ERROR_WARNING; can_stats->error_warning++; } else if ((cf->data[1] & CAN_ERR_CRTL_TX_PASSIVE) || (cf->data[1] & CAN_ERR_CRTL_RX_PASSIVE)) { dev->can.state = CAN_STATE_ERROR_PASSIVE; can_stats->error_passive++; } else { dev->can.state = CAN_STATE_ERROR_ACTIVE; } } } static void gs_usb_set_timestamp(struct gs_can *dev, struct sk_buff *skb, const struct gs_host_frame *hf) { u32 timestamp; if (!(dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP)) return; if (hf->flags & GS_CAN_FLAG_FD) timestamp = le32_to_cpu(hf->canfd_ts->timestamp_us); else timestamp = le32_to_cpu(hf->classic_can_ts->timestamp_us); gs_usb_skb_set_timestamp(dev, skb, timestamp); return; } static void gs_usb_receive_bulk_callback(struct urb *urb) { struct gs_usb *usbcan = urb->context; struct gs_can *dev; struct net_device *netdev; int rc; struct net_device_stats *stats; struct gs_host_frame *hf = urb->transfer_buffer; struct gs_tx_context *txc; struct can_frame *cf; struct canfd_frame *cfd; struct sk_buff *skb; BUG_ON(!usbcan); switch (urb->status) { case 0: /* success */ break; case -ENOENT: case -ESHUTDOWN: return; default: /* do not resubmit aborted urbs. eg: when device goes down */ return; } /* device reports out of range channel id */ if (hf->channel >= GS_MAX_INTF) goto device_detach; dev = usbcan->canch[hf->channel]; netdev = dev->netdev; stats = &netdev->stats; if (!netif_device_present(netdev)) return; if (hf->echo_id == -1) { /* normal rx */ if (hf->flags & GS_CAN_FLAG_FD) { skb = alloc_canfd_skb(dev->netdev, &cfd); if (!skb) return; cfd->can_id = le32_to_cpu(hf->can_id); cfd->len = can_fd_dlc2len(hf->can_dlc); if (hf->flags & GS_CAN_FLAG_BRS) cfd->flags |= CANFD_BRS; if (hf->flags & GS_CAN_FLAG_ESI) cfd->flags |= CANFD_ESI; memcpy(cfd->data, hf->canfd->data, cfd->len); } else { skb = alloc_can_skb(dev->netdev, &cf); if (!skb) return; cf->can_id = le32_to_cpu(hf->can_id); can_frame_set_cc_len(cf, hf->can_dlc, dev->can.ctrlmode); memcpy(cf->data, hf->classic_can->data, 8); /* ERROR frames tell us information about the controller */ if (le32_to_cpu(hf->can_id) & CAN_ERR_FLAG) gs_update_state(dev, cf); } gs_usb_set_timestamp(dev, skb, hf); netdev->stats.rx_packets++; netdev->stats.rx_bytes += hf->can_dlc; netif_rx(skb); } else { /* echo_id == hf->echo_id */ if (hf->echo_id >= GS_MAX_TX_URBS) { netdev_err(netdev, "Unexpected out of range echo id %u\n", hf->echo_id); goto resubmit_urb; } txc = gs_get_tx_context(dev, hf->echo_id); /* bad devices send bad echo_ids. */ if (!txc) { netdev_err(netdev, "Unexpected unused echo id %u\n", hf->echo_id); goto resubmit_urb; } skb = dev->can.echo_skb[hf->echo_id]; gs_usb_set_timestamp(dev, skb, hf); netdev->stats.tx_packets++; netdev->stats.tx_bytes += can_get_echo_skb(netdev, hf->echo_id, NULL); gs_free_tx_context(txc); atomic_dec(&dev->active_tx_urbs); netif_wake_queue(netdev); } if (hf->flags & GS_CAN_FLAG_OVERFLOW) { skb = alloc_can_err_skb(netdev, &cf); if (!skb) goto resubmit_urb; cf->can_id |= CAN_ERR_CRTL; cf->len = CAN_ERR_DLC; cf->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; stats->rx_over_errors++; stats->rx_errors++; netif_rx(skb); } resubmit_urb: usb_fill_bulk_urb(urb, usbcan->udev, usb_rcvbulkpipe(usbcan->udev, GS_USB_ENDPOINT_IN), hf, dev->parent->hf_size_rx, gs_usb_receive_bulk_callback, usbcan); rc = usb_submit_urb(urb, GFP_ATOMIC); /* USB failure take down all interfaces */ if (rc == -ENODEV) { device_detach: for (rc = 0; rc < GS_MAX_INTF; rc++) { if (usbcan->canch[rc]) netif_device_detach(usbcan->canch[rc]->netdev); } } } static int gs_usb_set_bittiming(struct net_device *netdev) { struct gs_can *dev = netdev_priv(netdev); struct can_bittiming *bt = &dev->can.bittiming; struct gs_device_bittiming dbt = { .prop_seg = cpu_to_le32(bt->prop_seg), .phase_seg1 = cpu_to_le32(bt->phase_seg1), .phase_seg2 = cpu_to_le32(bt->phase_seg2), .sjw = cpu_to_le32(bt->sjw), .brp = cpu_to_le32(bt->brp), }; /* request bit timings */ return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, GS_USB_BREQ_BITTIMING, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, dev->channel, 0, &dbt, sizeof(dbt), 1000, GFP_KERNEL); } static int gs_usb_set_data_bittiming(struct net_device *netdev) { struct gs_can *dev = netdev_priv(netdev); struct can_bittiming *bt = &dev->can.data_bittiming; struct gs_device_bittiming dbt = { .prop_seg = cpu_to_le32(bt->prop_seg), .phase_seg1 = cpu_to_le32(bt->phase_seg1), .phase_seg2 = cpu_to_le32(bt->phase_seg2), .sjw = cpu_to_le32(bt->sjw), .brp = cpu_to_le32(bt->brp), }; u8 request = GS_USB_BREQ_DATA_BITTIMING; if (dev->feature & GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO) request = GS_USB_BREQ_QUIRK_CANTACT_PRO_DATA_BITTIMING; /* request data bit timings */ return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, request, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, dev->channel, 0, &dbt, sizeof(dbt), 1000, GFP_KERNEL); } static void gs_usb_xmit_callback(struct urb *urb) { struct gs_tx_context *txc = urb->context; struct gs_can *dev = txc->dev; struct net_device *netdev = dev->netdev; if (urb->status) netdev_info(netdev, "usb xmit fail %u\n", txc->echo_id); } static netdev_tx_t gs_can_start_xmit(struct sk_buff *skb, struct net_device *netdev) { struct gs_can *dev = netdev_priv(netdev); struct net_device_stats *stats = &dev->netdev->stats; struct urb *urb; struct gs_host_frame *hf; struct can_frame *cf; struct canfd_frame *cfd; int rc; unsigned int idx; struct gs_tx_context *txc; if (can_dropped_invalid_skb(netdev, skb)) return NETDEV_TX_OK; /* find an empty context to keep track of transmission */ txc = gs_alloc_tx_context(dev); if (!txc) return NETDEV_TX_BUSY; /* create a URB, and a buffer for it */ urb = usb_alloc_urb(0, GFP_ATOMIC); if (!urb) goto nomem_urb; hf = kmalloc(dev->hf_size_tx, GFP_ATOMIC); if (!hf) { netdev_err(netdev, "No memory left for USB buffer\n"); goto nomem_hf; } idx = txc->echo_id; if (idx >= GS_MAX_TX_URBS) { netdev_err(netdev, "Invalid tx context %u\n", idx); goto badidx; } hf->echo_id = idx; hf->channel = dev->channel; hf->flags = 0; hf->reserved = 0; if (can_is_canfd_skb(skb)) { cfd = (struct canfd_frame *)skb->data; hf->can_id = cpu_to_le32(cfd->can_id); hf->can_dlc = can_fd_len2dlc(cfd->len); hf->flags |= GS_CAN_FLAG_FD; if (cfd->flags & CANFD_BRS) hf->flags |= GS_CAN_FLAG_BRS; if (cfd->flags & CANFD_ESI) hf->flags |= GS_CAN_FLAG_ESI; memcpy(hf->canfd->data, cfd->data, cfd->len); } else { cf = (struct can_frame *)skb->data; hf->can_id = cpu_to_le32(cf->can_id); hf->can_dlc = can_get_cc_dlc(cf, dev->can.ctrlmode); memcpy(hf->classic_can->data, cf->data, cf->len); } usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, GS_USB_ENDPOINT_OUT), hf, dev->hf_size_tx, gs_usb_xmit_callback, txc); urb->transfer_flags |= URB_FREE_BUFFER; usb_anchor_urb(urb, &dev->tx_submitted); can_put_echo_skb(skb, netdev, idx, 0); atomic_inc(&dev->active_tx_urbs); rc = usb_submit_urb(urb, GFP_ATOMIC); if (unlikely(rc)) { /* usb send failed */ atomic_dec(&dev->active_tx_urbs); can_free_echo_skb(netdev, idx, NULL); gs_free_tx_context(txc); usb_unanchor_urb(urb); if (rc == -ENODEV) { netif_device_detach(netdev); } else { netdev_err(netdev, "usb_submit failed (err=%d)\n", rc); stats->tx_dropped++; } } else { /* Slow down tx path */ if (atomic_read(&dev->active_tx_urbs) >= GS_MAX_TX_URBS) netif_stop_queue(netdev); } /* let usb core take care of this urb */ usb_free_urb(urb); return NETDEV_TX_OK; badidx: kfree(hf); nomem_hf: usb_free_urb(urb); nomem_urb: gs_free_tx_context(txc); dev_kfree_skb(skb); stats->tx_dropped++; return NETDEV_TX_OK; } static int gs_can_open(struct net_device *netdev) { struct gs_can *dev = netdev_priv(netdev); struct gs_usb *parent = dev->parent; struct gs_device_mode dm = { .mode = cpu_to_le32(GS_CAN_MODE_START), }; struct gs_host_frame *hf; u32 ctrlmode; u32 flags = 0; int rc, i; rc = open_candev(netdev); if (rc) return rc; ctrlmode = dev->can.ctrlmode; if (ctrlmode & CAN_CTRLMODE_FD) { flags |= GS_CAN_MODE_FD; if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) dev->hf_size_tx = struct_size(hf, canfd_quirk, 1); else dev->hf_size_tx = struct_size(hf, canfd, 1); } else { if (dev->feature & GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX) dev->hf_size_tx = struct_size(hf, classic_can_quirk, 1); else dev->hf_size_tx = struct_size(hf, classic_can, 1); } if (!parent->active_channels) { for (i = 0; i < GS_MAX_RX_URBS; i++) { struct urb *urb; u8 *buf; /* alloc rx urb */ urb = usb_alloc_urb(0, GFP_KERNEL); if (!urb) return -ENOMEM; /* alloc rx buffer */ buf = kmalloc(dev->parent->hf_size_rx, GFP_KERNEL); if (!buf) { netdev_err(netdev, "No memory left for USB buffer\n"); usb_free_urb(urb); return -ENOMEM; } /* fill, anchor, and submit rx urb */ usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, GS_USB_ENDPOINT_IN), buf, dev->parent->hf_size_rx, gs_usb_receive_bulk_callback, parent); urb->transfer_flags |= URB_FREE_BUFFER; usb_anchor_urb(urb, &parent->rx_submitted); rc = usb_submit_urb(urb, GFP_KERNEL); if (rc) { if (rc == -ENODEV) netif_device_detach(dev->netdev); netdev_err(netdev, "usb_submit failed (err=%d)\n", rc); usb_unanchor_urb(urb); usb_free_urb(urb); break; } /* Drop reference, * USB core will take care of freeing it */ usb_free_urb(urb); } } /* flags */ if (ctrlmode & CAN_CTRLMODE_LOOPBACK) flags |= GS_CAN_MODE_LOOP_BACK; else if (ctrlmode & CAN_CTRLMODE_LISTENONLY) flags |= GS_CAN_MODE_LISTEN_ONLY; /* Controller is not allowed to retry TX * this mode is unavailable on atmels uc3c hardware */ if (ctrlmode & CAN_CTRLMODE_ONE_SHOT) flags |= GS_CAN_MODE_ONE_SHOT; if (ctrlmode & CAN_CTRLMODE_3_SAMPLES) flags |= GS_CAN_MODE_TRIPLE_SAMPLE; /* if hardware supports timestamps, enable it */ if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) flags |= GS_CAN_MODE_HW_TIMESTAMP; /* start polling timestamp */ if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) gs_usb_timestamp_init(dev); /* finally start device */ dev->can.state = CAN_STATE_ERROR_ACTIVE; dm.flags = cpu_to_le32(flags); rc = usb_control_msg_send(interface_to_usbdev(dev->iface), 0, GS_USB_BREQ_MODE, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, dev->channel, 0, &dm, sizeof(dm), 1000, GFP_KERNEL); if (rc) { netdev_err(netdev, "Couldn't start device (err=%d)\n", rc); if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) gs_usb_timestamp_stop(dev); dev->can.state = CAN_STATE_STOPPED; return rc; } parent->active_channels++; if (!