// SPDX-License-Identifier: GPL-2.0-only /* Atlantic Network Driver * * Copyright (C) 2014-2019 aQuantia Corporation * Copyright (C) 2019-2020 Marvell International Ltd. */ /* File aq_ring.c: Definition of functions for Rx/Tx rings. */ #include "aq_nic.h" #include "aq_hw.h" #include "aq_hw_utils.h" #include "aq_ptp.h" #include "aq_vec.h" #include "aq_main.h" #include #include #include #include #include static void aq_get_rxpages_xdp(struct aq_ring_buff_s *buff, struct xdp_buff *xdp) { struct skb_shared_info *sinfo; int i; if (xdp_buff_has_frags(xdp)) { sinfo = xdp_get_shared_info_from_buff(xdp); for (i = 0; i < sinfo->nr_frags; i++) { skb_frag_t *frag = &sinfo->frags[i]; page_ref_inc(skb_frag_page(frag)); } } page_ref_inc(buff->rxdata.page); } static inline void aq_free_rxpage(struct aq_rxpage *rxpage, struct device *dev) { unsigned int len = PAGE_SIZE << rxpage->order; dma_unmap_page(dev, rxpage->daddr, len, DMA_FROM_DEVICE); /* Drop the ref for being in the ring. */ __free_pages(rxpage->page, rxpage->order); rxpage->page = NULL; } static int aq_alloc_rxpages(struct aq_rxpage *rxpage, struct aq_ring_s *rx_ring) { struct device *dev = aq_nic_get_dev(rx_ring->aq_nic); unsigned int order = rx_ring->page_order; struct page *page; int ret = -ENOMEM; dma_addr_t daddr; page = dev_alloc_pages(order); if (unlikely(!page)) goto err_exit; daddr = dma_map_page(dev, page, 0, PAGE_SIZE << order, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(dev, daddr))) goto free_page; rxpage->page = page; rxpage->daddr = daddr; rxpage->order = order; rxpage->pg_off = rx_ring->page_offset; return 0; free_page: __free_pages(page, order); err_exit: return ret; } static int aq_get_rxpages(struct aq_ring_s *self, struct aq_ring_buff_s *rxbuf) { unsigned int order = self->page_order; u16 page_offset = self->page_offset; u16 frame_max = self->frame_max; u16 tail_size = self->tail_size; int ret; if (rxbuf->rxdata.page) { /* One means ring is the only user and can reuse */ if (page_ref_count(rxbuf->rxdata.page) > 1) { /* Try reuse buffer */ rxbuf->rxdata.pg_off += frame_max + page_offset + tail_size; if (rxbuf->rxdata.pg_off + frame_max + tail_size <= (PAGE_SIZE << order)) { u64_stats_update_begin(&self->stats.rx.syncp); self->stats.rx.pg_flips++; u64_stats_update_end(&self->stats.rx.syncp); } else { /* Buffer exhausted. We have other users and * should release this page and realloc */ aq_free_rxpage(&rxbuf->rxdata, aq_nic_get_dev(self->aq_nic)); u64_stats_update_begin(&self->stats.rx.syncp); self->stats.rx.pg_losts++; u64_stats_update_end(&self->stats.rx.syncp); } } else { rxbuf->rxdata.pg_off = page_offset; u64_stats_update_begin(&self->stats.rx.syncp); self->stats.rx.pg_reuses++; u64_stats_update_end(&self->stats.rx.syncp); } } if (!rxbuf->rxdata.page) { ret = aq_alloc_rxpages(&rxbuf->rxdata, self); if (ret) { u64_stats_update_begin(&self->stats.rx.syncp); self->stats.rx.alloc_fails++; u64_stats_update_end(&self->stats.rx.syncp); } return ret; } return 0; } static struct aq_ring_s *aq_ring_alloc(struct aq_ring_s *self, struct aq_nic_s *aq_nic) { int err = 0; self->buff_ring = kcalloc(self->size, sizeof(struct