// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2019, Vladimir Oltean */ #include "sja1105.h" #define SJA1105_TAS_CLKSRC_DISABLED 0 #define SJA1105_TAS_CLKSRC_STANDALONE 1 #define SJA1105_TAS_CLKSRC_AS6802 2 #define SJA1105_TAS_CLKSRC_PTP 3 #define SJA1105_TAS_MAX_DELTA BIT(19) #define SJA1105_GATE_MASK GENMASK_ULL(SJA1105_NUM_TC - 1, 0) /* This is not a preprocessor macro because the "ns" argument may or may not be * s64 at caller side. This ensures it is properly type-cast before div_s64. */ static s64 ns_to_sja1105_delta(s64 ns) { return div_s64(ns, 200); } /* Lo and behold: the egress scheduler from hell. * * At the hardware level, the Time-Aware Shaper holds a global linear arrray of * all schedule entries for all ports. These are the Gate Control List (GCL) * entries, let's call them "timeslots" for short. This linear array of * timeslots is held in BLK_IDX_SCHEDULE. * * Then there are a maximum of 8 "execution threads" inside the switch, which * iterate cyclically through the "schedule". Each "cycle" has an entry point * and an exit point, both being timeslot indices in the schedule table. The * hardware calls each cycle a "subschedule". * * Subschedule (cycle) i starts when * ptpclkval >= ptpschtm + BLK_IDX_SCHEDULE_ENTRY_POINTS[i].delta. * * The hardware scheduler iterates BLK_IDX_SCHEDULE with a k ranging from * k = BLK_IDX_SCHEDULE_ENTRY_POINTS[i].address to * k = BLK_IDX_SCHEDULE_PARAMS.subscheind[i] * * For each schedule entry (timeslot) k, the engine executes the gate control * list entry for the duration of BLK_IDX_SCHEDULE[k].delta. * * +---------+ * | | BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS * +---------+ * | * +-----------------+ * | .actsubsch * BLK_IDX_SCHEDULE_ENTRY_POINTS v * +-------+-------+ * |cycle 0|cycle 1| * +-------+-------+ * | | | | * +----------------+ | | +-------------------------------------+ * | .subschindx | | .subschindx | * | | +---------------+ | * | .address | .address | | * | | | | * | | | | * | BLK_IDX_SCHEDULE v v | * | +-------+-------+-------+-------+-------+------+ | * | |entry 0|entry 1|entry 2|entry 3|entry 4|entry5| | * | +-------+-------+-------+-------+-------+------+ | * | ^ ^ ^ ^ | * | | | | | | * | +-------------------------+ | | | | * | | +-------------------------------+ | | | * | | | +-------------------+ | | * | | | | | | * | +---------------------------------------------------------------+ | * | |subscheind[0]<=subscheind[1]<=subscheind[2]<=...<=subscheind[7]| | * | +---------------------------------------------------------------+ | * | ^ ^ BLK_IDX_SCHEDULE_PARAMS | * | | | | * +--------+ +-------------------------------------------+ * * In the above picture there are two subschedules (cycles): * * - cycle 0: iterates the schedule table from 0 to 2 (and back) * - cycle 1: iterates the schedule table from 3 to 5 (and back) * * All other possible execution threads must be marked as unused by making * their "subschedule end index" (subscheind) equal to the last valid * subschedule's end index (in this case 5). */ static int sja1105_init_scheduling(struct sja1105_private *priv) { struct sja1105_schedule_entry_points_entry *schedule_entry_points; struct sja1105_schedule_entry_points_params_entry *schedule_entry_points_params; struct sja1105_schedule_params_entry *schedule_params; struct sja1105_tas_data *tas_data = &priv->tas_data; struct sja1105_schedule_entry *schedule; struct sja1105_table *table; int schedule_start_idx; s64 entry_point_delta; int schedule_end_idx; int num_entries = 0; int num_cycles = 0; int cycle = 0; int i, k = 0; int port; /* Discard previous Schedule Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Discard previous Schedule Entry Points Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Discard previous Schedule Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Discard previous Schedule Entry Points Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; if (table->entry_count) { kfree(table->entries); table->entry_count = 0; } /* Figure out the dimensioning of the problem */ for (port = 0; port < SJA1105_NUM_PORTS; port++) { if (tas_data->offload[port]) { num_entries += tas_data->offload[port]->num_entries; num_cycles++; } } /* Nothing to do */ if (!num_cycles) return 0; /* Pre-allocate space in the static config tables */ /* Schedule Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE]; table->entries = kcalloc(num_entries, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = num_entries; schedule = table->entries; /* Schedule Points Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS_PARAMS]; table->entries = kcalloc(SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) /* Previously allocated memory will be freed automatically in * sja1105_static_config_free. This is true for all early * returns below. */ return -ENOMEM; table->entry_count = SJA1105_MAX_SCHEDULE_ENTRY_POINTS_PARAMS_COUNT; schedule_entry_points_params = table->entries; /* Schedule Parameters Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_PARAMS]; table->entries = kcalloc(SJA1105_MAX_SCHEDULE_PARAMS_COUNT, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = SJA1105_MAX_SCHEDULE_PARAMS_COUNT; schedule_params = table->entries; /* Schedule Entry Points Table */ table = &priv->static_config.tables[BLK_IDX_SCHEDULE_ENTRY_POINTS]; table->entries = kcalloc(num_cycles, table->ops->unpacked_entry_size, GFP_KERNEL); if (!table->entries) return -ENOMEM; table->entry_count = num_cycles; schedule_entry_points = table->entries; /* Finally start populating the static config tables */ schedule_entry_points_params->clksrc = SJA1105_TAS_CLKSRC_STANDALONE; schedule_entry_points_params->actsubsch = num_cycles - 1; for (port = 0; port < SJA1105_NUM_PORTS; port++) { const struct tc_taprio_qopt_offload *offload; offload = tas_data->offload[port]; if (!offload) continue; schedule_start_idx = k; schedule_end_idx = k + offload->num_entries - 1; /* TODO this is the base time for the port's subschedule, * relative to PTPSCHTM. But as we're using the standalone * clock source and not PTP clock as time reference, there's * little point in even trying to put more logic into this, * like preserving the phases between the subschedules of * different ports. We'll get all of that when switching to the * PTP clock source. */ entry_point_delta = 1; schedule_entry_points[cycle].subschindx = cycle; schedule_entry_points[cycle].delta = entry_point_delta; schedule_entry_points[cycle].address = schedule_start_idx; /* The subschedule end indices need to be * monotonically increasing. */ for (i = cycle; i < 8; i++) schedule_params->subscheind[i] = schedule_end_idx; for (i = 0; i < offload->num_entries; i++, k++) { s64 delta_ns = offload->entries[i].interval; schedule[k].delta = ns_to_sja1105_delta(delta_ns); schedule[k].destports = BIT(port); schedule[k].resmedia_en = true; schedule[k].resmedia = SJA1105_GATE_MASK & ~offload->entries[i].gate_mask; } cycle++; } return 0; } /* Be there 2 port subschedules, each executing an arbitrary number of gate * open/close events cyclically. * None of those gate events must ever occur at the exact same time, otherwise * the switch is known to act in exotically strange ways. * However the hardware doesn't bother performing these integrity checks. * So here we are with the task of validating whether the new @admin offload * has any conflict with the already established TAS configuration in * tas_data->offload. We already know the other ports are in harmony with one * another, otherwise we wouldn't have saved them. * Each gate event executes periodically, with a period of @cycle_time and a * phase given by its cycle's @base_time plus its offset within the cycle * (which in turn is given by the length of the events prior to it). * There are two aspects to possible collisions: * - Collisions within one cycle's (actually the longest cycle's) time frame. * For that, we need to compare the cartesian product of each possible * occurrence of each event within one cycle time. * - Collisions in the future. Events may not collide within one cycle time, * but if two port schedules don't have the same periodicity (aka the cycle * times aren't multiples of one another), they surely will some time in the * future (actually they will collide an infinite amount of times). */ static bool sja1105_tas_check_conflicts(struct sja1105_private *priv, int port, const struct tc_taprio_qopt_offload *admin) { struct sja1105_tas_data *tas_data = &priv->tas_data; const struct tc_taprio_qopt_offload *offload; s64 max_cycle_time, min_cycle_time; s64 delta1, delta2; s64 rbt1, rbt2; s64 stop_time; s64 t1, t2; int i, j; s32 rem; offload = tas_data->offload[port]; if (!offload) return false; /* Check if the two cycle times are multiples of one another. * If they aren't, then they will surely collide. */ max_cycle_time = max(offload->cycle_time, admin->cycle_time); min_cycle_time = min(offload->cycle_time, admin->cycle_time); div_s64_rem(max_cycle_time, min_cycle_time, &rem); if (rem) return true; /* Calculate the "reduced" base time of each of the two cycles * (transposed back as close to 0 as possible) by dividing to * the cycle time. */ div_s64_rem(offload->base_time, offload->cycle_time, &rem); rbt1 = rem; div_s64_rem(admin->base_time, admin->cycle_time, &rem); rbt2 = rem; stop_time = max_cycle_time + max(rbt1, rbt2); /* delta1 is the relative base time of each GCL entry within * the established ports' TAS config. */ for (i = 0, delta1 = 0; i < offload->num_entries; delta1 += offload->entries[i].interval, i++) { /* delta2 is the relative base time of each GCL entry * within the newly added TAS config. */ for (j = 0, delta2 = 0; j < admin->num_entries; delta2 += admin->entries[j].interval, j++) { /* t1 follows all possible occurrences of the * established ports' GCL entry i within the * first cycle time. */ for (t1 = rbt1 + delta1; t1 <= stop_time; t1 += offload->cycle_time) { /* t2 follows all possible occurrences * of the newly added GCL entry j * within the first cycle time. */ for (t2 = rbt2 + delta2; t2 <= stop_time; t2 += admin->cycle_time) { if (t1 == t2) { dev_warn(priv->ds->dev, "GCL entry %d collides with entry %d of port %d\n", j, i, port); return true; } } } } } return false; } int sja1105_setup_tc_taprio(struct dsa_switch *ds, int port, struct tc_taprio_qopt_offload *admin) { struct sja1105_private *priv = ds->priv; struct sja1105_tas_data *tas_data = &priv->tas_data; int other_port, rc, i; /* Can't change an already configured port (must delete qdisc first). * Can't delete the qdisc from an unconfigured port. */ if (!!tas_data->offload[port] == admin->enable) return -EINVAL; if (!admin->enable) { taprio_offload_free(tas_data->offload[port]); tas_data->offload[port] = NULL; rc = sja1105_init_scheduling(priv); if (rc < 0) return rc; return sja1105_static_config_reload(priv); } /* The cycle time extension is the amount of time the last cycle from * the old OPER needs to be extended in order to phase-align with the * base time of the ADMIN when that becomes the new OPER. * But of course our switch needs to be reset to switch-over between * the ADMIN and the OPER configs - so much for a seamless transition. * So don't add insult over injury and just say we don't support cycle * time extension. */ if (admin->cycle_time_extension) return -ENOTSUPP; if (!ns_to_sja1105_delta(admin->base_time)) { dev_err(ds->dev, "A base time of zero is not hardware-allowed\n"); return -ERANGE; } for (i = 0; i < admin->num_entries; i++) { s64 delta_ns = admin->entries[i].interval; s64 delta_cycles = ns_to_sja1105_delta(delta_ns); bool too_long, too_short; too_long = (delta_cycles >= SJA1105_TAS_MAX_DELTA); too_short = (delta_cycles == 0); if (too_long || too_short) { dev_err(priv->ds->dev, "Interval %llu too %s for GCL entry %d\n", delta_ns, too_long ? "long" : "short", i); return -ERANGE; } } for (other_port = 0; other_port < SJA1105_NUM_PORTS; other_port++) { if (other_port == port) continue; if (sja1105_tas_check_conflicts(priv, other_port, admin)) return -ERANGE; } tas_data->offload[port] = taprio_offload_get(admin); rc = sja1105_init_scheduling(priv); if (rc < 0) return rc; return sja1105_static_config_reload(priv); } void sja1105_tas_setup(struct dsa_switch *ds) { } void sja1105_tas_teardown(struct dsa_switch *ds) { struct sja1105_private *priv = ds->priv; struct tc_taprio_qopt_offload *offload; int port; for (port = 0; port < SJA1105_NUM_PORTS; port++) { offload = priv->tas_data.offload[port]; if (!offload) continue; taprio_offload_free(offload); } }