(dev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY)) netif_start_queue(netdev); return 0; } static int gs_can_close(struct net_device *netdev) { int rc; struct gs_can *dev = netdev_priv(netdev); struct gs_usb *parent = dev->parent; netif_stop_queue(netdev); /* stop polling timestamp */ if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) gs_usb_timestamp_stop(dev); /* Stop polling */ parent->active_channels--; if (!parent->active_channels) { usb_kill_anchored_urbs(&parent->rx_submitted); } /* Stop sending URBs */ usb_kill_anchored_urbs(&dev->tx_submitted); atomic_set(&dev->active_tx_urbs, 0); /* reset the device */ rc = gs_cmd_reset(dev); if (rc < 0) netdev_warn(netdev, "Couldn't shutdown device (err=%d)", rc); /* reset tx contexts */ for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { dev->tx_context[rc].dev = dev; dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; } /* close the netdev */ close_candev(netdev); return 0; } static int gs_can_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { const struct gs_can *dev = netdev_priv(netdev); if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) return can_eth_ioctl_hwts(netdev, ifr, cmd); return -EOPNOTSUPP; } static const struct net_device_ops gs_usb_netdev_ops = { .ndo_open = gs_can_open, .ndo_stop = gs_can_close, .ndo_start_xmit = gs_can_start_xmit, .ndo_change_mtu = can_change_mtu, .ndo_eth_ioctl = gs_can_eth_ioctl, }; static int gs_usb_set_identify(struct net_device *netdev, bool do_identify) { struct gs_can *dev = netdev_priv(netdev); struct gs_identify_mode imode; if (do_identify) imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_ON); else imode.mode = cpu_to_le32(GS_CAN_IDENTIFY_OFF); return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, GS_USB_BREQ_IDENTIFY, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, dev->channel, 0, &imode, sizeof(imode), 100, GFP_KERNEL); } /* blink LED's for finding the this interface */ static int gs_usb_set_phys_id(struct net_device *netdev, enum ethtool_phys_id_state state) { const struct gs_can *dev = netdev_priv(netdev); int rc = 0; if (!(dev->feature & GS_CAN_FEATURE_IDENTIFY)) return -EOPNOTSUPP; switch (state) { case ETHTOOL_ID_ACTIVE: rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_ON); break; case ETHTOOL_ID_INACTIVE: rc = gs_usb_set_identify(netdev, GS_CAN_IDENTIFY_OFF); break; default: break; } return rc; } static int gs_usb_get_ts_info(struct net_device *netdev, struct ethtool_ts_info *info) { struct gs_can *dev = netdev_priv(netdev); /* report if device supports HW timestamps */ if (dev->feature & GS_CAN_FEATURE_HW_TIMESTAMP) return can_ethtool_op_get_ts_info_hwts(netdev, info); return ethtool_op_get_ts_info(netdev, info); } static const struct ethtool_ops gs_usb_ethtool_ops = { .set_phys_id = gs_usb_set_phys_id, .get_ts_info = gs_usb_get_ts_info, }; static int gs_usb_get_termination(struct net_device *netdev, u16 *term) { struct gs_can *dev = netdev_priv(netdev); struct gs_device_termination_state term_state; int rc; rc = usb_control_msg_recv(interface_to_usbdev(dev->iface), 0, GS_USB_BREQ_GET_TERMINATION, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, dev->channel, 0, &term_state, sizeof(term_state), 1000, GFP_KERNEL); if (rc) return rc; if (term_state.state == cpu_to_le32(GS_CAN_TERMINATION_STATE_ON)) *term = GS_USB_TERMINATION_ENABLED; else *term = GS_USB_TERMINATION_DISABLED; return 0; } static int gs_usb_set_termination(struct net_device *netdev, u16 term) { struct gs_can *dev = netdev_priv(netdev); struct gs_device_termination_state term_state; if (term == GS_USB_TERMINATION_ENABLED) term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_ON); else term_state.state = cpu_to_le32(GS_CAN_TERMINATION_STATE_OFF); return usb_control_msg_send(interface_to_usbdev(dev->iface), 0, GS_USB_BREQ_SET_TERMINATION, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, dev->channel, 0, &term_state, sizeof(term_state), 1000, GFP_KERNEL); } static const u16 gs_usb_termination_const[] = { GS_USB_TERMINATION_DISABLED, GS_USB_TERMINATION_ENABLED }; static struct gs_can *gs_make_candev(unsigned int channel, struct usb_interface *intf, struct gs_device_config *dconf) { struct gs_can *dev; struct net_device *netdev; int rc; struct gs_device_bt_const_extended bt_const_extended; struct gs_device_bt_const bt_const; u32 feature; /* fetch bit timing constants */ rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, GS_USB_BREQ_BT_CONST, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, channel, 0, &bt_const, sizeof(bt_const), 1000, GFP_KERNEL); if (rc) { dev_err(&intf->dev, "Couldn't get bit timing const for channel %d (%pe)\n", channel, ERR_PTR(rc)); return ERR_PTR(rc); } /* create netdev */ netdev = alloc_candev(sizeof(struct gs_can), GS_MAX_TX_URBS); if (!netdev) { dev_err(&intf->dev, "Couldn't allocate candev\n"); return ERR_PTR(-ENOMEM); } dev = netdev_priv(netdev); netdev->netdev_ops = &gs_usb_netdev_ops; netdev->ethtool_ops = &gs_usb_ethtool_ops; netdev->flags |= IFF_ECHO; /* we support full roundtrip echo */ /* dev setup */ strcpy(dev->bt_const.name, KBUILD_MODNAME); dev->bt_const.tseg1_min = le32_to_cpu(bt_const.tseg1_min); dev->bt_const.tseg1_max = le32_to_cpu(bt_const.tseg1_max); dev->bt_const.tseg2_min = le32_to_cpu(bt_const.tseg2_min); dev->bt_const.tseg2_max = le32_to_cpu(bt_const.tseg2_max); dev->bt_const.sjw_max = le32_to_cpu(bt_const.sjw_max); dev->bt_const.brp_min = le32_to_cpu(bt_const.brp_min); dev->bt_const.brp_max = le32_to_cpu(bt_const.brp_max); dev->bt_const.brp_inc = le32_to_cpu(bt_const.brp_inc); dev->udev = interface_to_usbdev(intf); dev->iface = intf; dev->netdev = netdev; dev->channel = channel; init_usb_anchor(&dev->tx_submitted); atomic_set(&dev->active_tx_urbs, 0); spin_lock_init(&dev->tx_ctx_lock); for (rc = 0; rc < GS_MAX_TX_URBS; rc++) { dev->tx_context[rc].dev = dev; dev->tx_context[rc].echo_id = GS_MAX_TX_URBS; } /* can setup */ dev->can.state = CAN_STATE_STOPPED; dev->can.clock.freq = le32_to_cpu(bt_const.fclk_can); dev->can.bittiming_const = &dev->bt_const; dev->can.do_set_bittiming = gs_usb_set_bittiming; dev->can.ctrlmode_supported = CAN_CTRLMODE_CC_LEN8_DLC; feature = le32_to_cpu(bt_const.feature); dev->feature = FIELD_GET(GS_CAN_FEATURE_MASK, feature); if (feature & GS_CAN_FEATURE_LISTEN_ONLY) dev->can.ctrlmode_supported |= CAN_CTRLMODE_LISTENONLY; if (feature & GS_CAN_FEATURE_LOOP_BACK) dev->can.ctrlmode_supported |= CAN_CTRLMODE_LOOPBACK; if (feature & GS_CAN_FEATURE_TRIPLE_SAMPLE) dev->can.ctrlmode_supported |= CAN_CTRLMODE_3_SAMPLES; if (feature & GS_CAN_FEATURE_ONE_SHOT) dev->can.ctrlmode_supported |= CAN_CTRLMODE_ONE_SHOT; if (feature & GS_CAN_FEATURE_FD) { dev->can.ctrlmode_supported |= CAN_CTRLMODE_FD; /* The data bit timing will be overwritten, if * GS_CAN_FEATURE_BT_CONST_EXT is set. */ dev->can.data_bittiming_const = &dev->bt_const; dev->can.do_set_data_bittiming = gs_usb_set_data_bittiming; } if (feature & GS_CAN_FEATURE_TERMINATION) { rc = gs_usb_get_termination(netdev, &dev->can.termination); if (rc) { dev->feature &= ~GS_CAN_FEATURE_TERMINATION; dev_info(&intf->dev, "Disabling termination support for channel %d (%pe)\n", channel, ERR_PTR(rc)); } else { dev->can.termination_const = gs_usb_termination_const; dev->can.termination_const_cnt = ARRAY_SIZE(gs_usb_termination_const); dev->can.do_set_termination = gs_usb_set_termination; } } /* The CANtact Pro from LinkLayer Labs is based on the * LPC54616 µC, which is affected by the NXP LPC USB transfer * erratum. However, the current firmware (version 2) doesn't * set the GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX bit. Set the * feature GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX to workaround * this issue. * * For the GS_USB_BREQ_DATA_BITTIMING USB control message the * CANtact Pro firmware uses a request value, which is already * used by the candleLight firmware for a different purpose * (GS_USB_BREQ_GET_USER_ID). Set the feature * GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO to workaround this * issue. */ if (dev->udev->descriptor.idVendor == cpu_to_le16(USB_GS_USB_1_VENDOR_ID) && dev->udev->descriptor.idProduct == cpu_to_le16(USB_GS_USB_1_PRODUCT_ID) && dev->udev->manufacturer && dev->udev->product && !strcmp(dev->udev->manufacturer, "LinkLayer Labs") && !strcmp(dev->udev->product, "CANtact Pro") && (le32_to_cpu(dconf->sw_version) <= 2)) dev->feature |= GS_CAN_FEATURE_REQ_USB_QUIRK_LPC546XX | GS_CAN_FEATURE_QUIRK_BREQ_CANTACT_PRO; /* GS_CAN_FEATURE_IDENTIFY is only supported for sw_version > 1 */ if (!(le32_to_cpu(dconf->sw_version) > 1 && feature & GS_CAN_FEATURE_IDENTIFY)) dev->feature &= ~GS_CAN_FEATURE_IDENTIFY; /* fetch extended bit timing constants if device has feature * GS_CAN_FEATURE_FD and GS_CAN_FEATURE_BT_CONST_EXT */ if (feature & GS_CAN_FEATURE_FD && feature & GS_CAN_FEATURE_BT_CONST_EXT) { rc = usb_control_msg_recv(interface_to_usbdev(intf), 0, GS_USB_BREQ_BT_CONST_EXT, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, channel, 0, &bt_const_extended, sizeof(bt_const_extended), 1000, GFP_KERNEL); if (rc) { dev_err(&intf->dev, "Couldn't get extended bit timing const for channel %d (%pe)\n", channel, ERR_PTR(rc)); goto out_free_candev; } strcpy(dev->data_bt_const.name, KBUILD_MODNAME); dev->data_bt_const.tseg1_min = le32_to_cpu(bt_const_extended.dtseg1_min); dev->data_bt_const.tseg1_max = le32_to_cpu(bt_const_extended.dtseg1_max); dev->data_bt_const.tseg2_min = le32_to_cpu(bt_const_extended.dtseg2_min); dev->data_bt_const.tseg2_max = le32_to_cpu(bt_const_extended.dtseg2_max); dev->data_bt_const.sjw_max = le32_to_cpu(bt_const_extended.dsjw_max); dev->data_bt_const.brp_min = le32_to_cpu(bt_const_extended.dbrp_min); dev->data_bt_const.brp_max = le32_to_cpu(bt_const_extended.dbrp_max); dev->data_bt_const.brp_inc = le32_to_cpu(bt_const_extended.dbrp_inc); dev->can.data_bittiming_const = &dev->data_bt_const; } SET_NETDEV_DEV(netdev, &intf->dev); rc = register_candev(dev->netdev); if (rc) { dev_err(&intf->dev, "Couldn't register candev for channel %d (%pe)\n", channel, ERR_PTR(rc)); goto out_free_candev; } return dev; out_free_candev: free_candev(dev->netdev); return ERR_PTR(rc); } static void gs_destroy_candev(struct gs_can *dev) { unregister_candev(dev->netdev); usb_kill_anchored_urbs(&dev->tx_submitted); free_candev(dev->netdev); } static int gs_usb_probe(struct usb_interface *intf, const struct usb_device_id *id) { struct usb_device *udev = interface_to_usbdev(intf); struct