aq_ring_buff_s), GFP_KERNEL); if (!self->buff_ring) { err = -ENOMEM; goto err_exit; } self->dx_ring = dma_alloc_coherent(aq_nic_get_dev(aq_nic), self->size * self->dx_size, &self->dx_ring_pa, GFP_KERNEL); if (!self->dx_ring) { err = -ENOMEM; goto err_exit; } err_exit: if (err < 0) { aq_ring_free(self); self = NULL; } return self; } struct aq_ring_s *aq_ring_tx_alloc(struct aq_ring_s *self, struct aq_nic_s *aq_nic, unsigned int idx, struct aq_nic_cfg_s *aq_nic_cfg) { int err = 0; self->aq_nic = aq_nic; self->idx = idx; self->size = aq_nic_cfg->txds; self->dx_size = aq_nic_cfg->aq_hw_caps->txd_size; self = aq_ring_alloc(self, aq_nic); if (!self) { err = -ENOMEM; goto err_exit; } err_exit: if (err < 0) { aq_ring_free(self); self = NULL; } return self; } struct aq_ring_s *aq_ring_rx_alloc(struct aq_ring_s *self, struct aq_nic_s *aq_nic, unsigned int idx, struct aq_nic_cfg_s *aq_nic_cfg) { int err = 0; self->aq_nic = aq_nic; self->idx = idx; self->size = aq_nic_cfg->rxds; self->dx_size = aq_nic_cfg->aq_hw_caps->rxd_size; self->xdp_prog = aq_nic->xdp_prog; self->frame_max = AQ_CFG_RX_FRAME_MAX; /* Only order-2 is allowed if XDP is enabled */ if (READ_ONCE(self->xdp_prog)) { self->page_offset = AQ_XDP_HEADROOM; self->page_order = AQ_CFG_XDP_PAGEORDER; self->tail_size = AQ_XDP_TAILROOM; } else { self->page_offset = 0; self->page_order = fls(self->frame_max / PAGE_SIZE + (self->frame_max % PAGE_SIZE ? 1 : 0)) - 1; if (aq_nic_cfg->rxpageorder > self->page_order) self->page_order = aq_nic_cfg->rxpageorder; self->tail_size = 0; } self = aq_ring_alloc(self, aq_nic); if (!self) { err = -ENOMEM; goto err_exit; } err_exit: if (err < 0) { aq_ring_free(self); self = NULL; } return self; } struct aq_ring_s * aq_ring_hwts_rx_alloc(struct aq_ring_s *self, struct aq_nic_s *aq_nic, unsigned int idx, unsigned int size, unsigned int dx_size) { struct device *dev = aq_nic_get_dev(aq_nic); size_t sz = size * dx_size + AQ_CFG_RXDS_DEF; memset(self, 0, sizeof(*self)); self->aq_nic = aq_nic; self->idx = idx; self->size = size; self->dx_size = dx_size; self->dx_ring = dma_alloc_coherent(dev, sz, &self->dx_ring_pa, GFP_KERNEL); if (!self->dx_ring) { aq_ring_free(self); return NULL; } return self; } int aq_ring_init(struct aq_ring_s *self, const enum atl_ring_type ring_type) { self->hw_head = 0; self->sw_head = 0; self->sw_tail = 0; self->ring_type = ring_type; if (self->ring_type == ATL_RING_RX) u64_stats_init(&self->stats.rx.syncp); else u64_stats_init(&self->stats.tx.syncp); return 0; } static inline bool aq_ring_dx_in_range(unsigned int h, unsigned int i, unsigned int t) { return (h < t) ? ((h < i) && (i < t)) : ((h < i) || (i < t)); } void aq_ring_update_queue_state(struct aq_ring_s *ring) { if (aq_ring_avail_dx(ring) <= AQ_CFG_SKB_FRAGS_MAX) aq_ring_queue_stop(ring); else if (aq_ring_avail_dx(ring) > AQ_CFG_RESTART_DESC_THRES) aq_ring_queue_wake(ring); } void aq_ring_queue_wake(struct aq_ring_s *ring) { struct net_device *ndev = aq_nic_get_ndev(ring->aq_nic); if (__netif_subqueue_stopped(ndev, AQ_NIC_RING2QMAP(ring->aq_nic, ring->idx))) { netif_wake_subqueue(ndev, AQ_NIC_RING2QMAP(ring->aq_nic, ring->idx)); u64_stats_update_begin(&ring->stats.tx.syncp); ring->stats.tx.queue_restarts++; u64_stats_update_end(&ring->stats.tx.syncp); } } void aq_ring_queue_stop(struct aq_ring_s *ring) { struct net_device *ndev = aq_nic_get_ndev(ring->aq_nic); if (!