// SPDX-License-Identifier: GPL-2.0 /* Atheros AR71xx built-in ethernet mac driver * * Copyright (C) 2019 Oleksij Rempel * * List of authors contributed to this driver before mainlining: * Alexander Couzens * Christian Lamparter * Chuanhong Guo * Daniel F. Dickinson * David Bauer * Felix Fietkau * Gabor Juhos * Hauke Mehrtens * Johann Neuhauser * John Crispin * Jo-Philipp Wich * Koen Vandeputte * Lucian Cristian * Matt Merhar * Milan Krstic * Petr Štetiar * Rosen Penev * Stephen Walker * Vittorio Gambaletta * Weijie Gao * Imre Kaloz */ #include #include #include #include #include #include #include #include #include /* For our NAPI weight bigger does *NOT* mean better - it means more * D-cache misses and lots more wasted cycles than we'll ever * possibly gain from saving instructions. */ #define AG71XX_NAPI_WEIGHT 32 #define AG71XX_OOM_REFILL (1 + HZ / 10) #define AG71XX_INT_ERR (AG71XX_INT_RX_BE | AG71XX_INT_TX_BE) #define AG71XX_INT_TX (AG71XX_INT_TX_PS) #define AG71XX_INT_RX (AG71XX_INT_RX_PR | AG71XX_INT_RX_OF) #define AG71XX_INT_POLL (AG71XX_INT_RX | AG71XX_INT_TX) #define AG71XX_INT_INIT (AG71XX_INT_ERR | AG71XX_INT_POLL) #define AG71XX_TX_MTU_LEN 1540 #define AG71XX_TX_RING_SPLIT 512 #define AG71XX_TX_RING_DS_PER_PKT DIV_ROUND_UP(AG71XX_TX_MTU_LEN, \ AG71XX_TX_RING_SPLIT) #define AG71XX_TX_RING_SIZE_DEFAULT 128 #define AG71XX_RX_RING_SIZE_DEFAULT 256 #define AG71XX_MDIO_RETRY 1000 #define AG71XX_MDIO_DELAY 5 #define AG71XX_MDIO_MAX_CLK 5000000 /* Register offsets */ #define AG71XX_REG_MAC_CFG1 0x0000 #define MAC_CFG1_TXE BIT(0) /* Tx Enable */ #define MAC_CFG1_STX BIT(1) /* Synchronize Tx Enable */ #define MAC_CFG1_RXE BIT(2) /* Rx Enable */ #define MAC_CFG1_SRX BIT(3) /* Synchronize Rx Enable */ #define MAC_CFG1_TFC BIT(4) /* Tx Flow Control Enable */ #define MAC_CFG1_RFC BIT(5) /* Rx Flow Control Enable */ #define MAC_CFG1_SR BIT(31) /* Soft Reset */ #define MAC_CFG1_INIT (MAC_CFG1_RXE | MAC_CFG1_TXE | \ MAC_CFG1_SRX | MAC_CFG1_STX) #define AG71XX_REG_MAC_CFG2 0x0004 #define MAC_CFG2_FDX BIT(0) #define MAC_CFG2_PAD_CRC_EN BIT(2) #define MAC_CFG2_LEN_CHECK BIT(4) #define MAC_CFG2_IF_1000 BIT(9) #define MAC_CFG2_IF_10_100 BIT(8) #define AG71XX_REG_MAC_MFL 0x0010 #define AG71XX_REG_MII_CFG 0x0020 #define MII_CFG_CLK_DIV_4 0 #define MII_CFG_CLK_DIV_6 2 #define MII_CFG_CLK_DIV_8 3 #define MII_CFG_CLK_DIV_10 4 #define MII_CFG_CLK_DIV_14 5 #define MII_CFG_CLK_DIV_20 6 #define MII_CFG_CLK_DIV_28 7 #define MII_CFG_CLK_DIV_34 8 #define MII_CFG_CLK_DIV_42 9 #define MII_CFG_CLK_DIV_50 10 #define MII_CFG_CLK_DIV_58 11 #define MII_CFG_CLK_DIV_66 12 #define MII_CFG_CLK_DIV_74 13 #define MII_CFG_CLK_DIV_82 14 #define MII_CFG_CLK_DIV_98 15 #define MII_CFG_RESET BIT(31) #define AG71XX_REG_MII_CMD 0x0024 #define MII_CMD_READ BIT(0) #define AG71XX_REG_MII_ADDR 0x0028 #define MII_ADDR_SHIFT 8 #define AG71XX_REG_MII_CTRL 0x002c #define AG71XX_REG_MII_STATUS 0x0030 #define AG71XX_REG_MII_IND 0x0034 #define MII_IND_BUSY BIT(0) #define MII_IND_INVALID BIT(2) #define AG71XX_REG_MAC_IFCTL 0x0038 #define MAC_IFCTL_SPEED BIT(16) #define AG71XX_REG_MAC_ADDR1 0x0040 #define AG71XX_REG_MAC_ADDR2 0x0044 #define AG71XX_REG_FIFO_CFG0 0x0048 #define FIFO_CFG0_WTM BIT(0) /* Watermark Module */ #define FIFO_CFG0_RXS BIT(1) /* Rx System Module */ #define FIFO_CFG0_RXF BIT(2) /* Rx Fabric Module */ #define FIFO_CFG0_TXS BIT(3) /* Tx System Module */ #define FIFO_CFG0_TXF BIT(4) /* Tx Fabric Module */ #define FIFO_CFG0_ALL (FIFO_CFG0_WTM | FIFO_CFG0_RXS | FIFO_CFG0_RXF \ | FIFO_CFG0_TXS | FIFO_CFG0_TXF) #define FIFO_CFG0_INIT (FIFO_CFG0_ALL << FIFO_CFG0_ENABLE_SHIFT) #define FIFO_CFG0_ENABLE_SHIFT 8 #define AG71XX_REG_FIFO_CFG1 0x004c #define AG71XX_REG_FIFO_CFG2 0x0050 #define AG71XX_REG_FIFO_CFG3 0x0054 #define AG71XX_REG_FIFO_CFG4 0x0058 #define FIFO_CFG4_DE BIT(0) /* Drop Event */ #define FIFO_CFG4_DV BIT(1) /* RX_DV Event */ #define FIFO_CFG4_FC BIT(2) /* False Carrier */ #define FIFO_CFG4_CE BIT(3) /* Code Error */ #define FIFO_CFG4_CR BIT(4) /* CRC error */ #define FIFO_CFG4_LM BIT(5) /* Length Mismatch */ #define FIFO_CFG4_LO BIT(6) /* Length out of range */ #define FIFO_CFG4_OK BIT(7) /* Packet is OK */ #define FIFO_CFG4_MC BIT(8) /* Multicast Packet */ #define FIFO_CFG4_BC BIT(9) /* Broadcast Packet */ #define FIFO_CFG4_DR BIT(10) /* Dribble */ #define FIFO_CFG4_LE BIT(11) /* Long Event */ #define FIFO_CFG4_CF BIT(12) /* Control Frame */ #define FIFO_CFG4_PF BIT(13) /* Pause Frame */ #define FIFO_CFG4_UO BIT(14) /* Unsupported Opcode */ #define FIFO_CFG4_VT BIT(15) /* VLAN tag detected */ #define FIFO_CFG4_FT BIT(16) /* Frame Truncated */ #define FIFO_CFG4_UC BIT(17) /* Unicast Packet */ #define FIFO_CFG4_INIT (FIFO_CFG4_DE | FIFO_CFG4_DV | FIFO_CFG4_FC | \ FIFO_CFG4_CE | FIFO_CFG4_CR | FIFO_CFG4_LM | \ FIFO_CFG4_LO | FIFO_CFG4_OK | FIFO_CFG4_MC | \ FIFO_CFG4_BC | FIFO_CFG4_DR | FIFO_CFG4_LE | \ FIFO_CFG4_CF | FIFO_CFG4_PF | FIFO_CFG4_UO | \ FIFO_CFG4_VT) #define AG71XX_REG_FIFO_CFG5 0x005c #define FIFO_CFG5_DE BIT(0) /* Drop Event */ #define FIFO_CFG5_DV BIT(1) /* RX_DV Event */ #define FIFO_CFG5_FC BIT(2) /* False Carrier */ #define FIFO_CFG5_CE BIT(3) /* Code Error */ #define FIFO_CFG5_LM BIT(4) /* Length Mismatch */ #define FIFO_CFG5_LO BIT(5) /* Length Out of Range */ #define FIFO_CFG5_OK BIT(6) /* Packet is OK */ #define FIFO_CFG5_MC BIT(7) /* Multicast