/* * Copyright (c) 2005-2008 Chelsio, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "common.h" #include "regs.h" enum { AEL100X_TX_CONFIG1 = 0xc002, AEL1002_PWR_DOWN_HI = 0xc011, AEL1002_PWR_DOWN_LO = 0xc012, AEL1002_XFI_EQL = 0xc015, AEL1002_LB_EN = 0xc017, AEL_OPT_SETTINGS = 0xc017, AEL_I2C_CTRL = 0xc30a, AEL_I2C_DATA = 0xc30b, AEL_I2C_STAT = 0xc30c, AEL2005_GPIO_CTRL = 0xc214, AEL2005_GPIO_STAT = 0xc215, AEL2020_GPIO_INTR = 0xc103, /* Latch High (LH) */ AEL2020_GPIO_CTRL = 0xc108, /* Store Clear (SC) */ AEL2020_GPIO_STAT = 0xc10c, /* Read Only (RO) */ AEL2020_GPIO_CFG = 0xc110, /* Read Write (RW) */ AEL2020_GPIO_SDA = 0, /* IN: i2c serial data */ AEL2020_GPIO_MODDET = 1, /* IN: Module Detect */ AEL2020_GPIO_0 = 3, /* IN: unassigned */ AEL2020_GPIO_1 = 2, /* OUT: unassigned */ AEL2020_GPIO_LSTAT = AEL2020_GPIO_1, /* wired to link status LED */ }; enum { edc_none, edc_sr, edc_twinax }; /* PHY module I2C device address */ enum { MODULE_DEV_ADDR = 0xa0, SFF_DEV_ADDR = 0xa2, }; /* PHY transceiver type */ enum { phy_transtype_unknown = 0, phy_transtype_sfp = 3, phy_transtype_xfp = 6, }; #define AEL2005_MODDET_IRQ 4 struct reg_val { unsigned short mmd_addr; unsigned short reg_addr; unsigned short clear_bits; unsigned short set_bits; }; static int set_phy_regs(struct cphy *phy, const struct reg_val *rv) { int err; for (err = 0; rv->mmd_addr && !err; rv++) { if (rv->clear_bits == 0xffff) err = t3_mdio_write(phy, rv->mmd_addr, rv->reg_addr, rv->set_bits); else err = t3_mdio_change_bits(phy, rv->mmd_addr, rv->reg_addr, rv->clear_bits, rv->set_bits); } return err; } static void ael100x_txon(struct cphy *phy) { int tx_on_gpio = phy->mdio.prtad == 0 ? F_GPIO7_OUT_VAL : F_GPIO2_OUT_VAL; msleep(100); t3_set_reg_field(phy->adapter, A_T3DBG_GPIO_EN, 0, tx_on_gpio); msleep(30); } /* * Read an 8-bit word from a device attached to the PHY's i2c bus. */ static int ael_i2c_rd(struct cphy *phy, int dev_addr, int word_addr) { int i, err; unsigned int stat, data; err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL_I2C_CTRL, (dev_addr << 8) | (1 << 8) | word_addr); if (err) return err; for (i = 0; i < 200; i++) { msleep(1); err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_STAT, &stat); if (err) return err; if ((stat & 3) == 1) { err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL_I2C_DATA, &data); if (err) return err; return data >> 8; } } CH_WARN(phy->adapter, "PHY %u i2c read of dev.addr %#x.%#x timed out\n", phy->mdio.prtad, dev_addr, word_addr); return -ETIMEDOUT; } static int ael1002_power_down(struct cphy *phy, int enable) { int err; err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, MDIO_PMA_TXDIS, !!enable); if (!err) err = mdio_set_flag(&phy->mdio, phy->mdio.prtad, MDIO_MMD_PMAPMD, MDIO_CTRL1, MDIO_CTRL1_LPOWER, enable); return err; } static int ael1002_reset(struct cphy *phy, int wait) { int err; if ((err = ael1002_power_down(phy, 0)) || (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL100X_TX_CONFIG1, 1)) || (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_HI, 0)) || (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_PWR_DOWN_LO, 0)) || (err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL1002_XFI_EQL, 0x18)) || (err = t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL1002_LB_EN, 0, 1 << 5))) return err; return 0; } static int ael1002_intr_noop(struct cphy *phy) { return 0; } /* * Get link status for a 10GBASE-R device. */ static int get_link_status_r(struct cphy *phy, int *link_ok, int *speed, int *duplex, int *fc) { if (link_ok) { unsigned int stat0, stat1, stat2; int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_RXDET, &stat0); if (!err) err = t3_mdio_read(phy, MDIO_MMD_PCS, MDIO_PCS_10GBRT_STAT1, &stat1); if (!err) err = t3_mdio_read(phy, MDIO_MMD_PHYXS, MDIO_PHYXS_LNSTAT, &stat2); if (err) return err; *link_ok = (stat0 & stat1 & (stat2 >> 12)) & 1; } if (speed) *speed = SPEED_10000; if (duplex) *duplex = DUPLEX_FULL; return 0; } static struct cphy_ops ael1002_ops = { .reset = ael1002_reset, .intr_enable = ael1002_intr_noop, .intr_disable = ael1002_intr_noop, .intr_clear = ael1002_intr_noop, .intr_handler = ael1002_intr_noop, .get_link_status = get_link_status_r, .power_down = ael1002_power_down, .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS, }; int t3_ael1002_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr, const struct mdio_ops *mdio_ops) { cphy_init(phy, adapter, phy_addr, &ael1002_ops, mdio_ops, SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE, "10GBASE-R"); ael100x_txon(phy); return 0; } static int ael1006_reset(struct cphy *phy, int wait) { return t3_phy_reset(phy, MDIO_MMD_PMAPMD, wait); } static struct cphy_ops ael1006_ops = { .reset = ael1006_reset, .intr_enable = t3_phy_lasi_intr_enable, .intr_disable = t3_phy_lasi_intr_disable, .intr_clear = t3_phy_lasi_intr_clear, .intr_handler = t3_phy_lasi_intr_handler, .get_link_status = get_link_status_r, .power_down = ael1002_power_down, .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS, }; int t3_ael1006_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr, const struct mdio_ops *mdio_ops) { cphy_init(phy, adapter, phy_addr, &ael1006_ops, mdio_ops, SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE, "10GBASE-SR"); ael100x_txon(phy); return 0; } /* * Decode our module type. */ static int ael2xxx_get_module_type(struct cphy *phy, int delay_ms) { int v; if (delay_ms) msleep(delay_ms); /* see SFF-8472 for below */ v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 3); if (v < 0) return v; if (v == 0x10) return phy_modtype_sr; if (v == 0x20) return phy_modtype_lr; if (v == 0x40) return phy_modtype_lrm; v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 6); if (v < 0) return v; if (v != 4) goto unknown; v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 10); if (v < 0) return v; if (v & 0x80) { v = ael_i2c_rd(phy, MODULE_DEV_ADDR, 0x12); if (v < 0) return v; return v > 10 ? phy_modtype_twinax_long : phy_modtype_twinax; } unknown: return phy_modtype_unknown; } /* * Code to support the Aeluros/NetLogic 2005 10Gb PHY. */ static int ael2005_setup_sr_edc(struct cphy *phy) { static struct reg_val regs[] = { { MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x181 }, { MDIO_MMD_PMAPMD, 0xc010, 0xffff, 0x448a }, { MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5200 }, { 0, 0, 0, 0 } }; int i, err; err = set_phy_regs(phy, regs); if (err) return err; msleep(50); if (phy->priv != edc_sr) err = t3_get_edc_fw(phy, EDC_OPT_AEL2005, EDC_OPT_AEL2005_SIZE); if (err) return err; for (i = 0; i < EDC_OPT_AEL2005_SIZE / sizeof(u16) && !err; i += 2) err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, phy->phy_cache[i], phy->phy_cache[i + 1]); if (!err) phy->priv = edc_sr; return err; } static int ael2005_setup_twinax_edc(struct cphy *phy, int modtype) { static struct reg_val regs[] = { { MDIO_MMD_PMAPMD, 0xc04a, 0xffff, 0x5a00 }, { 0, 0, 0, 0 } }; static struct reg_val preemphasis[] = { { MDIO_MMD_PMAPMD, 0xc014, 0xffff, 0xfe16 }, { MDIO_MMD_PMAPMD, 0xc015, 