__netif_subqueue_stopped(ndev, AQ_NIC_RING2QMAP(ring->aq_nic, ring->idx))) netif_stop_subqueue(ndev, AQ_NIC_RING2QMAP(ring->aq_nic, ring->idx)); } bool aq_ring_tx_clean(struct aq_ring_s *self) { struct device *dev = aq_nic_get_dev(self->aq_nic); unsigned int budget; for (budget = AQ_CFG_TX_CLEAN_BUDGET; budget && self->sw_head != self->hw_head; budget--) { struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head]; if (likely(buff->is_mapped)) { if (unlikely(buff->is_sop)) { if (!buff->is_eop && buff->eop_index != 0xffffU && (!aq_ring_dx_in_range(self->sw_head, buff->eop_index, self->hw_head))) break; dma_unmap_single(dev, buff->pa, buff->len, DMA_TO_DEVICE); } else { dma_unmap_page(dev, buff->pa, buff->len, DMA_TO_DEVICE); } } if (likely(!buff->is_eop)) goto out; if (buff->skb) { u64_stats_update_begin(&self->stats.tx.syncp); ++self->stats.tx.packets; self->stats.tx.bytes += buff->skb->len; u64_stats_update_end(&self->stats.tx.syncp); dev_kfree_skb_any(buff->skb); } else if (buff->xdpf) { u64_stats_update_begin(&self->stats.tx.syncp); ++self->stats.tx.packets; self->stats.tx.bytes += xdp_get_frame_len(buff->xdpf); u64_stats_update_end(&self->stats.tx.syncp); xdp_return_frame_rx_napi(buff->xdpf); } out: buff->skb = NULL; buff->xdpf = NULL; buff->pa = 0U; buff->eop_index = 0xffffU; self->sw_head = aq_ring_next_dx(self, self->sw_head); } return !!budget; } static void aq_rx_checksum(struct aq_ring_s *self, struct aq_ring_buff_s *buff, struct sk_buff *skb) { if (!(self->aq_nic->ndev->features & NETIF_F_RXCSUM)) return; if (unlikely(buff->is_cso_err)) { u64_stats_update_begin(&self->stats.rx.syncp); ++self->stats.rx.errors; u64_stats_update_end(&self->stats.rx.syncp); skb->ip_summed = CHECKSUM_NONE; return; } if (buff->is_ip_cso) { __skb_incr_checksum_unnecessary(skb); } else { skb->ip_summed = CHECKSUM_NONE; } if (buff->is_udp_cso || buff->is_tcp_cso) __skb_incr_checksum_unnecessary(skb); } int aq_xdp_xmit(struct net_device *dev, int num_frames, struct xdp_frame **frames, u32 flags) { struct aq_nic_s *aq_nic = netdev_priv(dev); unsigned int vec, i, drop = 0; int cpu = smp_processor_id(); struct aq_nic_cfg_s *aq_cfg; struct aq_ring_s *ring; aq_cfg = aq_nic_get_cfg(aq_nic); vec = cpu % aq_cfg->vecs; ring = aq_nic->aq_ring_tx[AQ_NIC_CFG_TCVEC2RING(aq_cfg, 0, vec)]; for (i = 0; i < num_frames; i++) { struct xdp_frame *xdpf = frames[i]; if (aq_nic_xmit_xdpf(aq_nic, ring, xdpf) == NETDEV_TX_BUSY) drop++; } return num_frames - drop; } static struct sk_buff *aq_xdp_run_prog(struct aq_nic_s *aq_nic, struct xdp_buff *xdp, struct aq_ring_s *rx_ring, struct aq_ring_buff_s *buff) { int result = NETDEV_TX_BUSY; struct aq_ring_s *tx_ring; struct xdp_frame *xdpf; struct bpf_prog *prog; u32 act = XDP_ABORTED; struct sk_buff *skb; u64_stats_update_begin(&rx_ring->stats.rx.syncp); ++rx_ring->stats.rx.packets; rx_ring->stats.rx.bytes += xdp_get_buff_len(xdp); u64_stats_update_end(&rx_ring->stats.rx.syncp); prog = READ_ONCE(rx_ring->xdp_prog); if (!prog) goto pass; prefetchw(xdp->data_hard_start); /* xdp_frame write */ /* single buffer XDP program, but packet is multi buffer, aborted */ if (xdp_buff_has_frags(xdp) && !prog->aux->xdp_has_frags) goto out_aborted; act = bpf_prog_run_xdp(prog, xdp); switch (act) { case XDP_PASS: pass: xdpf = xdp_convert_buff_to_frame(xdp); if (unlikely(!xdpf)) goto out_aborted; skb = xdp_build_skb_from_frame(xdpf, aq_nic->ndev); if (!skb) goto out_aborted; u64_stats_update_begin(&rx_ring->stats.rx.syncp); ++rx_ring->stats.rx.xdp_pass; u64_stats_update_end(&rx_ring->stats.rx.syncp); aq_get_rxpages_xdp(buff, xdp); return skb; case XDP_TX: xdpf = xdp_convert_buff_to_frame(xdp); if (unlikely(!xdpf)) goto out_aborted; tx_ring = aq_nic->aq_ring_tx[rx_ring->idx]; result = aq_nic_xmit_xdpf(aq_nic, tx_ring, xdpf); if (result == NETDEV_TX_BUSY) goto out_aborted; u64_stats_update_begin(&rx_ring->stats.rx.syncp); ++rx_ring->stats.rx.xdp_tx; u64_stats_update_end(&rx_ring->stats.rx.syncp); aq_get_rxpages_xdp(buff, xdp); break; case XDP_REDIRECT: if (xdp_do_redirect(aq_nic->ndev, xdp, prog) < 0) goto out_aborted; xdp_do_flush(); u64_stats_update_begin(&rx_ring->stats.rx.syncp); ++rx_ring->stats.rx.xdp_redirect; u64_stats_update_end(&rx_ring->stats.rx.syncp); aq_get_rxpages_xdp(buff, xdp); break; default: fallthrough; case XDP_ABORTED: out_aborted: u64_stats_update_begin(&rx_ring->stats.rx.syncp); ++rx_ring->stats.rx.xdp_aborted; u64_stats_update_end(&rx_ring->stats.rx.syncp); trace_xdp_exception(aq_nic->ndev, prog, act); bpf_warn_invalid_xdp_action(aq_nic->ndev, prog, act); break; case XDP_DROP: u64_stats_update_begin(&rx_ring->stats.rx.syncp); ++rx_ring->stats.rx.xdp_drop; u64_stats_update_end(&rx_ring->stats.rx.syncp); break; } return ERR_PTR(-result); } static bool aq_add_rx_fragment(struct device *dev, struct aq_ring_s *ring, struct aq_ring_buff_s *buff, struct xdp_buff *xdp) { struct skb_shared_info *sinfo = xdp_get_shared_info_from_buff(xdp); struct aq_ring_buff_s *buff_ = buff; memset(sinfo, 0, sizeof(*sinfo)); do { skb_frag_t *frag; if (unlikely(sinfo->nr_frags >= MAX_SKB_FRAGS)) return true; frag = &sinfo->frags[sinfo->nr_frags++]; buff_ = &ring->buff_ring[buff_->next]; dma_sync_single_range_for_cpu(dev, buff_->rxdata.daddr, buff_->rxdata.pg_off, buff_->len, DMA_FROM_DEVICE); skb_frag_off_set(frag, buff_->rxdata.pg_off); skb_frag_size_set(frag, buff_->len); sinfo->xdp_frags_size += buff_->len; __skb_frag_set_page(frag, buff_->rxdata.page); buff_->is_cleaned = 1; buff->is_ip_cso &= buff_->is_ip_cso; buff->is_udp_cso &= buff_->is_udp_cso; buff->is_tcp_cso &= buff_->is_tcp_cso; buff->is_cso_err |= buff_->is_cso_err; if (page_is_pfmemalloc(buff_->rxdata.page)) xdp_buff_set_frag_pfmemalloc(xdp); } while (!buff_->is_eop); xdp_buff_set_frags_flag(xdp); return false; } static int __aq_ring_rx_clean(struct aq_ring_s *self, struct napi_struct *napi, int *work_done, int budget) { struct net_device *ndev = aq_nic_get_ndev(self->aq_nic); int err = 0; for (; (self->sw_head != self->hw_head) && budget; self->sw_head = aq_ring_next_dx(self, self->sw_head), --budget, ++(*work_done)) { struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head]; bool is_ptp_ring = aq_ptp_ring(self->aq_nic, self); struct aq_ring_buff_s *buff_ = NULL; struct sk_buff *skb = NULL; unsigned int next_ = 0U; unsigned int i = 0U; u16 hdr_len; if (buff->is_cleaned) continue; if (!buff->is_eop) { unsigned int frag_cnt = 0U; buff_ = buff; do { bool is_rsc_completed = true; if (buff_->next >= self->size) { err = -EIO; goto err_exit; } frag_cnt++; next_ = buff_->next, buff_ = &self->buff_ring[next_]; is_rsc_completed = aq_ring_dx_in_range(self->sw_head, next_, self->hw_head); if (unlikely(!is_rsc_completed) || frag_cnt > MAX_SKB_FRAGS) { err = 0; goto err_exit; } buff->is_error |= buff_->is_error; buff->is_cso_err |= buff_->is_cso_err; } while (!buff_->is_eop); if (buff->is_error || (buff->is_lro && buff->is_cso_err)) { buff_ = buff; do { if (buff_->next >= self->size) { err = -EIO; goto err_exit; } next_ = buff_->next, buff_ = &self->buff_ring[next_]; buff_->is_cleaned = true; } while (!buff_->is_eop); u64_stats_update_begin(&self->stats.rx.syncp); ++self->stats.rx.errors; u64_stats_update_end(&self->stats.rx.syncp); continue; } } if (buff->is_error) { u64_stats_update_begin(&self->stats.rx.syncp); ++self->stats.rx.errors; u64_stats_update_end(&self->stats.rx.syncp); continue; } dma_sync_single_range_for_cpu(aq_nic_get_dev(self->aq_nic), buff->rxdata.daddr, buff->rxdata.pg_off, buff->len, DMA_FROM_DEVICE); skb = napi_alloc_skb(napi, AQ_CFG_RX_HDR_SIZE); if (unlikely(!skb)) { u64_stats_update_begin(&self->stats.rx.syncp); self->stats.rx.skb_alloc_fails++; u64_stats_update_end(&self->stats.rx.syncp); err = -ENOMEM; goto err_exit; } if (is_ptp_ring) buff->len -= aq_ptp_extract_ts(self->aq_nic, skb, aq_buf_vaddr(&buff->rxdata), buff->len); hdr_len = buff->len; if (hdr_len > AQ_CFG_RX_HDR_SIZE) hdr_len = eth_get_headlen(skb->dev, aq_buf_vaddr(&buff->rxdata), AQ_CFG_RX_HDR_SIZE); memcpy(__skb_put(skb, hdr_len), aq_buf_vaddr(&buff->rxdata), ALIGN(hdr_len, sizeof(long))); if (buff->len - hdr_len > 0) { skb_add_rx_frag(skb, i++, buff->rxdata.page, buff->rxdata.pg_off + hdr_len, buff->len - hdr_len, self->frame_max); page_ref_inc(buff->rxdata.page); } if (!buff->is_eop) { buff_ = buff; do { next_ = buff_->next; buff_ = &self->buff_ring[next_]; dma_sync_single_range_for_cpu(aq_nic_get_dev(self->aq_nic), buff_->rxdata.daddr, buff_->rxdata.pg_off, buff_->len, DMA_FROM_DEVICE); skb_add_rx_frag(skb, i++, buff_->rxdata.page, buff_->rxdata.pg_off, buff_->len, self->frame_max); page_ref_inc(buff_->rxdata.page); buff_->is_cleaned = 1; buff->is_ip_cso &= buff_->is_ip_cso; buff->is_udp_cso &= buff_->is_udp_cso; buff->is_tcp_cso &= buff_->is_tcp_cso; buff->is_cso_err |= buff_->is_cso_err; } while (!buff_->is_eop); } if (buff->is_vlan) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), buff->vlan_rx_tag); skb->protocol = eth_type_trans(skb, ndev); aq_rx_checksum(self, buff, skb); skb_set_hash(skb, buff->rss_hash, buff->is_hash_l4 ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_NONE); /* Send all PTP traffic to 0 queue */ skb_record_rx_queue(skb, is_ptp_ring ? 