Packet */ #define FIFO_CFG5_BC BIT(8) /* Broadcast Packet */ #define FIFO_CFG5_DR BIT(9) /* Dribble */ #define FIFO_CFG5_CF BIT(10) /* Control Frame */ #define FIFO_CFG5_PF BIT(11) /* Pause Frame */ #define FIFO_CFG5_UO BIT(12) /* Unsupported Opcode */ #define FIFO_CFG5_VT BIT(13) /* VLAN tag detected */ #define FIFO_CFG5_LE BIT(14) /* Long Event */ #define FIFO_CFG5_FT BIT(15) /* Frame Truncated */ #define FIFO_CFG5_16 BIT(16) /* unknown */ #define FIFO_CFG5_17 BIT(17) /* unknown */ #define FIFO_CFG5_SF BIT(18) /* Short Frame */ #define FIFO_CFG5_BM BIT(19) /* Byte Mode */ #define FIFO_CFG5_INIT (FIFO_CFG5_DE | FIFO_CFG5_DV | FIFO_CFG5_FC | \ FIFO_CFG5_CE | FIFO_CFG5_LO | FIFO_CFG5_OK | \ FIFO_CFG5_MC | FIFO_CFG5_BC | FIFO_CFG5_DR | \ FIFO_CFG5_CF | FIFO_CFG5_PF | FIFO_CFG5_VT | \ FIFO_CFG5_LE | FIFO_CFG5_FT | FIFO_CFG5_16 | \ FIFO_CFG5_17 | FIFO_CFG5_SF) #define AG71XX_REG_TX_CTRL 0x0180 #define TX_CTRL_TXE BIT(0) /* Tx Enable */ #define AG71XX_REG_TX_DESC 0x0184 #define AG71XX_REG_TX_STATUS 0x0188 #define TX_STATUS_PS BIT(0) /* Packet Sent */ #define TX_STATUS_UR BIT(1) /* Tx Underrun */ #define TX_STATUS_BE BIT(3) /* Bus Error */ #define AG71XX_REG_RX_CTRL 0x018c #define RX_CTRL_RXE BIT(0) /* Rx Enable */ #define AG71XX_DMA_RETRY 10 #define AG71XX_DMA_DELAY 1 #define AG71XX_REG_RX_DESC 0x0190 #define AG71XX_REG_RX_STATUS 0x0194 #define RX_STATUS_PR BIT(0) /* Packet Received */ #define RX_STATUS_OF BIT(2) /* Rx Overflow */ #define RX_STATUS_BE BIT(3) /* Bus Error */ #define AG71XX_REG_INT_ENABLE 0x0198 #define AG71XX_REG_INT_STATUS 0x019c #define AG71XX_INT_TX_PS BIT(0) #define AG71XX_INT_TX_UR BIT(1) #define AG71XX_INT_TX_BE BIT(3) #define AG71XX_INT_RX_PR BIT(4) #define AG71XX_INT_RX_OF BIT(6) #define AG71XX_INT_RX_BE BIT(7) #define AG71XX_REG_FIFO_DEPTH 0x01a8 #define AG71XX_REG_RX_SM 0x01b0 #define AG71XX_REG_TX_SM 0x01b4 #define ETH_SWITCH_HEADER_LEN 2 #define AG71XX_DEFAULT_MSG_ENABLE \ (NETIF_MSG_DRV \ | NETIF_MSG_PROBE \ | NETIF_MSG_LINK \ | NETIF_MSG_TIMER \ | NETIF_MSG_IFDOWN \ | NETIF_MSG_IFUP \ | NETIF_MSG_RX_ERR \ | NETIF_MSG_TX_ERR) #define DESC_EMPTY BIT(31) #define DESC_MORE BIT(24) #define DESC_PKTLEN_M 0xfff struct ag71xx_desc { u32 data; u32 ctrl; u32 next; u32 pad; } __aligned(4); #define AG71XX_DESC_SIZE roundup(sizeof(struct ag71xx_desc), \ L1_CACHE_BYTES) struct ag71xx_buf { union { struct { struct sk_buff *skb; unsigned int len; } tx; struct { dma_addr_t dma_addr; void *rx_buf; } rx; }; }; struct ag71xx_ring { /* "Hot" fields in the data path. */ unsigned int curr; unsigned int dirty; /* "Cold" fields - not used in the data path. */ struct ag71xx_buf *buf; u16 order; u16 desc_split; dma_addr_t descs_dma; u8 *descs_cpu; }; enum ag71xx_type { AR7100, AR7240, AR9130, AR9330, AR9340, QCA9530, QCA9550, }; struct ag71xx_dcfg { u32 max_frame_len; const u32 *fifodata; u16 desc_pktlen_mask; bool tx_hang_workaround; enum ag71xx_type type; }; struct ag71xx { /* Critical data related to the per-packet data path are clustered * early in this structure to help improve the D-cache footprint. */ struct ag71xx_ring rx_ring ____cacheline_aligned; struct ag71xx_ring tx_ring ____cacheline_aligned; u16 rx_buf_size; u8 rx_buf_offset; struct net_device *ndev; struct platform_device *pdev; struct napi_struct napi; u32 msg_enable; const struct ag71xx_dcfg *dcfg; /* From this point onwards we're not looking at per-packet fields. */ void __iomem *mac_base; struct ag71xx_desc *stop_desc; dma_addr_t stop_desc_dma; phy_interface_t phy_if_mode; struct delayed_work restart_work; struct timer_list oom_timer; struct reset_control *mac_reset; u32 fifodata[3]; int mac_idx; struct reset_control *mdio_reset; struct mii_bus *mii_bus; struct clk *clk_mdio; struct clk *clk_eth; }; static int ag71xx_desc_empty(struct ag71xx_desc *desc) { return (desc->ctrl & DESC_EMPTY) != 0; } static struct ag71xx_desc *ag71xx_ring_desc(struct ag71xx_ring *ring, int idx) { return (struct ag71xx_desc *)&ring->descs_cpu[idx * AG71XX_DESC_SIZE]; } static int ag71xx_ring_size_order(int size) { return fls(size - 1); } static bool ag71xx_is(struct ag71xx *ag, enum ag71xx_type type) { return ag->dcfg->type == type; } static void ag71xx_wr(struct ag71xx *ag, unsigned int reg, u32 value) { iowrite32(value, ag->mac_base + reg); /* flush write */ (void)ioread32(ag->mac_base + reg); } static u32 ag71xx_rr(struct ag71xx *ag, unsigned int reg) { return ioread32(ag->mac_base + reg); } static void ag71xx_sb(struct ag71xx *ag, unsigned int reg, u32 mask) { void __iomem *r; r = ag->mac_base + reg; iowrite32(ioread32(r) | mask, r); /* flush write */ (void)ioread32(r); } static void ag71xx_cb(struct ag71xx *ag, unsigned int reg, u32 mask) { void __iomem *r; r = ag->mac_base + reg; iowrite32(ioread32(r) & ~mask, r); /* flush write */ (void)ioread32(r); } static void ag71xx_int_enable(struct ag71xx *ag, u32 ints) { ag71xx_sb(ag, AG71XX_REG_INT_ENABLE, ints); } static void ag71xx_int_disable(struct ag71xx *ag, u32 ints) { ag71xx_cb(ag, AG71XX_REG_INT_ENABLE, ints); } static int ag71xx_mdio_wait_busy(struct ag71xx *ag) { struct net_device *ndev = ag->ndev; int i; for (i = 0; i < AG71XX_MDIO_RETRY; i++) { u32 busy; udelay(AG71XX_MDIO_DELAY); busy = ag71xx_rr(ag, AG71XX_REG_MII_IND); if (!busy) return 0; udelay(AG71XX_MDIO_DELAY); } netif_err(ag, link, ndev, "MDIO operation timed out\n"); return -ETIMEDOUT; } static int ag71xx_mdio_mii_read(struct mii_bus *bus, int addr, int reg) { struct ag71xx *ag = bus->priv; int err, val; err = ag71xx_mdio_wait_busy(ag); if (err) return err; ag71xx_wr(ag, AG71XX_REG_MII_ADDR, ((addr & 0x1f) << MII_ADDR_SHIFT) | (reg & 0xff)); /* enable read mode */ ag71xx_wr(ag, AG71XX_REG_MII_CMD, MII_CMD_READ); err = ag71xx_mdio_wait_busy(ag); if (err) return err; val = ag71xx_rr(ag, AG71XX_REG_MII_STATUS); /* disable read mode */ ag71xx_wr(ag, AG71XX_REG_MII_CMD, 0); netif_dbg(ag, link, ag->ndev, "mii_read: addr=%04x, reg=%04x, value=%04x\n", addr, reg, val); return val; } static int ag71xx_mdio_mii_write(struct mii_bus *bus, int addr, int reg, u16 val) { struct ag71xx *ag = bus->priv; netif_dbg(ag, link, ag->ndev, "mii_write: addr=%04x, reg=%04x, value=%04x\n", addr, reg, val); ag71xx_wr(ag, AG71XX_REG_MII_ADDR, ((addr & 0x1f) << MII_ADDR_SHIFT) | (reg & 0xff)); ag71xx_wr(ag, AG71XX_REG_MII_CTRL, val); return ag71xx_mdio_wait_busy(ag); } static const u32 ar71xx_mdio_div_table[] = { 4, 4, 6, 8, 10, 14, 20, 28, }; static const u32 ar7240_mdio_div_table[] = { 2, 2, 4, 6, 8, 12, 18, 26, 32, 40, 48, 56, 62, 70, 78, 96, }; static const u32 ar933x_mdio_div_table[] = { 4, 4, 6, 8, 10, 14, 20, 28, 34, 42, 50, 58, 66, 74, 82, 98, }; static int ag71xx_mdio_get_divider(struct ag71xx *ag, u32 *div) { unsigned long ref_clock; const u32 *table; int ndivs, i; ref_clock = clk_get_rate(ag->clk_mdio); if (!ref_clock) return -EINVAL; if (ag71xx_is(ag, AR9330) || ag71xx_is(ag, AR9340)) { table = ar933x_mdio_div_table; ndivs = ARRAY_SIZE(ar933x_mdio_div_table); } else if (ag71xx_is(ag, AR7240)) { table = ar7240_mdio_div_table; ndivs = ARRAY_SIZE(ar7240_mdio_div_table); } else { table = ar71xx_mdio_div_table; ndivs = ARRAY_SIZE(ar71xx_mdio_div_table); } for (i = 0; i < ndivs; i++) { unsigned long t; t = ref_clock / table[i]; if (t <= AG71XX_MDIO_MAX_CLK) { *div = i; return 0; } } return -ENOENT; } static int ag71xx_mdio_reset(struct mii_bus *bus) { struct ag71xx *ag = bus->priv; int err; u32 t; err = ag71xx_mdio_get_divider(ag, &t); if (err) return err; ag71xx_wr(ag, AG71XX_REG_MII_CFG, t | MII_CFG_RESET); usleep_range(100, 200); ag71xx_wr(ag, AG71XX_REG_MII_CFG, t); usleep_range(100, 200); return 0; } static int ag71xx_mdio_probe(struct ag71xx *ag) { struct device *dev = &ag->pdev->dev; struct net_device *ndev = ag->ndev; static struct mii_bus *mii_bus; struct device_node *np, *mnp; int err; np = dev->of_node; ag->mii_bus = NULL; ag->clk_mdio = devm_clk_get(dev, "mdio"); if (IS_ERR(ag->clk_mdio)) { netif_err(ag, probe, ndev, "Failed to get mdio clk.\n"); return PTR_ERR(ag->clk_mdio); } err = clk_prepare_enable(ag->clk_mdio); if (err) { netif_err(ag, probe, ndev, "Failed to enable mdio clk.\n"); return err; } mii_bus = devm_mdiobus_alloc(dev); if (!mii_bus) { err = -ENOMEM; goto mdio_err_put_clk; } ag->mdio_reset = of_reset_control_get_exclusive(np, "mdio"); if (IS_ERR(ag->mdio_reset)) { netif_err(ag, probe, ndev, "Failed to get reset mdio.\n"); return PTR_ERR(ag->mdio_reset); } mii_bus->name = "ag71xx_mdio"; mii_bus->read = ag71xx_mdio_mii_read; mii_bus->write = ag71xx_mdio_mii_write; mii_bus->reset = ag71xx_mdio_reset; mii_bus->priv = ag; mii_bus->parent = dev; snprintf(mii_bus->id, MII_BUS_ID_SIZE, "%s.%d", np->name, ag->mac_idx); if (!IS_ERR(ag->mdio_reset)) { reset_control_assert(ag->mdio_reset); msleep(100); reset_control_deassert(ag->mdio_reset); msleep(200); } mnp = of_get_child_by_name(np, "mdio"); err = of_mdiobus_register(mii_bus, mnp); of_node_put(mnp); if (err) goto mdio_err_put_clk; ag->mii_bus = mii_bus; return 0; mdio_err_put_clk: clk_disable_unprepare(ag->clk_mdio); return err; } static void ag71xx_mdio_remove(struct ag71xx *ag) { if (ag->mii_bus) mdiobus_unregister(ag->mii_bus); clk_disable_unprepare(ag->clk_mdio); } static void ag71xx_hw_stop(struct ag71xx *ag) { /* disable all interrupts and stop the rx/tx engine */ ag71xx_wr(ag, AG71XX_REG_INT_ENABLE, 0); ag71xx_wr(ag, AG71XX_REG_RX_CTRL, 0); ag71xx_wr(ag, AG71XX_REG_TX_CTRL, 0); } static bool ag71xx_check_dma_stuck(struct ag71xx *ag) { unsigned long timestamp; u32 rx_sm, tx_sm, rx_fd; timestamp = netdev_get_tx_queue(ag->ndev, 0)->trans_start; if (likely(time_before(jiffies, timestamp + HZ / 10))) return false; if (!netif_carrier_ok(ag->ndev)) return false; rx_sm = ag71xx_rr(ag, AG71XX_REG_RX_SM); if ((rx_sm & 0x7) == 0x3 && ((rx_sm >> 4) & 0x7) == 0x6) return true; tx_sm = ag71xx_rr(ag, AG71XX_REG_TX_SM); rx_fd = ag71xx_rr(ag, AG71XX_REG_FIFO_DEPTH); if (((tx_sm >> 4) & 0x7) == 0 && ((rx_sm & 0x7) == 0) && ((rx_sm >> 4) & 0x7) == 0 && rx_fd == 0) return true; return false; } static int ag71xx_tx_packets(struct ag71xx *ag, bool flush) { struct ag71xx_ring *ring = &ag->tx_ring; int sent = 0, bytes_compl = 0, n = 0; struct net_device *ndev = ag->ndev; int ring_mask, ring_size; bool dma_stuck = false; ring_mask = BIT(ring->order) - 1; ring_size = BIT(ring->order); netif_dbg(ag, tx_queued, ndev, "processing TX ring\n"); while (ring->dirty + n != ring->curr) { struct ag71xx_desc *desc; struct sk_buff *skb; unsigned int i; i = (ring->dirty + n) & ring_mask; desc = ag71xx_ring_desc(ring, i); skb = ring->buf[i].tx.skb; if (!flush && !ag71xx_desc_empty(desc)) { if (ag->dcfg->tx_hang_workaround && ag71xx_check_dma_stuck(ag)) { schedule_delayed_work(&ag->restart_work, HZ / 2); dma_stuck = true; } break; } if (flush) desc->ctrl |= DESC_EMPTY; n++; if (!skb) continue; dev_kfree_skb_any(skb); ring->buf[i].tx.skb = NULL; bytes_compl += ring->buf[i].tx.len; sent++; ring->dirty += n; while (n > 0) { ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_PS); n--; } } netif_dbg(ag, tx_done, ndev, "%d packets sent out\n", sent); if (!sent) return 0; ag->ndev->stats.tx_bytes += bytes_compl; ag->ndev->stats.tx_packets += sent; netdev_completed_queue(ag->ndev, sent, bytes_compl); if ((ring->curr - ring->dirty) < (ring_size * 3) / 4) netif_wake_queue(ag->ndev); if (!dma_stuck) cancel_delayed_work(&ag->restart_work); return sent; } static void ag71xx_dma_wait_stop(struct ag71xx *ag) { struct net_device *ndev = ag->ndev; int i; for (i = 0; i < AG71XX_DMA_RETRY; i++) { u32 rx, tx; mdelay(AG71XX_DMA_DELAY); rx = ag71xx_rr(ag, AG71XX_REG_RX_CTRL) & RX_CTRL_RXE; tx = ag71xx_rr(ag, AG71XX_REG_TX_CTRL) & TX_CTRL_TXE; if (!rx && !tx) return; } netif_err(ag, hw, ndev, "DMA stop operation timed out\n"); } static void ag71xx_dma_reset(struct ag71xx *ag) { struct net_device *ndev = ag->ndev; u32 val; int i; /* stop RX and TX */ ag71xx_wr(ag, AG71XX_REG_RX_CTRL, 0); ag71xx_wr(ag, AG71XX_REG_TX_CTRL, 0); /* give the hardware some time to really stop all rx/tx activity * clearing the descriptors too early causes random memory corruption */ ag71xx_dma_wait_stop(ag); /* clear descriptor addresses */ ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->stop_desc_dma); ag71xx_wr(ag, AG71XX_REG_RX_DESC, ag->stop_desc_dma); /* clear pending RX/TX interrupts */ for (i = 0; i < 256; i++) { ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_PR); ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_PS); } /* clear pending errors */ ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_BE | RX_STATUS_OF); ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_BE | TX_STATUS_UR); val = ag71xx_rr(ag, AG71XX_REG_RX_STATUS); if (val) netif_err(ag, hw, ndev, "unable to clear DMA Rx status: %08x\n", val); val = ag71xx_rr(ag, AG71XX_REG_TX_STATUS); /* mask out reserved bits */ val &= ~0xff000000; if (val) netif_err(ag, hw, ndev, "unable to clear DMA Tx status: %08x\n", val); } static void ag71xx_hw_setup(struct ag71xx *ag) { u32 init = MAC_CFG1_INIT; /* setup MAC configuration registers */ ag71xx_wr(ag, AG71XX_REG_MAC_CFG1, init); ag71xx_sb(ag, AG71XX_REG_MAC_CFG2, MAC_CFG2_PAD_CRC_EN | MAC_CFG2_LEN_CHECK); /* setup max frame length to zero */ ag71xx_wr(ag, AG71XX_REG_MAC_MFL, 0); /* setup FIFO configuration registers */ ag71xx_wr(ag, AG71XX_REG_FIFO_CFG0, FIFO_CFG0_INIT); ag71xx_wr(ag, AG71XX_REG_FIFO_CFG1, ag->fifodata[0]); ag71xx_wr(ag, AG71XX_REG_FIFO_CFG2, ag->fifodata[1]); ag71xx_wr(ag, AG71XX_REG_FIFO_CFG4, FIFO_CFG4_INIT); ag71xx_wr(ag, AG71XX_REG_FIFO_CFG5, FIFO_CFG5_INIT); } static unsigned int ag71xx_max_frame_len(unsigned int mtu) { return ETH_SWITCH_HEADER_LEN + ETH_HLEN + VLAN_HLEN + mtu + ETH_FCS_LEN; } static void ag71xx_hw_set_macaddr(struct ag71xx *ag, unsigned char *mac) { u32 t; t = (((u32)mac[5]) << 24) | (((u32)mac[4]) << 16) | (((u32)mac[3]) << 8) | ((u32)mac[2]); ag71xx_wr(ag, AG71XX_REG_MAC_ADDR1, t); t = (((u32)mac[1]) << 24) | (((u32)mac[0]) << 16); ag71xx_wr(ag, AG71XX_REG_MAC_ADDR2, t); } static void ag71xx_fast_reset(struct ag71xx *ag) { struct net_device *dev = ag->ndev; u32 rx_ds; u32 mii_reg; ag71xx_hw_stop(ag); mii_reg = ag71xx_rr(ag, AG71XX_REG_MII_CFG); rx_ds = ag71xx_rr(ag, AG71XX_REG_RX_DESC); ag71xx_tx_packets(ag, true); reset_control_assert(ag->mac_reset); usleep_range(10, 20); reset_control_deassert(ag->mac_reset); usleep_range(10, 20); ag71xx_dma_reset(ag); ag71xx_hw_setup(ag); ag->tx_ring.curr = 0; ag->tx_ring.dirty = 0; netdev_reset_queue(ag->ndev); /* setup max frame length */ ag71xx_wr(ag, AG71XX_REG_MAC_MFL, ag71xx_max_frame_len(ag->ndev->mtu)); ag71xx_wr(ag, AG71XX_REG_RX_DESC, rx_ds); ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->tx_ring.descs_dma); ag71xx_wr(ag, AG71XX_REG_MII_CFG, mii_reg); ag71xx_hw_set_macaddr(ag, dev->dev_addr); } static void ag71xx_hw_start(struct ag71xx *ag) { /* start RX engine */ ag71xx_wr(ag, AG71XX_REG_RX_CTRL, RX_CTRL_RXE); /* enable interrupts */ ag71xx_wr(ag, AG71XX_REG_INT_ENABLE, AG71XX_INT_INIT); netif_wake_queue(ag->ndev); } static void ag71xx_link_adjust(struct ag71xx *ag, bool update) { struct phy_device *phydev = ag->ndev->phydev; u32 cfg2; u32 ifctl; u32 fifo5; if (!phydev->link && update) { ag71xx_hw_stop(ag); return; } if (!ag71xx_is(ag, AR7100) && !ag71xx_is(ag, AR9130)) ag71xx_fast_reset(ag); cfg2 = ag71xx_rr(ag, AG71XX_REG_MAC_CFG2); cfg2 &= ~(MAC_CFG2_IF_1000 | MAC_CFG2_IF_10_100 | MAC_CFG2_FDX); cfg2 |= (phydev->duplex) ? MAC_CFG2_FDX : 0; ifctl = ag71xx_rr(ag, AG71XX_REG_MAC_IFCTL); ifctl &= ~(MAC_IFCTL_SPEED); fifo5 = ag71xx_rr(ag, AG71XX_REG_FIFO_CFG5); fifo5 &= ~FIFO_CFG5_BM; switch (phydev->speed) { case SPEED_1000: cfg2 |= MAC_CFG2_IF_1000; fifo5 |= FIFO_CFG5_BM; break; case SPEED_100: cfg2 |= MAC_CFG2_IF_10_100; ifctl |= MAC_IFCTL_SPEED; break; case SPEED_10: cfg2 |= MAC_CFG2_IF_10_100; break; default: WARN(1, "not supported speed %i\n", phydev->speed); return; } if (ag->tx_ring.desc_split) { ag->fifodata[2] &= 0xffff; ag->fifodata[2] |= ((2048 - ag->tx_ring.desc_split) / 4) << 