gs_host_frame *hf; struct gs_usb *dev; struct gs_host_config hconf = { .byte_order = cpu_to_le32(0x0000beef), }; struct gs_device_config dconf; unsigned int icount, i; int rc; /* send host config */ rc = usb_control_msg_send(udev, 0, GS_USB_BREQ_HOST_FORMAT, USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1, intf->cur_altsetting->desc.bInterfaceNumber, &hconf, sizeof(hconf), 1000, GFP_KERNEL); if (rc) { dev_err(&intf->dev, "Couldn't send data format (err=%d)\n", rc); return rc; } /* read device config */ rc = usb_control_msg_recv(udev, 0, GS_USB_BREQ_DEVICE_CONFIG, USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_INTERFACE, 1, intf->cur_altsetting->desc.bInterfaceNumber, &dconf, sizeof(dconf), 1000, GFP_KERNEL); if (rc) { dev_err(&intf->dev, "Couldn't get device config: (err=%d)\n", rc); return rc; } icount = dconf.icount + 1; dev_info(&intf->dev, "Configuring for %u interfaces\n", icount); if (icount > GS_MAX_INTF) { dev_err(&intf->dev, "Driver cannot handle more that %u CAN interfaces\n", GS_MAX_INTF); return -EINVAL; } dev = kzalloc(sizeof(*dev), GFP_KERNEL); if (!dev) return -ENOMEM; init_usb_anchor(&dev->rx_submitted); usb_set_intfdata(intf, dev); dev->udev = udev; for (i = 0; i < icount; i++) { unsigned int hf_size_rx = 0; dev->canch[i] = gs_make_candev(i, intf, &dconf); if (IS_ERR_OR_NULL(dev->canch[i])) { /* save error code to return later */ rc = PTR_ERR(dev->canch[i]); /* on failure destroy previously created candevs */ icount = i; for (i = 0; i < icount; i++) gs_destroy_candev(dev->canch[i]); usb_kill_anchored_urbs(&dev->rx_submitted); kfree(dev); return rc; } dev->canch[i]->parent = dev; /* set RX packet size based on FD and if hardware * timestamps are supported. */ if (dev->canch[i]->can.ctrlmode_supported & CAN_CTRLMODE_FD) { if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) hf_size_rx = struct_size(hf, canfd_ts, 1); else hf_size_rx = struct_size(hf, canfd, 1); } else { if (dev->canch[i]->feature & GS_CAN_FEATURE_HW_TIMESTAMP) hf_size_rx = struct_size(hf, classic_can_ts, 1); else hf_size_rx = struct_size(hf, classic_can, 1); } dev->hf_size_rx = max(dev->hf_size_rx, hf_size_rx); } return 0; } static void gs_usb_disconnect(struct usb_interface *intf) { struct gs_usb *dev = usb_get_intfdata(intf); unsigned int i; usb_set_intfdata(intf, NULL); if (!dev) { dev_err(&intf->dev, "Disconnect (nodata)\n"); return; } for (i = 0; i < GS_MAX_INTF; i++) if (dev->canch[i]) gs_destroy_candev(dev->canch[i]); usb_kill_anchored_urbs(&dev->rx_submitted); kfree(dev); } static const struct usb_device_id gs_usb_table[] = { { USB_DEVICE_INTERFACE_NUMBER(USB_GS_USB_1_VENDOR_ID, USB_GS_USB_1_PRODUCT_ID, 0) }, { USB_DEVICE_INTERFACE_NUMBER(USB_CANDLELIGHT_VENDOR_ID, USB_CANDLELIGHT_PRODUCT_ID, 0) }, { USB_DEVICE_INTERFACE_NUMBER(USB_CES_CANEXT_FD_VENDOR_ID, USB_CES_CANEXT_FD_PRODUCT_ID, 0) }, { USB_DEVICE_INTERFACE_NUMBER(USB_ABE_CANDEBUGGER_FD_VENDOR_ID, USB_ABE_CANDEBUGGER_FD_PRODUCT_ID, 0) }, {} /* Terminating entry */ }; MODULE_DEVICE_TABLE(usb, gs_usb_table); static struct usb_driver gs_usb_driver = { .name = KBUILD_MODNAME, .probe = gs_usb_probe, .disconnect = gs_usb_disconnect, .id_table = gs_usb_table, }; module_usb_driver(gs_usb_driver); MODULE_AUTHOR("Maximilian Schneider "); MODULE_DESCRIPTION( "Socket CAN device driver for Geschwister Schneider Technologie-, " "Entwicklungs- und Vertriebs UG. USB2.0 to CAN interfaces\n" "and bytewerk.org candleLight USB CAN interfaces."); MODULE_LICENSE("GPL v2");