0 : AQ_NIC_RING2QMAP(self->aq_nic, self->idx)); u64_stats_update_begin(&self->stats.rx.syncp); ++self->stats.rx.packets; self->stats.rx.bytes += skb->len; u64_stats_update_end(&self->stats.rx.syncp); napi_gro_receive(napi, skb); } err_exit: return err; } static int __aq_ring_xdp_clean(struct aq_ring_s *rx_ring, struct napi_struct *napi, int *work_done, int budget) { int frame_sz = rx_ring->page_offset + rx_ring->frame_max + rx_ring->tail_size; struct aq_nic_s *aq_nic = rx_ring->aq_nic; bool is_rsc_completed = true; struct device *dev; int err = 0; dev = aq_nic_get_dev(aq_nic); for (; (rx_ring->sw_head != rx_ring->hw_head) && budget; rx_ring->sw_head = aq_ring_next_dx(rx_ring, rx_ring->sw_head), --budget, ++(*work_done)) { struct aq_ring_buff_s *buff = &rx_ring->buff_ring[rx_ring->sw_head]; bool is_ptp_ring = aq_ptp_ring(rx_ring->aq_nic, rx_ring); struct aq_ring_buff_s *buff_ = NULL; struct sk_buff *skb = NULL; unsigned int next_ = 0U; struct xdp_buff xdp; void *hard_start; if (buff->is_cleaned) continue; if (!buff->is_eop) { buff_ = buff; do { if (buff_->next >= rx_ring->size) { err = -EIO; goto err_exit; } next_ = buff_->next; buff_ = &rx_ring->buff_ring[next_]; is_rsc_completed = aq_ring_dx_in_range(rx_ring->sw_head, next_, rx_ring->hw_head); if (unlikely(!is_rsc_completed)) break; buff->is_error |= buff_->is_error; buff->is_cso_err |= buff_->is_cso_err; } while (!buff_->is_eop); if (!is_rsc_completed) { err = 0; goto err_exit; } if (buff->is_error || (buff->is_lro && buff->is_cso_err)) { buff_ = buff; do { if (buff_->next >= rx_ring->size) { err = -EIO; goto err_exit; } next_ = buff_->next; buff_ = &rx_ring->buff_ring[next_]; buff_->is_cleaned = true; } while (!buff_->is_eop); u64_stats_update_begin(&rx_ring->stats.rx.syncp); ++rx_ring->stats.rx.errors; u64_stats_update_end(&rx_ring->stats.rx.syncp); continue; } } if (buff->is_error) { u64_stats_update_begin(&rx_ring->stats.rx.syncp); ++rx_ring->stats.rx.errors; u64_stats_update_end(&rx_ring->stats.rx.syncp); continue; } dma_sync_single_range_for_cpu(dev, buff->rxdata.daddr, buff->rxdata.pg_off, buff->len, DMA_FROM_DEVICE); hard_start = page_address(buff->rxdata.page) + buff->rxdata.pg_off - rx_ring->page_offset; if (is_ptp_ring) buff->len -= aq_ptp_extract_ts(rx_ring->aq_nic, skb, aq_buf_vaddr(&buff->rxdata), buff->len); xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq); xdp_prepare_buff(&xdp, hard_start, rx_ring->page_offset, buff->len, false); if (!buff->is_eop) { if (aq_add_rx_fragment(dev, rx_ring, buff, &xdp)) { u64_stats_update_begin(&rx_ring->stats.rx.syncp); ++rx_ring->stats.rx.packets; rx_ring->stats.rx.bytes += xdp_get_buff_len(&xdp); ++rx_ring->stats.rx.xdp_aborted; u64_stats_update_end(&rx_ring->stats.rx.syncp); continue; } } skb = aq_xdp_run_prog(aq_nic, &xdp, rx_ring, buff); if (IS_ERR(skb) || !skb) continue; if (buff->is_vlan) __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), buff->vlan_rx_tag); aq_rx_checksum(rx_ring, buff, skb); skb_set_hash(skb, buff->rss_hash, buff->is_hash_l4 ? PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_NONE); /* Send all PTP traffic to 0 queue */ skb_record_rx_queue(skb, is_ptp_ring ? 