0xffff, 0xa000 }, { 0, 0, 0, 0 } }; int i, err; err = set_phy_regs(phy, regs); if (!err && modtype == phy_modtype_twinax_long) err = set_phy_regs(phy, preemphasis); if (err) return err; msleep(50); if (phy->priv != edc_twinax) err = t3_get_edc_fw(phy, EDC_TWX_AEL2005, EDC_TWX_AEL2005_SIZE); if (err) return err; for (i = 0; i < EDC_TWX_AEL2005_SIZE / sizeof(u16) && !err; i += 2) err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, phy->phy_cache[i], phy->phy_cache[i + 1]); if (!err) phy->priv = edc_twinax; return err; } static int ael2005_get_module_type(struct cphy *phy, int delay_ms) { int v; unsigned int stat; v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, &stat); if (v) return v; if (stat & (1 << 8)) /* module absent */ return phy_modtype_none; return ael2xxx_get_module_type(phy, delay_ms); } static int ael2005_intr_enable(struct cphy *phy) { int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x200); return err ? err : t3_phy_lasi_intr_enable(phy); } static int ael2005_intr_disable(struct cphy *phy) { int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0x100); return err ? err : t3_phy_lasi_intr_disable(phy); } static int ael2005_intr_clear(struct cphy *phy) { int err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0xd00); return err ? err : t3_phy_lasi_intr_clear(phy); } static int ael2005_reset(struct cphy *phy, int wait) { static struct reg_val regs0[] = { { MDIO_MMD_PMAPMD, 0xc001, 0, 1 << 5 }, { MDIO_MMD_PMAPMD, 0xc017, 0, 1 << 5 }, { MDIO_MMD_PMAPMD, 0xc013, 0xffff, 0xf341 }, { MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 }, { MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8100 }, { MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0x8000 }, { MDIO_MMD_PMAPMD, 0xc210, 0xffff, 0 }, { 0, 0, 0, 0 } }; static struct reg_val regs1[] = { { MDIO_MMD_PMAPMD, 0xca00, 0xffff, 0x0080 }, { MDIO_MMD_PMAPMD, 0xca12, 0xffff, 0 }, { 0, 0, 0, 0 } }; int err; unsigned int lasi_ctrl; err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, &lasi_ctrl); if (err) return err; err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 0); if (err) return err; msleep(125); phy->priv = edc_none; err = set_phy_regs(phy, regs0); if (err) return err; msleep(50); err = ael2005_get_module_type(phy, 0); if (err < 0) return err; phy->modtype = err; if (err == phy_modtype_twinax || err == phy_modtype_twinax_long) err = ael2005_setup_twinax_edc(phy, err); else err = ael2005_setup_sr_edc(phy); if (err) return err; err = set_phy_regs(phy, regs1); if (err) return err; /* reset wipes out interrupts, reenable them if they were on */ if (lasi_ctrl & 1) err = ael2005_intr_enable(phy); return err; } static int ael2005_intr_handler(struct cphy *phy) { unsigned int stat; int ret, edc_needed, cause = 0; ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_STAT, &stat); if (ret) return ret; if (stat & AEL2005_MODDET_IRQ) { ret = t3_mdio_write(phy, MDIO_MMD_PMAPMD, AEL2005_GPIO_CTRL, 0xd00); if (ret) return ret; /* modules have max 300 ms init time after hot plug */ ret = ael2005_get_module_type(phy, 300); if (ret < 0) return ret; phy->modtype = ret; if (ret == phy_modtype_none) edc_needed = phy->priv; /* on unplug retain EDC */ else if (ret == phy_modtype_twinax || ret == phy_modtype_twinax_long) edc_needed = edc_twinax; else edc_needed = edc_sr; if (edc_needed != phy->priv) { ret = ael2005_reset(phy, 0); return ret ? ret : cphy_cause_module_change; } cause = cphy_cause_module_change; } ret = t3_phy_lasi_intr_handler(phy); if (ret < 0) return ret; ret |= cause; return ret ? ret : cphy_cause_link_change; } static struct cphy_ops ael2005_ops = { .reset = ael2005_reset, .intr_enable = ael2005_intr_enable, .intr_disable = ael2005_intr_disable, .intr_clear = ael2005_intr_clear, .intr_handler = ael2005_intr_handler, .get_link_status = get_link_status_r, .power_down = ael1002_power_down, .