// SPDX-License-Identifier: GPL-2.0-only /* * aQuantia Corporation Network Driver * Copyright (C) 2014-2019 aQuantia Corporation. All rights reserved */ /* File hw_atl_utils_fw2x.c: Definition of firmware 2.x functions for * Atlantic hardware abstraction layer. */ #include "../aq_hw.h" #include "../aq_hw_utils.h" #include "../aq_pci_func.h" #include "../aq_ring.h" #include "../aq_vec.h" #include "../aq_nic.h" #include "hw_atl_utils.h" #include "hw_atl_llh.h" #define HW_ATL_FW2X_MPI_LED_ADDR 0x31c #define HW_ATL_FW2X_MPI_RPC_ADDR 0x334 #define HW_ATL_FW2X_MPI_MBOX_ADDR 0x360 #define HW_ATL_FW2X_MPI_EFUSE_ADDR 0x364 #define HW_ATL_FW2X_MPI_CONTROL_ADDR 0x368 #define HW_ATL_FW2X_MPI_CONTROL2_ADDR 0x36C #define HW_ATL_FW2X_MPI_STATE_ADDR 0x370 #define HW_ATL_FW2X_MPI_STATE2_ADDR 0x374 #define HW_ATL_FW3X_EXT_CONTROL_ADDR 0x378 #define HW_ATL_FW3X_EXT_STATE_ADDR 0x37c #define HW_ATL_FW2X_CAP_PAUSE BIT(CAPS_HI_PAUSE) #define HW_ATL_FW2X_CAP_ASYM_PAUSE BIT(CAPS_HI_ASYMMETRIC_PAUSE) #define HW_ATL_FW2X_CAP_SLEEP_PROXY BIT(CAPS_HI_SLEEP_PROXY) #define HW_ATL_FW2X_CAP_WOL BIT(CAPS_HI_WOL) #define HW_ATL_FW2X_CTRL_WAKE_ON_LINK BIT(CTRL_WAKE_ON_LINK) #define HW_ATL_FW2X_CTRL_SLEEP_PROXY BIT(CTRL_SLEEP_PROXY) #define HW_ATL_FW2X_CTRL_WOL BIT(CTRL_WOL) #define HW_ATL_FW2X_CTRL_LINK_DROP BIT(CTRL_LINK_DROP) #define HW_ATL_FW2X_CTRL_PAUSE BIT(CTRL_PAUSE) #define HW_ATL_FW2X_CTRL_TEMPERATURE BIT(CTRL_TEMPERATURE) #define HW_ATL_FW2X_CTRL_ASYMMETRIC_PAUSE BIT(CTRL_ASYMMETRIC_PAUSE) #define HW_ATL_FW2X_CTRL_FORCE_RECONNECT BIT(CTRL_FORCE_RECONNECT) #define HW_ATL_FW2X_CAP_EEE_1G_MASK BIT(CAPS_HI_1000BASET_FD_EEE) #define HW_ATL_FW2X_CAP_EEE_2G5_MASK BIT(CAPS_HI_2P5GBASET_FD_EEE) #define HW_ATL_FW2X_CAP_EEE_5G_MASK BIT(CAPS_HI_5GBASET_FD_EEE) #define HW_ATL_FW2X_CAP_EEE_10G_MASK BIT(CAPS_HI_10GBASET_FD_EEE) #define HAL_ATLANTIC_WOL_FILTERS_COUNT 8 #define HAL_ATLANTIC_UTILS_FW2X_MSG_WOL 0x0E #define HW_ATL_FW_VER_LED 0x03010026U struct __packed fw2x_msg_wol_pattern { u8 mask[16]; u32 crc; }; struct __packed fw2x_msg_wol { u32 msg_id; u8 hw_addr[ETH_ALEN]; u8 magic_packet_enabled; u8 filter_count; struct fw2x_msg_wol_pattern filter[HAL_ATLANTIC_WOL_FILTERS_COUNT]; u8 link_up_enabled; u8 link_down_enabled; u16 reserved; u32 link_up_timeout; u32 link_down_timeout; }; static int aq_fw2x_set_link_speed(struct aq_hw_s *self, u32 speed); static int aq_fw2x_set_state(struct aq_hw_s *self, enum hal_atl_utils_fw_state_e state); static u32 aq_fw2x_mbox_get(struct aq_hw_s *self); static u32 aq_fw2x_rpc_get(struct aq_hw_s *self); static u32 aq_fw2x_state2_get(struct aq_hw_s *self); static int aq_fw2x_init(struct aq_hw_s *self) { int err = 0; /* check 10 times by 1ms */ err = readx_poll_timeout_atomic(aq_fw2x_mbox_get, self, self->mbox_addr, self->mbox_addr != 0U, 1000U, 10000U); err = readx_poll_timeout_atomic(aq_fw2x_rpc_get, self, self->rpc_addr, self->rpc_addr != 0U, 1000U, 100000U); return err; } static int aq_fw2x_deinit(struct aq_hw_s *self) { int err = aq_fw2x_set_link_speed(self, 0); if (!err) err = aq_fw2x_set_state(self, MPI_DEINIT); return err; } static enum hw_atl_fw2x_rate link_speed_mask_2fw2x_ratemask(u32 speed) { enum hw_atl_fw2x_rate rate = 0; if (speed & AQ_NIC_RATE_10G) rate |= FW2X_RATE_10G; if (speed & AQ_NIC_RATE_5G) rate |= FW2X_RATE_5G; if (speed & AQ_NIC_RATE_5GSR) rate |= FW2X_RATE_5G; if (speed & AQ_NIC_RATE_2GS) rate |= FW2X_RATE_2G5; if (speed & AQ_NIC_RATE_1G) rate |= FW2X_RATE_1G; if (speed & AQ_NIC_RATE_100M) rate |= FW2X_RATE_100M; return rate; } static u32 fw2x_to_eee_mask(u32 speed) { u32 rate = 0; if (speed & HW_ATL_FW2X_CAP_EEE_10G_MASK) rate |= AQ_NIC_RATE_EEE_10G; if (speed & HW_ATL_FW2X_CAP_EEE_5G_MASK) rate |= AQ_NIC_RATE_EEE_5G; if (speed & HW_ATL_FW2X_CAP_EEE_2G5_MASK) rate |= AQ_NIC_RATE_EEE_2GS; if (speed & HW_ATL_FW2X_CAP_EEE_1G_MASK) rate |= AQ_NIC_RATE_EEE_1G; return rate; } static u32 eee_mask_to_fw2x(u32 speed) { u32 rate = 0; if (speed & AQ_NIC_RATE_EEE_10G) rate |= HW_ATL_FW2X_CAP_EEE_10G_MASK; if (speed & AQ_NIC_RATE_EEE_5G) rate |= HW_ATL_FW2X_CAP_EEE_5G_MASK; if (speed & AQ_NIC_RATE_EEE_2GS) rate |= HW_ATL_FW2X_CAP_EEE_2G5_MASK; if (speed & AQ_NIC_RATE_EEE_1G) rate |= HW_ATL_FW2X_CAP_EEE_1G_MASK; return rate; } static int aq_fw2x_set_link_speed(struct aq_hw_s *self, u32 speed) { u32 val = link_speed_mask_2fw2x_ratemask(speed); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL_ADDR, val); return 0; } static void aq_fw2x_set_mpi_flow_control(struct aq_hw_s *self, u32 *mpi_state) { if (self->aq_nic_cfg->flow_control & AQ_NIC_FC_RX) *mpi_state |= BIT(CAPS_HI_PAUSE); else *mpi_state &= ~BIT(CAPS_HI_PAUSE); if (self->aq_nic_cfg->flow_control & AQ_NIC_FC_TX) *mpi_state |= BIT(CAPS_HI_ASYMMETRIC_PAUSE); else *mpi_state &= ~BIT(CAPS_HI_ASYMMETRIC_PAUSE); } static void aq_fw2x_upd_eee_rate_bits(struct aq_hw_s *self, u32 *mpi_opts, u32 eee_speeds) { *mpi_opts &= ~(HW_ATL_FW2X_CAP_EEE_1G_MASK | HW_ATL_FW2X_CAP_EEE_2G5_MASK | HW_ATL_FW2X_CAP_EEE_5G_MASK | HW_ATL_FW2X_CAP_EEE_10G_MASK); *mpi_opts |= eee_mask_to_fw2x(eee_speeds); } static int aq_fw2x_set_state(struct aq_hw_s *self, enum hal_atl_utils_fw_state_e state) { u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); struct aq_nic_cfg_s *cfg = self->aq_nic_cfg; switch (state) { case MPI_INIT: mpi_state &= ~BIT(CAPS_HI_LINK_DROP); aq_fw2x_upd_eee_rate_bits(self, &mpi_state, cfg->eee_speeds); aq_fw2x_set_mpi_flow_control(self, &mpi_state); break; case MPI_DEINIT: mpi_state |= BIT(CAPS_HI_LINK_DROP); break; case MPI_RESET: case MPI_POWER: /* No actions */ break; } aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_state); return 0; } static int aq_fw2x_update_link_status(struct aq_hw_s *self) { u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE_ADDR); u32 speed = mpi_state & (FW2X_RATE_100M | FW2X_RATE_1G | FW2X_RATE_2G5 | FW2X_RATE_5G | FW2X_RATE_10G); struct aq_hw_link_status_s *link_status = &self->aq_link_status; if (speed) { if (speed & FW2X_RATE_10G) link_status->mbps = 10000; else if (speed & FW2X_RATE_5G) link_status->mbps = 5000; else if (speed & FW2X_RATE_2G5) link_status->mbps = 2500; else if (speed & FW2X_RATE_1G) link_status->mbps = 1000; else if (speed & FW2X_RATE_100M) link_status->mbps = 100; else link_status->mbps = 10000; } else { link_status->mbps = 0; } return 0; } static int aq_fw2x_get_mac_permanent(struct aq_hw_s *self, u8 *mac) { int err = 0; u32 h = 0U; u32 l = 0U; u32 mac_addr[2] = { 0 }; u32 efuse_addr = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_EFUSE_ADDR); if (efuse_addr != 0) { err = hw_atl_utils_fw_downld_dwords(self, efuse_addr + (40U * 4U), mac_addr, ARRAY_SIZE(mac_addr)); if (err) return err; mac_addr[0] = __swab32(mac_addr[0]); mac_addr[1] = __swab32(mac_addr[1]); } ether_addr_copy(mac, (u8 *)mac_addr); if ((mac[0] & 0x01U) || ((mac[0] | mac[1] | mac[2]) == 0x00U)) { unsigned int rnd = 0; get_random_bytes(&rnd, sizeof(unsigned int)); l = 0xE3000000U | (0xFFFFU & rnd) | (0x00 << 16); h = 0x8001300EU; mac[5] = (u8)(0xFFU & l); l >>= 8; mac[4] = (u8)(0xFFU & l); l >>= 8; mac[3] = (u8)(0xFFU & l); l >>= 8; mac[2] = (u8)(0xFFU & l); mac[1] = (u8)(0xFFU & h); h >>= 8; mac[0] = (u8)(0xFFU & h); } return err; } static int aq_fw2x_update_stats(struct aq_hw_s *self) { int err = 0; u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); u32 orig_stats_val = mpi_opts & BIT(CAPS_HI_STATISTICS); u32 stats_val; /* Toggle statistics bit for FW to update */ mpi_opts = mpi_opts ^ BIT(CAPS_HI_STATISTICS); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); /* Wait FW to report back */ err = readx_poll_timeout_atomic(aq_fw2x_state2_get, self, stats_val, orig_stats_val != (stats_val & BIT(CAPS_HI_STATISTICS)), 1U, 10000U); if (err) return err; return hw_atl_utils_update_stats(self); } static int aq_fw2x_get_phy_temp(struct aq_hw_s *self, int *temp) { u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); u32 temp_val = mpi_opts & HW_ATL_FW2X_CTRL_TEMPERATURE; u32 phy_temp_offset; u32 temp_res; int err = 0; u32 val; phy_temp_offset = self->mbox_addr + offsetof(struct hw_atl_utils_mbox, info) + offsetof(struct hw_aq_info, phy_temperature); /* Toggle statistics bit for FW to 0x36C.18 (CTRL_TEMPERATURE) */ mpi_opts = mpi_opts ^ HW_ATL_FW2X_CTRL_TEMPERATURE; aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); /* Wait FW to report back */ err = readx_poll_timeout_atomic(aq_fw2x_state2_get, self, val, temp_val != (val & HW_ATL_FW2X_CTRL_TEMPERATURE), 1U, 10000U); err = hw_atl_utils_fw_downld_dwords(self, phy_temp_offset, &temp_res, 1); if (err) return err; /* Convert PHY temperature from 1/256 degree Celsius * to 1/1000 degree Celsius. */ *temp = (temp_res & 0xFFFF) * 1000 / 256; return 0; } static int aq_fw2x_set_wol(struct aq_hw_s *self, u8 *mac) { struct hw_atl_utils_fw_rpc *rpc = NULL; struct offload_info *info = NULL; u32 wol_bits = 0; u32 rpc_size; int err = 0; u32 val; if (self->aq_nic_cfg->wol & WAKE_PHY) { aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, HW_ATL_FW2X_CTRL_LINK_DROP); readx_poll_timeout_atomic(aq_fw2x_state2_get, self, val, (val & HW_ATL_FW2X_CTRL_LINK_DROP) != 0, 1000, 100000); wol_bits |= HW_ATL_FW2X_CTRL_WAKE_ON_LINK; } if (self->aq_nic_cfg->wol & WAKE_MAGIC) { wol_bits |= HW_ATL_FW2X_CTRL_SLEEP_PROXY | HW_ATL_FW2X_CTRL_WOL; err = hw_atl_utils_fw_rpc_wait(self, &rpc); if (err < 0) goto err_exit; rpc_size = sizeof(*info) + offsetof(struct hw_atl_utils_fw_rpc, fw2x_offloads); memset(rpc, 0, rpc_size); info = &rpc->fw2x_offloads; memcpy(info->mac_addr, mac, ETH_ALEN); info->len = sizeof(*info); err = hw_atl_utils_fw_rpc_call(self, rpc_size); if (err < 0) goto err_exit; } aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, wol_bits); err_exit: return err; } static int aq_fw2x_set_power(struct aq_hw_s *self, unsigned int power_state, u8 *mac) { int err = 0; if (self->aq_nic_cfg->wol) err = aq_fw2x_set_wol(self, mac); return err; } static int aq_fw2x_send_fw_request(struct aq_hw_s *self, const struct hw_fw_request_iface *fw_req, size_t size) { u32 ctrl2, orig_ctrl2; u32 dword_cnt; int err = 0; u32 val; /* Write data to drvIface Mailbox */ dword_cnt = size / sizeof(u32); if (size % sizeof(u32)) dword_cnt++; err = hw_atl_utils_fw_upload_dwords(self, aq_fw2x_rpc_get(self), (void *)fw_req, dword_cnt); if (err < 0) goto err_exit; /* Toggle statistics bit for FW to update */ ctrl2 = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); orig_ctrl2 = ctrl2 & BIT(CAPS_HI_FW_REQUEST); ctrl2 = ctrl2 ^ BIT(CAPS_HI_FW_REQUEST); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, ctrl2); /* Wait FW to report back */ err = readx_poll_timeout_atomic(aq_fw2x_state2_get, self, val, orig_ctrl2 != (val & BIT(CAPS_HI_FW_REQUEST)), 1U, 10000U); err_exit: return err; } static void aq_fw3x_enable_ptp(struct aq_hw_s *self, int enable) { u32 ptp_opts = aq_hw_read_reg(self, HW_ATL_FW3X_EXT_STATE_ADDR); u32 all_ptp_features = BIT(CAPS_EX_PHY_PTP_EN) | BIT(CAPS_EX_PTP_GPIO_EN); if (enable) ptp_opts |= all_ptp_features; else ptp_opts &= ~all_ptp_features; aq_hw_write_reg(self, HW_ATL_FW3X_EXT_CONTROL_ADDR, ptp_opts); } static int aq_fw2x_led_control(struct aq_hw_s *self, u32 