0 : AQ_NIC_RING2QMAP(rx_ring->aq_nic, rx_ring->idx)); napi_gro_receive(napi, skb); } err_exit: return err; } int aq_ring_rx_clean(struct aq_ring_s *self, struct napi_struct *napi, int *work_done, int budget) { if (static_branch_unlikely(&aq_xdp_locking_key)) return __aq_ring_xdp_clean(self, napi, work_done, budget); else return __aq_ring_rx_clean(self, napi, work_done, budget); } void aq_ring_hwts_rx_clean(struct aq_ring_s *self, struct aq_nic_s *aq_nic) { #if IS_REACHABLE(CONFIG_PTP_1588_CLOCK) while (self->sw_head != self->hw_head) { u64 ns; aq_nic->aq_hw_ops->extract_hwts(aq_nic->aq_hw, self->dx_ring + (self->sw_head * self->dx_size), self->dx_size, &ns); aq_ptp_tx_hwtstamp(aq_nic, ns); self->sw_head = aq_ring_next_dx(self, self->sw_head); } #endif } int aq_ring_rx_fill(struct aq_ring_s *self) { struct aq_ring_buff_s *buff = NULL; int err = 0; int i = 0; if (aq_ring_avail_dx(self) < min_t(unsigned int, AQ_CFG_RX_REFILL_THRES, self->size / 2)) return err; for (i = aq_ring_avail_dx(self); i--; self->sw_tail = aq_ring_next_dx(self, self->sw_tail)) { buff = &self->buff_ring[self->sw_tail]; buff->flags = 0U; buff->len = self->frame_max; err = aq_get_rxpages(self, buff); if (err) goto err_exit; buff->pa = aq_buf_daddr(&buff->rxdata); buff = NULL; } err_exit: return err; } void aq_ring_rx_deinit(struct aq_ring_s *self) { if (!self) return; for (; self->sw_head != self->sw_tail; self->sw_head = aq_ring_next_dx(self, self->sw_head)) { struct aq_ring_buff_s *buff = &self->buff_ring[self->sw_head]; aq_free_rxpage(&buff->rxdata, aq_nic_get_dev(self->aq_nic)); } } void aq_ring_free(struct aq_ring_s *self) { if (!self) return; kfree(self->buff_ring); if (self->dx_ring) dma_free_coherent(aq_nic_get_dev(self->aq_nic), self->size * self->dx_size, self->dx_ring, self->dx_ring_pa); } unsigned int aq_ring_fill_stats_data(struct aq_ring_s *self, u64 *data) { unsigned int count; unsigned int start; if (self->ring_type == ATL_RING_RX) { /* This data should mimic aq_ethtool_queue_rx_stat_names structure */ do { count = 0; start = u64_stats_fetch_begin_irq(&self->stats.rx.syncp); data[count] = self->stats.rx.packets; data[++count] = self->stats.rx.jumbo_packets; data[++count] = self->stats.rx.lro_packets; data[++count] = self->stats.rx.errors; data[++count] = self->stats.rx.alloc_fails; data[++count] = self->stats.rx.skb_alloc_fails; data[++count] = self->stats.rx.polls; data[++count] = self->stats.rx.pg_flips; data[++count] = self->stats.rx.pg_reuses; data[++count] = self->stats.rx.pg_losts; data[++count] = self->stats.rx.xdp_aborted; data[++count] = self->stats.rx.xdp_drop; data[++count] = self->stats.rx.xdp_pass; data[++count] = self->stats.rx.xdp_tx; data[++count] = self->stats.rx.xdp_invalid; data[++count] = self->stats.rx.xdp_redirect; } while (u64_stats_fetch_retry_irq(&self->stats.rx.syncp, start)); } else { /* This data should mimic aq_ethtool_queue_tx_stat_names structure */ do { count = 0; start = u64_stats_fetch_begin_irq(&self->stats.tx.syncp); data[count] = self->stats.tx.packets; data[++count] = self->stats.tx.queue_restarts; } while (u64_stats_fetch_retry_irq(&self->stats.tx.syncp, start)); } return ++count; }