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS, }; int t3_ael2005_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr, const struct mdio_ops *mdio_ops) { cphy_init(phy, adapter, phy_addr, &ael2005_ops, mdio_ops, SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE | SUPPORTED_IRQ, "10GBASE-R"); msleep(125); return t3_mdio_change_bits(phy, MDIO_MMD_PMAPMD, AEL_OPT_SETTINGS, 0, 1 << 5); } /* * Setup EDC and other parameters for operation with an optical module. */ static int ael2020_setup_sr_edc(struct cphy *phy) { static struct reg_val regs[] = { /* set CDR offset to 10 */ { MDIO_MMD_PMAPMD, 0xcc01, 0xffff, 0x488a }, /* adjust 10G RX bias current */ { MDIO_MMD_PMAPMD, 0xcb1b, 0xffff, 0x0200 }, { MDIO_MMD_PMAPMD, 0xcb1c, 0xffff, 0x00f0 }, { MDIO_MMD_PMAPMD, 0xcc06, 0xffff, 0x00e0 }, /* end */ { 0, 0, 0, 0 } }; int err; err = set_phy_regs(phy, regs); msleep(50); if (err) return err; phy->priv = edc_sr; return 0; } /* * Setup EDC and other parameters for operation with an TWINAX module. */ static int ael2020_setup_twinax_edc(struct cphy *phy, int modtype) { /* set uC to 40MHz */ static struct reg_val uCclock40MHz[] = { { MDIO_MMD_PMAPMD, 0xff28, 0xffff, 0x4001 }, { MDIO_MMD_PMAPMD, 0xff2a, 0xffff, 0x0002 }, { 0, 0, 0, 0 } }; /* activate uC clock */ static struct reg_val uCclockActivate[] = { { MDIO_MMD_PMAPMD, 0xd000, 0xffff, 0x5200 }, { 0, 0, 0, 0 } }; /* set PC to start of SRAM and activate uC */ static struct reg_val uCactivate[] = { { MDIO_MMD_PMAPMD, 0xd080, 0xffff, 0x0100 }, { MDIO_MMD_PMAPMD, 0xd092, 0xffff, 0x0000 }, { 0, 0, 0, 0 } }; int i, err; /* set uC clock and activate it */ err = set_phy_regs(phy, uCclock40MHz); msleep(500); if (err) return err; err = set_phy_regs(phy, uCclockActivate); msleep(500); if (err) return err; if (phy->priv != edc_twinax) err = t3_get_edc_fw(phy, EDC_TWX_AEL2020, EDC_TWX_AEL2020_SIZE); if (err) return err; for (i = 0; i < EDC_TWX_AEL2020_SIZE / sizeof(u16) && !err; i += 2) err = t3_mdio_write(phy, MDIO_MMD_PMAPMD, phy->phy_cache[i], phy->phy_cache[i + 1]); /* activate uC */ err = set_phy_regs(phy, uCactivate); if (!err) phy->priv = edc_twinax; return err; } /* * Return Module Type. */ static int ael2020_get_module_type(struct cphy *phy, int delay_ms) { int v; unsigned int stat; v = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_STAT, &stat); if (v) return v; if (stat & (0x1 << (AEL2020_GPIO_MODDET*4))) { /* module absent */ return phy_modtype_none; } return ael2xxx_get_module_type(phy, delay_ms); } /* * Enable PHY interrupts. We enable "Module Detection" interrupts (on any * state transition) and then generic Link Alarm Status Interrupt (LASI). */ static int ael2020_intr_enable(struct cphy *phy) { struct reg_val regs[] = { /* output Module's Loss Of Signal (LOS) to LED */ { MDIO_MMD_PMAPMD, AEL2020_GPIO_CFG+AEL2020_GPIO_LSTAT, 0xffff, 0x4 }, { MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL, 0xffff, 0x8 << (AEL2020_GPIO_LSTAT*4) }, /* enable module detect status change interrupts */ { MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL, 0xffff, 0x2 << (AEL2020_GPIO_MODDET*4) }, /* end */ { 0, 0, 0, 0 } }; int err, link_ok = 0; /* set up "link