/* * Copyright (C) 2015 Mans Rullgard * * Mostly rewritten, based on driver from Sigma Designs. Original * copyright notice below. * * * Driver for tangox SMP864x/SMP865x/SMP867x/SMP868x builtin Ethernet Mac. * * Copyright (C) 2005 Maxime Bizon * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "nb8800.h" static void nb8800_tx_done(struct net_device *dev); static int nb8800_dma_stop(struct net_device *dev); static inline u8 nb8800_readb(struct nb8800_priv *priv, int reg) { return readb_relaxed(priv->base + reg); } static inline u32 nb8800_readl(struct nb8800_priv *priv, int reg) { return readl_relaxed(priv->base + reg); } static inline void nb8800_writeb(struct nb8800_priv *priv, int reg, u8 val) { writeb_relaxed(val, priv->base + reg); } static inline void nb8800_writew(struct nb8800_priv *priv, int reg, u16 val) { writew_relaxed(val, priv->base + reg); } static inline void nb8800_writel(struct nb8800_priv *priv, int reg, u32 val) { writel_relaxed(val, priv->base + reg); } static inline void nb8800_maskb(struct nb8800_priv *priv, int reg, u32 mask, u32 val) { u32 old = nb8800_readb(priv, reg); u32 new = (old & ~mask) | (val & mask); if (new != old) nb8800_writeb(priv, reg, new); } static inline void nb8800_maskl(struct nb8800_priv *priv, int reg, u32 mask, u32 val) { u32 old = nb8800_readl(priv, reg); u32 new = (old & ~mask) | (val & mask); if (new != old) nb8800_writel(priv, reg, new); } static inline void nb8800_modb(struct nb8800_priv *priv, int reg, u8 bits, bool set) { nb8800_maskb(priv, reg, bits, set ? bits : 0); } static inline void nb8800_setb(struct nb8800_priv *priv, int reg, u8 bits) { nb8800_maskb(priv, reg, bits, bits); } static inline void nb8800_clearb(struct nb8800_priv *priv, int reg, u8 bits) { nb8800_maskb(priv, reg, bits, 0); } static inline void nb8800_modl(struct nb8800_priv *priv, int reg, u32 bits, bool set) { nb8800_maskl(priv, reg, bits, set ? bits : 0); } static inline void nb8800_setl(struct nb8800_priv *priv, int reg, u32 bits) { nb8800_maskl(priv, reg, bits, bits); } static inline void nb8800_clearl(struct nb8800_priv *priv, int reg, u32 bits) { nb8800_maskl(priv, reg, bits, 0); } static int nb8800_mdio_wait(struct mii_bus *bus) { struct nb8800_priv *priv = bus->priv; u32 val; return readl_poll_timeout_atomic(priv->base + NB8800_MDIO_CMD, val, !(val & MDIO_CMD_GO), 1, 1000); } static int nb8800_mdio_cmd(struct mii_bus *bus, u32 cmd) { struct nb8800_priv *priv = bus->priv; int err; err = nb8800_mdio_wait(bus); if (err) return err; nb8800_writel(priv, NB8800_MDIO_CMD, cmd); udelay(10); nb8800_writel(priv, NB8800_MDIO_CMD, cmd | MDIO_CMD_GO); return nb8800_mdio_wait(bus); } static int nb8800_mdio_read(struct mii_bus *bus, int phy_id, int reg) { struct nb8800_priv *priv = bus->priv; u32 val; int err; err = nb8800_mdio_cmd(bus, MDIO_CMD_ADDR(phy_id) | MDIO_CMD_REG(reg)); if (err) return err; val = nb8800_readl(priv, NB8800_MDIO_STS); if (val & MDIO_STS_ERR) return 0xffff; return val & 0xffff; } static int nb8800_mdio_write(struct mii_bus *bus, int phy_id, int reg, u16 val) { u32 cmd = MDIO_CMD_ADDR(phy_id) | MDIO_CMD_REG(reg) | MDIO_CMD_DATA(val) | MDIO_CMD_WR; return nb8800_mdio_cmd(bus, cmd); } static void nb8800_mac_tx(struct net_device *dev, bool enable) { struct nb8800_priv *priv = netdev_priv(dev); while (nb8800_readl(priv, NB8800_TXC_CR) & TCR_EN) cpu_relax(); nb8800_modb(priv, NB8800_TX_CTL1, TX_EN, enable); } static void nb8800_mac_rx(struct net_device *dev, bool enable) { nb8800_modb(netdev_priv(dev), NB8800_RX_CTL, RX_EN, enable); } static void nb8800_mac_af(struct net_device *dev, bool enable) { nb8800_modb(netdev_priv(dev), NB8800_RX_CTL, RX_AF_EN, enable); } static void nb8800_start_rx(struct net_device *dev) { nb8800_setl(netdev_priv(dev), NB8800_RXC_CR, RCR_EN); } static int nb8800_alloc_rx(struct net_device *dev, unsigned int i, bool napi) { struct nb8800_priv *priv = netdev_priv(dev); struct nb8800_rx_desc *rxd = &priv->rx_descs[i]; struct nb8800_rx_buf *rxb = &priv->rx_bufs[i]; int size = L1_CACHE_ALIGN(RX_BUF_SIZE); dma_addr_t dma_addr; struct page *page; unsigned long offset; void *data; data = napi ? napi_alloc_frag(size) : netdev_alloc_frag(size); if (!data) return -ENOMEM; page = virt_to_head_page(data); offset = data - page_address(page); dma_addr = dma_map_page(&dev->dev, page, offset, RX_BUF_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(&dev->dev, dma_addr)) { skb_free_frag(data); return -ENOMEM; } rxb->page = page; rxb->offset = offset; rxd->desc.s_addr = dma_addr; return 0; } static void nb8800_receive(struct net_device *dev, unsigned int i, unsigned int len) { struct nb8800_priv *priv = netdev_priv(dev); struct nb8800_rx_desc *rxd = &priv->rx_descs[i]; struct page *page = priv->rx_bufs[i].page; int offset = priv->rx_bufs[i].offset; void *data = page_address(page) + offset; dma_addr_t dma = rxd->desc.s_addr; struct sk_buff *skb; unsigned int size; int err; size = len <= RX_COPYBREAK ? len : RX_COPYHDR; skb = napi_alloc_skb(&priv->napi, size); if (!skb) { netdev_err(dev, "rx skb allocation failed\n"); dev->stats.rx_dropped++; return; } if (len <= RX_COPYBREAK) { dma_sync_single_for_cpu(&dev->dev, dma, len, DMA_FROM_DEVICE); memcpy(skb_put(skb, len), data, len); dma_sync_single_for_device(&dev->dev, dma, len, DMA_FROM_DEVICE); } else { err = nb8800_alloc_rx(dev, i, true); if (err) { netdev_err(dev, "rx buffer allocation failed\n"); dev->stats.rx_dropped++; dev_kfree_skb(skb); return; } dma_unmap_page(&dev->dev, dma, RX_BUF_SIZE, DMA_FROM_DEVICE); memcpy(skb_put(skb, RX_COPYHDR), data, RX_COPYHDR); skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page, offset + RX_COPYHDR, len - RX_COPYHDR, RX_BUF_SIZE); } skb->protocol = eth_type_trans(skb, dev); napi_gro_receive(&priv->napi, skb); } static void nb8800_rx_error(struct net_device *dev, u32 report) { if (report & RX_LENGTH_ERR) dev->stats.rx_length_errors++; if (report & RX_FCS_ERR) dev->stats.rx_crc_errors++; if (report & RX_FIFO_OVERRUN) dev->stats.rx_fifo_errors++; if (report & RX_ALIGNMENT_ERROR) dev->stats.rx_frame_errors++; dev->stats.rx_errors++; } static int nb8800_poll(struct napi_struct *napi, int budget) { struct net_device *dev = napi->dev; struct nb8800_priv *priv = netdev_priv(dev); struct nb8800_rx_desc *rxd; unsigned int last = priv->rx_eoc; unsigned int next; int work = 0; nb8800_tx_done(dev); again: do { struct nb8800_rx_buf *rxb; unsigned int len; next = (last + 1) % RX_DESC_COUNT; rxb = &priv->rx_bufs[next]; rxd = &priv->rx_descs[next]; if (!rxd->report) break; len = RX_BYTES_TRANSFERRED(rxd->report); if (IS_RX_ERROR(rxd->report)) nb8800_rx_error(dev, rxd->report); else nb8800_receive(dev, next, len); dev->stats.rx_packets++; dev->stats.rx_bytes += len; if (rxd->report & RX_MULTICAST_PKT) dev->stats.multicast++; rxd->report = 0; last = next; work++; } while (work < budget); if (work) { priv->rx_descs[last].desc.config |= DESC_EOC; wmb(); /* ensure new EOC is written before clearing old */ priv->rx_descs[priv->rx_eoc].desc.config &= ~DESC_EOC; priv->rx_eoc = last; nb8800_start_rx(dev); } if (work < budget) { nb8800_writel(priv, NB8800_RX_ITR, priv->rx_itr_irq); /* If a packet arrived after we last checked but * before writing RX_ITR, the interrupt will be * delayed, so we retrieve it now. */ if (priv->rx_descs[next].report) goto again; napi_complete_done(napi, work); } return work; } static void __nb8800_tx_dma_start(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct nb8800_tx_buf *txb; u32 txc_cr; txb = &priv->tx_bufs[priv->tx_queue]; if (!txb->ready) return; txc_cr = nb8800_readl(priv, NB8800_TXC_CR); if (txc_cr & TCR_EN) return; nb8800_writel(priv, NB8800_TX_DESC_ADDR, txb->dma_desc); wmb(); /* ensure