16; } ag71xx_wr(ag, AG71XX_REG_FIFO_CFG3, ag->fifodata[2]); ag71xx_wr(ag, AG71XX_REG_MAC_CFG2, cfg2); ag71xx_wr(ag, AG71XX_REG_FIFO_CFG5, fifo5); ag71xx_wr(ag, AG71XX_REG_MAC_IFCTL, ifctl); ag71xx_hw_start(ag); if (update) phy_print_status(phydev); } static void ag71xx_phy_link_adjust(struct net_device *ndev) { struct ag71xx *ag = netdev_priv(ndev); ag71xx_link_adjust(ag, true); } static int ag71xx_phy_connect(struct ag71xx *ag) { struct device_node *np = ag->pdev->dev.of_node; struct net_device *ndev = ag->ndev; struct device_node *phy_node; struct phy_device *phydev; int ret; if (of_phy_is_fixed_link(np)) { ret = of_phy_register_fixed_link(np); if (ret < 0) { netif_err(ag, probe, ndev, "Failed to register fixed PHY link: %d\n", ret); return ret; } phy_node = of_node_get(np); } else { phy_node = of_parse_phandle(np, "phy-handle", 0); } if (!phy_node) { netif_err(ag, probe, ndev, "Could not find valid phy node\n"); return -ENODEV; } phydev = of_phy_connect(ag->ndev, phy_node, ag71xx_phy_link_adjust, 0, ag->phy_if_mode); of_node_put(phy_node); if (!phydev) { netif_err(ag, probe, ndev, "Could not connect to PHY device\n"); return -ENODEV; } phy_attached_info(phydev); return 0; } static void ag71xx_ring_tx_clean(struct ag71xx *ag) { struct ag71xx_ring *ring = &ag->tx_ring; int ring_mask = BIT(ring->order) - 1; u32 bytes_compl = 0, pkts_compl = 0; struct net_device *ndev = ag->ndev; while (ring->curr != ring->dirty) { struct ag71xx_desc *desc; u32 i = ring->dirty & ring_mask; desc = ag71xx_ring_desc(ring, i); if (!ag71xx_desc_empty(desc)) { desc->ctrl = 0; ndev->stats.tx_errors++; } if (ring->buf[i].tx.skb) { bytes_compl += ring->buf[i].tx.len; pkts_compl++; dev_kfree_skb_any(ring->buf[i].tx.skb); } ring->buf[i].tx.skb = NULL; ring->dirty++; } /* flush descriptors */ wmb(); netdev_completed_queue(ndev, pkts_compl, bytes_compl); } static void ag71xx_ring_tx_init(struct ag71xx *ag) { struct ag71xx_ring *ring = &ag->tx_ring; int ring_size = BIT(ring->order); int ring_mask = ring_size - 1; int i; for (i = 0; i < ring_size; i++) { struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i); desc->next = (u32)(ring->descs_dma + AG71XX_DESC_SIZE * ((i + 1) & ring_mask)); desc->ctrl = DESC_EMPTY; ring->buf[i].tx.skb = NULL; } /* flush descriptors */ wmb(); ring->curr = 0; ring->dirty = 0; netdev_reset_queue(ag->ndev); } static void ag71xx_ring_rx_clean(struct ag71xx *ag) { struct ag71xx_ring *ring = &ag->rx_ring; int ring_size = BIT(ring->order); int i; if (!ring->buf) return; for (i = 0; i < ring_size; i++) if (ring->buf[i].rx.rx_buf) { dma_unmap_single(&ag->pdev->dev, ring->buf[i].rx.dma_addr, ag->rx_buf_size, DMA_FROM_DEVICE); skb_free_frag(ring->buf[i].rx.rx_buf); } } static int ag71xx_buffer_size(struct ag71xx *ag) { return ag->rx_buf_size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); } static bool ag71xx_fill_rx_buf(struct ag71xx *ag, struct ag71xx_buf *buf, int offset, void *(*alloc)(unsigned int size)) { struct ag71xx_ring *ring = &ag->rx_ring; struct ag71xx_desc *desc; void *data; desc = ag71xx_ring_desc(ring, buf - &ring->buf[0]); data = alloc(ag71xx_buffer_size(ag)); if (!data) return false; buf->rx.rx_buf = data; buf->rx.dma_addr = dma_map_single(&ag->pdev->dev, data, ag->rx_buf_size, DMA_FROM_DEVICE); desc->data = (u32)buf->rx.dma_addr + offset; return true; } static int ag71xx_ring_rx_init(struct ag71xx *ag) { struct ag71xx_ring *ring = &ag->rx_ring; struct net_device *ndev = ag->ndev; int ring_mask = BIT(ring->order) - 1; int ring_size = BIT(ring->order); unsigned int i; int ret; ret = 0; for (i = 0; i < ring_size; i++) { struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i); desc->next = (u32)(ring->descs_dma + AG71XX_DESC_SIZE * ((i + 1) & ring_mask)); netif_dbg(ag, rx_status, ndev, "RX desc at %p, next is %08x\n", desc, desc->next); } for (i = 0; i < ring_size; i++) { struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i); if (!ag71xx_fill_rx_buf(ag, &ring->buf[i], ag->rx_buf_offset, netdev_alloc_frag)) { ret = -ENOMEM; break; } desc->ctrl = DESC_EMPTY; } /* flush descriptors */ wmb(); ring->curr = 0; ring->dirty = 0; return ret; } static int ag71xx_ring_rx_refill(struct ag71xx *ag) { struct ag71xx_ring *ring = &ag->rx_ring; int ring_mask = BIT(ring->order) - 1; int offset = ag->rx_buf_offset; unsigned int count; count = 0; for (; ring->curr - ring->dirty > 0; ring->dirty++) { struct ag71xx_desc *desc; unsigned int i; i = ring->dirty & ring_mask; desc = ag71xx_ring_desc(ring, i); if (!ring->buf[i].rx.rx_buf && !ag71xx_fill_rx_buf(ag, &ring->buf[i], offset, napi_alloc_frag)) break; desc->ctrl = DESC_EMPTY; count++; } /* flush descriptors */ wmb(); netif_dbg(ag, rx_status, ag->ndev, "%u rx descriptors refilled\n", count); return count; } static int ag71xx_rings_init(struct ag71xx *ag) { struct ag71xx_ring *tx = &ag->tx_ring; struct ag71xx_ring *rx = &ag->rx_ring; int ring_size, tx_size; ring_size = BIT(tx->order) + BIT(rx->order); tx_size = BIT(tx->order); tx->buf = kcalloc(ring_size, sizeof(*tx->buf), GFP_KERNEL); if (!tx->buf) return -ENOMEM; tx->descs_cpu = dma_alloc_coherent(&ag->pdev->dev, ring_size * AG71XX_DESC_SIZE, &tx->descs_dma, GFP_KERNEL); if (!tx->descs_cpu) { kfree(tx->buf); tx->buf = NULL; return -ENOMEM; } rx->buf = &tx->buf[tx_size]; rx->descs_cpu = ((void *)tx->descs_cpu) + tx_size * AG71XX_DESC_SIZE; rx->descs_dma = tx->descs_dma + tx_size * AG71XX_DESC_SIZE; ag71xx_ring_tx_init(ag); return ag71xx_ring_rx_init(ag); } static void ag71xx_rings_free(struct ag71xx *ag) { struct ag71xx_ring *tx = &ag->tx_ring; struct ag71xx_ring *rx = &ag->rx_ring; int ring_size; ring_size = BIT(tx->order) + BIT(rx->order); if (tx->descs_cpu) dma_free_coherent(&ag->pdev->dev, ring_size * AG71XX_DESC_SIZE, tx->descs_cpu, tx->descs_dma); kfree(tx->buf); tx->descs_cpu = NULL; rx->descs_cpu = NULL; tx->buf = NULL; rx->buf = NULL; } static void ag71xx_rings_cleanup(struct ag71xx *ag) { ag71xx_ring_rx_clean(ag); ag71xx_ring_tx_clean(ag); ag71xx_rings_free(ag); netdev_reset_queue(ag->ndev); } static void ag71xx_hw_init(struct ag71xx *ag) { ag71xx_hw_stop(ag); ag71xx_sb(ag, AG71XX_REG_MAC_CFG1, MAC_CFG1_SR); usleep_range(20, 30); reset_control_assert(ag->mac_reset); msleep(100); reset_control_deassert(ag->mac_reset); msleep(200); ag71xx_hw_setup(ag); ag71xx_dma_reset(ag); } static int ag71xx_hw_enable(struct ag71xx *ag) { int ret; ret = ag71xx_rings_init(ag); if (ret) return ret; napi_enable(&ag->napi); ag71xx_wr(ag, AG71XX_REG_TX_DESC, ag->tx_ring.descs_dma); ag71xx_wr(ag, AG71XX_REG_RX_DESC, ag->rx_ring.descs_dma); netif_start_queue(ag->ndev); return 0; } static void ag71xx_hw_disable(struct ag71xx *ag) { netif_stop_queue(ag->ndev); ag71xx_hw_stop(ag); ag71xx_dma_reset(ag); napi_disable(&ag->napi); del_timer_sync(&ag->oom_timer); ag71xx_rings_cleanup(ag); } static int ag71xx_open(struct net_device *ndev) { struct ag71xx *ag = netdev_priv(ndev); unsigned int max_frame_len; int ret; max_frame_len = ag71xx_max_frame_len(ndev->mtu); ag->rx_buf_size = SKB_DATA_ALIGN(max_frame_len + NET_SKB_PAD + NET_IP_ALIGN); /* setup max frame length */ ag71xx_wr(ag, AG71XX_REG_MAC_MFL, max_frame_len); ag71xx_hw_set_macaddr(ag, ndev->dev_addr); ret = ag71xx_hw_enable(ag); if (ret) goto err; ret = ag71xx_phy_connect(ag); if (ret) goto err; phy_start(ndev->phydev); return 0; err: ag71xx_rings_cleanup(ag); return ret; } static int ag71xx_stop(struct net_device *ndev) { struct ag71xx *ag = netdev_priv(ndev); phy_stop(ndev->phydev); phy_disconnect(ndev->phydev); ag71xx_hw_disable(ag); return 0; } static int ag71xx_fill_dma_desc(struct ag71xx_ring *ring, u32 addr, int len) { int i, ring_mask, ndesc, split; struct ag71xx_desc *desc; ring_mask = BIT(ring->order) - 1; ndesc = 0; split = ring->desc_split; if (!split) split = len; while (len > 0) { unsigned int cur_len = len; i = (ring->curr + ndesc) & ring_mask; desc = ag71xx_ring_desc(ring, i); if (!ag71xx_desc_empty(desc)) return -1; if (cur_len > split) { cur_len = split; /* TX will hang if DMA transfers <= 4 bytes, * make sure next segment is more than 4 bytes long. */ if (len <= split + 4) cur_len -= 4; } desc->data = addr; addr += cur_len; len -= cur_len; if (len > 0) cur_len |= DESC_MORE; /* prevent early tx attempt of this descriptor */ if (!ndesc) cur_len |= DESC_EMPTY; desc->ctrl = cur_len; ndesc++; } return ndesc; } static netdev_tx_t ag71xx_hard_start_xmit(struct sk_buff *skb, struct net_device *ndev) { int i, n, ring_min, ring_mask, ring_size; struct ag71xx *ag = netdev_priv(ndev); struct ag71xx_ring *ring; struct ag71xx_desc *desc; dma_addr_t dma_addr; ring = &ag->tx_ring; ring_mask = BIT(ring->order) - 1; ring_size = BIT(ring->order); if (skb->len <= 4) { netif_dbg(ag, tx_err, ndev, "packet len is too small\n"); goto err_drop; } dma_addr = dma_map_single(&ag->pdev->dev, skb->data, skb->len, DMA_TO_DEVICE); i = ring->curr & ring_mask; desc = ag71xx_ring_desc(ring, i); /* setup descriptor fields */ n = ag71xx_fill_dma_desc(ring, (u32)dma_addr, skb->len & ag->dcfg->desc_pktlen_mask); if (n < 0) goto err_drop_unmap; i = (ring->curr + n - 1) & ring_mask; ring->buf[i].tx.len = skb->len; ring->buf[i].tx.skb = skb; netdev_sent_queue(ndev, skb->len); skb_tx_timestamp(skb); desc->ctrl &= ~DESC_EMPTY; ring->curr += n; /* flush descriptor */ wmb(); ring_min = 2; if (ring->desc_split) ring_min *= AG71XX_TX_RING_DS_PER_PKT; if (ring->curr - ring->dirty >= ring_size - ring_min) { netif_dbg(ag, tx_err, ndev, "tx queue full\n"); netif_stop_queue(ndev); } netif_dbg(ag, tx_queued, ndev, "packet injected into TX queue\n"); /* enable TX engine */ ag71xx_wr(ag, AG71XX_REG_TX_CTRL, TX_CTRL_TXE); return NETDEV_TX_OK; err_drop_unmap: dma_unmap_single(&ag->pdev->dev, dma_addr, skb->len, DMA_TO_DEVICE); err_drop: ndev->stats.tx_dropped++; dev_kfree_skb(skb); return NETDEV_TX_OK; } static void ag71xx_oom_timer_handler(struct timer_list *t) { struct ag71xx *ag = from_timer(ag, t, oom_timer); napi_schedule(&ag->napi); } static void ag71xx_tx_timeout(struct net_device *ndev, unsigned int txqueue) { struct ag71xx *ag = netdev_priv(ndev); netif_err(ag, tx_err, ndev, "tx timeout\n"); schedule_delayed_work(&ag->restart_work, 1); } static void ag71xx_restart_work_func(struct work_struct *work) { struct ag71xx *ag = container_of(work, struct ag71xx, restart_work.work); struct net_device *ndev = ag->ndev; rtnl_lock(); ag71xx_hw_disable(ag); ag71xx_hw_enable(ag); if (ndev->phydev->link) ag71xx_link_adjust(ag, false); rtnl_unlock(); } static int ag71xx_rx_packets(struct ag71xx *ag, int limit) { struct net_device *ndev = ag->ndev; int ring_mask, ring_size, done = 0; unsigned int pktlen_mask, offset; struct sk_buff *next, *skb; struct ag71xx_ring *ring; struct list_head rx_list; ring = &ag->rx_ring; pktlen_mask = ag->dcfg->desc_pktlen_mask; offset = ag->rx_buf_offset; ring_mask = BIT(ring->order) - 1; ring_size = BIT(ring->order); netif_dbg(ag, rx_status, ndev, "rx packets, limit=%d, curr=%u, dirty=%u\n", limit, ring->curr, ring->dirty); INIT_LIST_HEAD(&rx_list); while (done < limit) { unsigned int i = ring->curr & ring_mask; struct ag71xx_desc *desc = ag71xx_ring_desc(ring, i); int pktlen; int err = 0; if (ag71xx_desc_empty(desc)) break; if ((ring->dirty + ring_size) == ring->curr) { WARN_ONCE(1, "RX out of ring"); break; } ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_PR); pktlen = desc->ctrl & pktlen_mask; pktlen -= ETH_FCS_LEN; dma_unmap_single(&ag->pdev->dev, ring->buf[i].rx.dma_addr, ag->rx_buf_size, DMA_FROM_DEVICE); ndev->stats.rx_packets++; ndev->stats.rx_bytes += pktlen; skb = build_skb(ring->buf[i].rx.rx_buf, ag71xx_buffer_size(ag)); if (!skb) { skb_free_frag(ring->buf[i].rx.rx_buf); goto next; } skb_reserve(skb, offset); skb_put(skb, pktlen); if (err) { ndev->stats.rx_dropped++; kfree_skb(skb); } else { skb->dev = ndev; skb->ip_summed = CHECKSUM_NONE; list_add_tail(&skb->list, &rx_list); } next: ring->buf[i].rx.rx_buf = NULL; done++; ring->curr++; } ag71xx_ring_rx_refill(ag); list_for_each_entry_safe(skb, next, &rx_list, list) skb->protocol = eth_type_trans(skb, ndev); netif_receive_skb_list(&rx_list); netif_dbg(ag, rx_status, ndev, "rx finish, curr=%u, dirty=%u, done=%d\n", ring->curr, ring->dirty, done); return done; } static int ag71xx_poll(struct napi_struct *napi, int limit) { struct ag71xx *ag = container_of(napi, struct ag71xx, napi); struct ag71xx_ring *rx_ring = &ag->rx_ring; int rx_ring_size = BIT(rx_ring->order); struct net_device *ndev = ag->ndev; int tx_done, rx_done; u32 status; tx_done = ag71xx_tx_packets(ag, false); netif_dbg(ag, rx_status, ndev, "processing RX ring\n"); rx_done = ag71xx_rx_packets(ag, limit); if (!rx_ring->buf[rx_ring->dirty % rx_ring_size].rx.rx_buf) goto oom; status = ag71xx_rr(ag, AG71XX_REG_RX_STATUS); if (unlikely(status & RX_STATUS_OF)) { ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_OF); ndev->stats.rx_fifo_errors++; /* restart RX */ ag71xx_wr(ag, AG71XX_REG_RX_CTRL, RX_CTRL_RXE); } if (rx_done < limit) { if (status & RX_STATUS_PR) goto more; status = ag71xx_rr(ag, AG71XX_REG_TX_STATUS); if (status & TX_STATUS_PS) goto more; netif_dbg(ag, rx_status, ndev, "disable polling mode, rx=%d, tx=%d,limit=%d\n", rx_done, tx_done, limit); napi_complete(napi); /* enable interrupts */ ag71xx_int_enable(ag, AG71XX_INT_POLL); return rx_done; } more: netif_dbg(ag, rx_status, ndev, "stay in polling mode, rx=%d, tx=%d, limit=%d\n", rx_done, tx_done, limit); return limit; oom: netif_err(ag, rx_err, ndev, "out of memory\n"); mod_timer(&ag->oom_timer, jiffies + AG71XX_OOM_REFILL); napi_complete(napi); return 0; } static irqreturn_t ag71xx_interrupt(int irq, void *dev_id) { struct net_device *ndev = dev_id; struct ag71xx *ag; u32 status; ag = netdev_priv(ndev); status = ag71xx_rr(ag, AG71XX_REG_INT_STATUS); if (unlikely(!status)) return IRQ_NONE; if (unlikely(status & AG71XX_INT_ERR)) { if (status & AG71XX_INT_TX_BE) { ag71xx_wr(ag, AG71XX_REG_TX_STATUS, TX_STATUS_BE); netif_err(ag, intr, ndev, "TX BUS error\n"); } if (status & AG71XX_INT_RX_BE) { ag71xx_wr(ag, AG71XX_REG_RX_STATUS, RX_STATUS_BE); netif_err(ag, intr, ndev, "RX BUS error\n"); } } if (likely(status & AG71XX_INT_POLL)) { ag71xx_int_disable(ag, AG71XX_INT_POLL); netif_dbg(ag, intr, ndev, "enable polling mode\n"); napi_schedule(&ag->napi); } return IRQ_HANDLED; } static int ag71xx_change_mtu(struct net_device *ndev, int new_mtu) { struct ag71xx *ag = netdev_priv(ndev); ndev->mtu = new_mtu; ag71xx_wr(ag, AG71XX_REG_MAC_MFL, ag71xx_max_frame_len(ndev->mtu)); return 0; } static const struct net_device_ops ag71xx_netdev_ops = { .ndo_open = ag71xx_open, .ndo_stop = ag71xx_stop, .ndo_start_xmit = ag71xx_hard_start_xmit, .ndo_do_ioctl = phy_do_ioctl, .ndo_tx_timeout = ag71xx_tx_timeout, .ndo_change_mtu = ag71xx_change_mtu, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static const u32 ar71xx_addr_ar7100[] = { 0x19000000, 0x1a000000, }; static int ag71xx_probe(struct platform_device *pdev) { struct device_node *np = pdev->dev.of_node; const struct ag71xx_dcfg *dcfg; struct net_device *ndev; struct resource *res; const void *mac_addr; int tx_size, err, i; struct ag71xx *ag; if (!np) return -ENODEV; ndev = devm_alloc_etherdev(&pdev->dev, sizeof(*ag)); if (!ndev) return -ENOMEM; res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) return -EINVAL; dcfg = of_device_get_match_data(&pdev->dev); if (!dcfg) return -EINVAL; ag = netdev_priv(ndev); ag->mac_idx = -1; for (i = 0; i < ARRAY_SIZE(ar71xx_addr_ar7100); i++) { if (ar71xx_addr_ar7100[i] == res->start) ag->mac_idx = i; } if (ag->mac_idx < 0) { netif_err(ag, probe, ndev, "unknown mac idx\n"); return -EINVAL; } ag->clk_eth = devm_clk_get(&pdev->dev, "eth"); if (IS_ERR(ag->clk_eth)) { netif_err(ag, probe, ndev, "Failed to get eth clk.