status" LED and enable module change interrupts */ err = set_phy_regs(phy, regs); if (err) return err; err = get_link_status_r(phy, &link_ok, NULL, NULL, NULL); if (err) return err; if (link_ok) t3_link_changed(phy->adapter, phy2portid(phy)); err = t3_phy_lasi_intr_enable(phy); if (err) return err; return 0; } /* * Disable PHY interrupts. The mirror of the above ... */ static int ael2020_intr_disable(struct cphy *phy) { struct reg_val regs[] = { /* reset "link status" LED to "off" */ { MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL, 0xffff, 0xb << (AEL2020_GPIO_LSTAT*4) }, /* disable module detect status change interrupts */ { MDIO_MMD_PMAPMD, AEL2020_GPIO_CTRL, 0xffff, 0x1 << (AEL2020_GPIO_MODDET*4) }, /* end */ { 0, 0, 0, 0 } }; int err; /* turn off "link status" LED and disable module change interrupts */ err = set_phy_regs(phy, regs); if (err) return err; return t3_phy_lasi_intr_disable(phy); } /* * Clear PHY interrupt state. */ static int ael2020_intr_clear(struct cphy *phy) { /* * The GPIO Interrupt register on the AEL2020 is a "Latching High" * (LH) register which is cleared to the current state when it's read. * Thus, we simply read the register and discard the result. */ unsigned int stat; int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat); return err ? err : t3_phy_lasi_intr_clear(phy); } static struct reg_val ael2020_reset_regs[] = { /* Erratum #2: CDRLOL asserted, causing PMA link down status */ { MDIO_MMD_PMAPMD, 0xc003, 0xffff, 0x3101 }, /* force XAUI to send LF when RX_LOS is asserted */ { MDIO_MMD_PMAPMD, 0xcd40, 0xffff, 0x0001 }, /* allow writes to transceiver module EEPROM on i2c bus */ { MDIO_MMD_PMAPMD, 0xff02, 0xffff, 0x0023 }, { MDIO_MMD_PMAPMD, 0xff03, 0xffff, 0x0000 }, { MDIO_MMD_PMAPMD, 0xff04, 0xffff, 0x0000 }, /* end */ { 0, 0, 0, 0 } }; /* * Reset the PHY and put it into a canonical operating state. */ static int ael2020_reset(struct cphy *phy, int wait) { int err; unsigned int lasi_ctrl; /* grab current interrupt state */ err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_LASI_CTRL, &lasi_ctrl); if (err) return err; err = t3_phy_reset(phy, MDIO_MMD_PMAPMD, 125); if (err) return err; msleep(100); /* basic initialization for all module types */ phy->priv = edc_none; err = set_phy_regs(phy, ael2020_reset_regs); if (err) return err; /* determine module type and perform appropriate initialization */ err = ael2020_get_module_type(phy, 0); if (err < 0) return err; phy->modtype = (u8)err; if (err == phy_modtype_twinax || err == phy_modtype_twinax_long) err = ael2020_setup_twinax_edc(phy, err); else err = ael2020_setup_sr_edc(phy); if (err) return err; /* reset wipes out interrupts, reenable them if they were on */ if (lasi_ctrl & 1) err = ael2005_intr_enable(phy); return err; } /* * Handle a PHY interrupt. */ static int ael2020_intr_handler(struct cphy *phy) { unsigned int stat; int ret, edc_needed, cause = 0; ret = t3_mdio_read(phy, MDIO_MMD_PMAPMD, AEL2020_GPIO_INTR, &stat); if (ret) return ret; if (stat & (0x1 << AEL2020_GPIO_MODDET)) { /* modules have max 300 ms init time after hot plug */ ret = ael2020_get_module_type(phy, 300); if (ret < 0) return ret; phy->modtype = (u8)ret; if (ret == phy_modtype_none) edc_needed = phy->priv; /* on unplug retain EDC */ else if (ret == phy_modtype_twinax || ret == phy_modtype_twinax_long) edc_needed = edc_twinax; else edc_needed = edc_sr; if (edc_needed != phy->priv) { ret = ael2020_reset(phy, 0); return ret ? ret : cphy_cause_module_change; } cause = cphy_cause_module_change; } ret = t3_phy_lasi_intr_handler(phy); if (ret < 0) return ret; ret |= cause; return ret ? ret : cphy_cause_link_change; } static struct cphy_ops ael2020_ops = { .reset = ael2020_reset, .intr_enable = ael2020_intr_enable, .intr_disable = ael2020_intr_disable, .intr_clear = ael2020_intr_clear, .intr_handler = ael2020_intr_handler, .get_link_status = get_link_status_r, .power_down = ael1002_power_down, .