mode) { if (self->fw_ver_actual < HW_ATL_FW_VER_LED) return -EOPNOTSUPP; aq_hw_write_reg(self, HW_ATL_FW2X_MPI_LED_ADDR, mode); return 0; } static int aq_fw2x_set_eee_rate(struct aq_hw_s *self, u32 speed) { u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); aq_fw2x_upd_eee_rate_bits(self, &mpi_opts, speed); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); return 0; } static int aq_fw2x_get_eee_rate(struct aq_hw_s *self, u32 *rate, u32 *supported_rates) { u32 mpi_state; u32 caps_hi; int err = 0; u32 addr = self->mbox_addr + offsetof(struct hw_atl_utils_mbox, info) + offsetof(struct hw_aq_info, caps_hi); err = hw_atl_utils_fw_downld_dwords(self, addr, &caps_hi, sizeof(caps_hi) / sizeof(u32)); if (err) return err; *supported_rates = fw2x_to_eee_mask(caps_hi); mpi_state = aq_fw2x_state2_get(self); *rate = fw2x_to_eee_mask(mpi_state); return err; } static int aq_fw2x_renegotiate(struct aq_hw_s *self) { u32 mpi_opts = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); mpi_opts |= BIT(CTRL_FORCE_RECONNECT); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_opts); return 0; } static int aq_fw2x_set_flow_control(struct aq_hw_s *self) { u32 mpi_state = aq_hw_read_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR); aq_fw2x_set_mpi_flow_control(self, &mpi_state); aq_hw_write_reg(self, HW_ATL_FW2X_MPI_CONTROL2_ADDR, mpi_state); return 0; } static u32 aq_fw2x_get_flow_control(struct aq_hw_s *self, u32 *fcmode) { u32 mpi_state = aq_fw2x_state2_get(self); if (mpi_state & HW_ATL_FW2X_CAP_PAUSE) if (mpi_state & HW_ATL_FW2X_CAP_ASYM_PAUSE) *fcmode = AQ_NIC_FC_RX; else *fcmode = AQ_NIC_FC_RX | AQ_NIC_FC_TX; else if (mpi_state & HW_ATL_FW2X_CAP_ASYM_PAUSE) *fcmode = AQ_NIC_FC_TX; else *fcmode = 0; return 0; } static u32 aq_fw2x_mbox_get(struct aq_hw_s *self) { return aq_hw_read_reg(self, HW_ATL_FW2X_MPI_MBOX_ADDR); } static u32 aq_fw2x_rpc_get(struct aq_hw_s *self) { return aq_hw_read_reg(self, HW_ATL_FW2X_MPI_RPC_ADDR); } static u32 aq_fw2x_state2_get(struct aq_hw_s *self) { return aq_hw_read_reg(self, HW_ATL_FW2X_MPI_STATE2_ADDR); } const struct aq_fw_ops aq_fw_2x_ops = { .init = aq_fw2x_init, .deinit = aq_fw2x_deinit, .reset = NULL, .renegotiate = aq_fw2x_renegotiate, .get_mac_permanent = aq_fw2x_get_mac_permanent, .set_link_speed = aq_fw2x_set_link_speed, .set_state = aq_fw2x_set_state, .update_link_status = aq_fw2x_update_link_status, .update_stats = aq_fw2x_update_stats, .get_phy_temp = aq_fw2x_get_phy_temp, .set_power = aq_fw2x_set_power, .set_eee_rate = aq_fw2x_set_eee_rate, .get_eee_rate = aq_fw2x_get_eee_rate, .set_flow_control = aq_fw2x_set_flow_control, .get_flow_control = aq_fw2x_get_flow_control, .send_fw_request = aq_fw2x_send_fw_request, .enable_ptp = aq_fw3x_enable_ptp, .led_control = aq_fw2x_led_control, };