\n"); return PTR_ERR(ag->clk_eth); } SET_NETDEV_DEV(ndev, &pdev->dev); ag->pdev = pdev; ag->ndev = ndev; ag->dcfg = dcfg; ag->msg_enable = netif_msg_init(-1, AG71XX_DEFAULT_MSG_ENABLE); memcpy(ag->fifodata, dcfg->fifodata, sizeof(ag->fifodata)); ag->mac_reset = devm_reset_control_get(&pdev->dev, "mac"); if (IS_ERR(ag->mac_reset)) { netif_err(ag, probe, ndev, "missing mac reset\n"); err = PTR_ERR(ag->mac_reset); goto err_free; } ag->mac_base = devm_ioremap(&pdev->dev, res->start, resource_size(res)); if (!ag->mac_base) { err = -ENOMEM; goto err_free; } ndev->irq = platform_get_irq(pdev, 0); err = devm_request_irq(&pdev->dev, ndev->irq, ag71xx_interrupt, 0x0, dev_name(&pdev->dev), ndev); if (err) { netif_err(ag, probe, ndev, "unable to request IRQ %d\n", ndev->irq); goto err_free; } ndev->netdev_ops = &ag71xx_netdev_ops; INIT_DELAYED_WORK(&ag->restart_work, ag71xx_restart_work_func); timer_setup(&ag->oom_timer, ag71xx_oom_timer_handler, 0); tx_size = AG71XX_TX_RING_SIZE_DEFAULT; ag->rx_ring.order = ag71xx_ring_size_order(AG71XX_RX_RING_SIZE_DEFAULT); ndev->min_mtu = 68; ndev->max_mtu = dcfg->max_frame_len - ag71xx_max_frame_len(0); ag->rx_buf_offset = NET_SKB_PAD; if (!ag71xx_is(ag, AR7100) && !ag71xx_is(ag, AR9130)) ag->rx_buf_offset += NET_IP_ALIGN; if (ag71xx_is(ag, AR7100)) { ag->tx_ring.desc_split = AG71XX_TX_RING_SPLIT; tx_size *= AG71XX_TX_RING_DS_PER_PKT; } ag->tx_ring.order = ag71xx_ring_size_order(tx_size); ag->stop_desc = dmam_alloc_coherent(&pdev->dev, sizeof(struct ag71xx_desc), &ag->stop_desc_dma, GFP_KERNEL); if (!ag->stop_desc) { err = -ENOMEM; goto err_free; } ag->stop_desc->data = 0; ag->stop_desc->ctrl = 0; ag->stop_desc->next = (u32)ag->stop_desc_dma; mac_addr = of_get_mac_address(np); if (!IS_ERR(mac_addr)) memcpy(ndev->dev_addr, mac_addr, ETH_ALEN); if (IS_ERR(mac_addr) || !is_valid_ether_addr(ndev->dev_addr)) { netif_err(ag, probe, ndev, "invalid MAC address, using random address\n"); eth_random_addr(ndev->dev_addr); } err = of_get_phy_mode(np, &ag->phy_if_mode); if (err) { netif_err(ag, probe, ndev, "missing phy-mode property in DT\n"); goto err_free; } netif_napi_add(ndev, &ag->napi, ag71xx_poll, AG71XX_NAPI_WEIGHT); err = clk_prepare_enable(ag->clk_eth); if (err) { netif_err(ag, probe, ndev, "Failed to enable eth clk.\n"); goto err_free; } ag71xx_wr(ag, AG71XX_REG_MAC_CFG1, 0); ag71xx_hw_init(ag); err = ag71xx_mdio_probe(ag); if (err) goto err_put_clk; platform_set_drvdata(pdev, ndev); err = register_netdev(ndev); if (err) { netif_err(ag, probe, ndev, "unable to register net device\n"); platform_set_drvdata(pdev, NULL); goto err_mdio_remove; } netif_info(ag, probe, ndev, "Atheros AG71xx at 0x%08lx, irq %d, mode:%s\n", (unsigned long)ag->mac_base, ndev->irq, phy_modes(ag->phy_if_mode)); return 0; err_mdio_remove: ag71xx_mdio_remove(ag); err_put_clk: clk_disable_unprepare(ag->clk_eth); err_free: free_netdev(ndev); return err; } static int ag71xx_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct ag71xx *ag; if (!ndev) return 0; ag = netdev_priv(ndev); unregister_netdev(ndev); ag71xx_mdio_remove(ag); clk_disable_unprepare(ag->clk_eth); platform_set_drvdata(pdev, NULL); return 0; } static const u32 ar71xx_fifo_ar7100[] = { 0x0fff0000, 0x00001fff, 0x00780fff, }; static const u32 ar71xx_fifo_ar9130[] = { 0x0fff0000, 0x00001fff, 0x008001ff, }; static const u32 ar71xx_fifo_ar9330[] = { 0x0010ffff, 0x015500aa, 0x01f00140, }; static const struct ag71xx_dcfg ag71xx_dcfg_ar7100 = { .type = AR7100, .fifodata = ar71xx_fifo_ar7100, .max_frame_len = 1540, .desc_pktlen_mask = SZ_4K - 1, .tx_hang_workaround = false, }; static const struct ag71xx_dcfg ag71xx_dcfg_ar7240 = { .type = AR7240, .fifodata = ar71xx_fifo_ar7100, .max_frame_len = 1540, .desc_pktlen_mask = SZ_4K - 1, .tx_hang_workaround = true, }; static const struct ag71xx_dcfg ag71xx_dcfg_ar9130 = { .type = AR9130, .fifodata = ar71xx_fifo_ar9130, .max_frame_len = 1540, .desc_pktlen_mask = SZ_4K - 1, .tx_hang_workaround = false, }; static const struct ag71xx_dcfg ag71xx_dcfg_ar9330 = { .type = AR9330, .fifodata = ar71xx_fifo_ar9330, .max_frame_len = 1540, .desc_pktlen_mask = SZ_4K - 1, .tx_hang_workaround = true, }; static const struct ag71xx_dcfg ag71xx_dcfg_ar9340 = { .type = AR9340, .fifodata = ar71xx_fifo_ar9330, .max_frame_len = SZ_16K - 1, .desc_pktlen_mask = SZ_16K - 1, .tx_hang_workaround = true, }; static const struct ag71xx_dcfg ag71xx_dcfg_qca9530 = { .type = QCA9530, .fifodata = ar71xx_fifo_ar9330, .max_frame_len = SZ_16K - 1, .desc_pktlen_mask = SZ_16K - 1, .tx_hang_workaround = true, }; static const struct ag71xx_dcfg ag71xx_dcfg_qca9550 = { .type = QCA9550, .fifodata = ar71xx_fifo_ar9330, .max_frame_len = 1540, .desc_pktlen_mask = SZ_16K - 1, .tx_hang_workaround = true, }; static const struct of_device_id ag71xx_match[] = { { .compatible = "qca,ar7100-eth", .data = &ag71xx_dcfg_ar7100 }, { .compatible = "qca,ar7240-eth", .data = &ag71xx_dcfg_ar7240 }, { .compatible = "qca,ar7241-eth", .data = &ag71xx_dcfg_ar7240 }, { .compatible = "qca,ar7242-eth", .data = &ag71xx_dcfg_ar7240 }, { .compatible = "qca,ar9130-eth", .data = &ag71xx_dcfg_ar9130 }, { .compatible = "qca,ar9330-eth", .data = &ag71xx_dcfg_ar9330 }, { .compatible = "qca,ar9340-eth", .data = &ag71xx_dcfg_ar9340 }, { .compatible = "qca,qca9530-eth", .data = &ag71xx_dcfg_qca9530 }, { .compatible = "qca,qca9550-eth", .data = &ag71xx_dcfg_qca9550 }, { .compatible = "qca,qca9560-eth", .data = &ag71xx_dcfg_qca9550 }, {} }; static struct platform_driver ag71xx_driver = { .probe = ag71xx_probe, .remove = ag71xx_remove, .driver = { .name = "ag71xx", .of_match_table = ag71xx_match, } }; module_platform_driver(ag71xx_driver); MODULE_LICENSE("GPL v2");