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS, }; int t3_ael2020_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr, const struct mdio_ops *mdio_ops) { int err; cphy_init(phy, adapter, phy_addr, &ael2020_ops, mdio_ops, SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_FIBRE | SUPPORTED_IRQ, "10GBASE-R"); msleep(125); err = set_phy_regs(phy, ael2020_reset_regs); if (err) return err; return 0; } /* * Get link status for a 10GBASE-X device. */ static int get_link_status_x(struct cphy *phy, int *link_ok, int *speed, int *duplex, int *fc) { if (link_ok) { unsigned int stat0, stat1, stat2; int err = t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_PMA_RXDET, &stat0); if (!err) err = t3_mdio_read(phy, MDIO_MMD_PCS, MDIO_PCS_10GBX_STAT1, &stat1); if (!err) err = t3_mdio_read(phy, MDIO_MMD_PHYXS, MDIO_PHYXS_LNSTAT, &stat2); if (err) return err; *link_ok = (stat0 & (stat1 >> 12) & (stat2 >> 12)) & 1; } if (speed) *speed = SPEED_10000; if (duplex) *duplex = DUPLEX_FULL; return 0; } static struct cphy_ops qt2045_ops = { .reset = ael1006_reset, .intr_enable = t3_phy_lasi_intr_enable, .intr_disable = t3_phy_lasi_intr_disable, .intr_clear = t3_phy_lasi_intr_clear, .intr_handler = t3_phy_lasi_intr_handler, .get_link_status = get_link_status_x, .power_down = ael1002_power_down, .mmds = MDIO_DEVS_PMAPMD | MDIO_DEVS_PCS | MDIO_DEVS_PHYXS, }; int t3_qt2045_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr, const struct mdio_ops *mdio_ops) { unsigned int stat; cphy_init(phy, adapter, phy_addr, &qt2045_ops, mdio_ops, SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP, "10GBASE-CX4"); /* * Some cards where the PHY is supposed to be at address 0 actually * have it at 1. */ if (!phy_addr && !t3_mdio_read(phy, MDIO_MMD_PMAPMD, MDIO_STAT1, &stat) && stat == 0xffff) phy->mdio.prtad = 1; return 0; } static int xaui_direct_reset(struct cphy *phy, int wait) { return 0; } static int xaui_direct_get_link_status(struct cphy *phy, int *link_ok, int *speed, int *duplex, int *fc) { if (link_ok) { unsigned int status; int prtad = phy->mdio.prtad; status = t3_read_reg(phy->adapter, XGM_REG(A_XGM_SERDES_STAT0, prtad)) | t3_read_reg(phy->adapter, XGM_REG(A_XGM_SERDES_STAT1, prtad)) | t3_read_reg(phy->adapter, XGM_REG(A_XGM_SERDES_STAT2, prtad)) | t3_read_reg(phy->adapter, XGM_REG(A_XGM_SERDES_STAT3, prtad)); *link_ok = !(status & F_LOWSIG0); } if (speed) *speed = SPEED_10000; if (duplex) *duplex = DUPLEX_FULL; return 0; } static int xaui_direct_power_down(struct cphy *phy, int enable) { return 0; } static struct cphy_ops xaui_direct_ops = { .reset = xaui_direct_reset, .intr_enable = ael1002_intr_noop, .intr_disable = ael1002_intr_noop, .intr_clear = ael1002_intr_noop, .intr_handler = ael1002_intr_noop, .get_link_status = xaui_direct_get_link_status, .power_down = xaui_direct_power_down, }; int t3_xaui_direct_phy_prep(struct cphy *phy, struct adapter *adapter, int phy_addr, const struct mdio_ops *mdio_ops) { cphy_init(phy, adapter, phy_addr, &xaui_direct_ops, mdio_ops, SUPPORTED_10000baseT_Full | SUPPORTED_AUI | SUPPORTED_TP, "10GBASE-CX4"); return 0; }