desc addr is written before starting DMA */ nb8800_writel(priv, NB8800_TXC_CR, txc_cr | TCR_EN); priv->tx_queue = (priv->tx_queue + txb->chain_len) % TX_DESC_COUNT; } static void nb8800_tx_dma_start(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); spin_lock_irq(&priv->tx_lock); __nb8800_tx_dma_start(dev); spin_unlock_irq(&priv->tx_lock); } static void nb8800_tx_dma_start_irq(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); spin_lock(&priv->tx_lock); __nb8800_tx_dma_start(dev); spin_unlock(&priv->tx_lock); } static int nb8800_xmit(struct sk_buff *skb, struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct nb8800_tx_desc *txd; struct nb8800_tx_buf *txb; struct nb8800_dma_desc *desc; dma_addr_t dma_addr; unsigned int dma_len; unsigned int align; unsigned int next; if (atomic_read(&priv->tx_free) <= NB8800_DESC_LOW) { netif_stop_queue(dev); return NETDEV_TX_BUSY; } align = (8 - (uintptr_t)skb->data) & 7; dma_len = skb->len - align; dma_addr = dma_map_single(&dev->dev, skb->data + align, dma_len, DMA_TO_DEVICE); if (dma_mapping_error(&dev->dev, dma_addr)) { netdev_err(dev, "tx dma mapping error\n"); kfree_skb(skb); dev->stats.tx_dropped++; return NETDEV_TX_OK; } if (atomic_dec_return(&priv->tx_free) <= NB8800_DESC_LOW) { netif_stop_queue(dev); skb->xmit_more = 0; } next = priv->tx_next; txb = &priv->tx_bufs[next]; txd = &priv->tx_descs[next]; desc = &txd->desc[0]; next = (next + 1) % TX_DESC_COUNT; if (align) { memcpy(txd->buf, skb->data, align); desc->s_addr = txb->dma_desc + offsetof(struct nb8800_tx_desc, buf); desc->n_addr = txb->dma_desc + sizeof(txd->desc[0]); desc->config = DESC_BTS(2) | DESC_DS | align; desc++; } desc->s_addr = dma_addr; desc->n_addr = priv->tx_bufs[next].dma_desc; desc->config = DESC_BTS(2) | DESC_DS | DESC_EOF | dma_len; if (!skb->xmit_more) desc->config |= DESC_EOC; txb->skb = skb; txb->dma_addr = dma_addr; txb->dma_len = dma_len; if (!priv->tx_chain) { txb->chain_len = 1; priv->tx_chain = txb; } else { priv->tx_chain->chain_len++; } netdev_sent_queue(dev, skb->len); priv->tx_next = next; if (!skb->xmit_more) { smp_wmb(); priv->tx_chain->ready = true; priv->tx_chain = NULL; nb8800_tx_dma_start(dev); } return NETDEV_TX_OK; } static void nb8800_tx_error(struct net_device *dev, u32 report) { if (report & TX_LATE_COLLISION) dev->stats.collisions++; if (report & TX_PACKET_DROPPED) dev->stats.tx_dropped++; if (report & TX_FIFO_UNDERRUN) dev->stats.tx_fifo_errors++; dev->stats.tx_errors++; } static void nb8800_tx_done(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); unsigned int limit = priv->tx_next; unsigned int done = priv->tx_done; unsigned int packets = 0; unsigned int len = 0; while (done != limit) { struct nb8800_tx_desc *txd = &priv->tx_descs[done]; struct nb8800_tx_buf *txb = &priv->tx_bufs[done]; struct sk_buff *skb; if (!txd->report) break; skb = txb->skb; len += skb->len; dma_unmap_single(&dev->dev, txb->dma_addr, txb->dma_len, DMA_TO_DEVICE); if (IS_TX_ERROR(txd->report)) { nb8800_tx_error(dev, txd->report); kfree_skb(skb); } else { consume_skb(skb); } dev->stats.tx_packets++; dev->stats.tx_bytes += TX_BYTES_TRANSFERRED(txd->report); dev->stats.collisions += TX_EARLY_COLLISIONS(txd->report); txb->skb = NULL; txb->ready = false; txd->report = 0; done = (done + 1) % TX_DESC_COUNT; packets++; } if (packets) { smp_mb__before_atomic(); atomic_add(packets, &priv->tx_free); netdev_completed_queue(dev, packets, len); netif_wake_queue(dev); priv->tx_done = done; } } static irqreturn_t nb8800_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct nb8800_priv *priv = netdev_priv(dev); irqreturn_t ret = IRQ_NONE; u32 val; /* tx interrupt */ val = nb8800_readl(priv, NB8800_TXC_SR); if (val) { nb8800_writel(priv, NB8800_TXC_SR, val); if (val & TSR_DI) nb8800_tx_dma_start_irq(dev); if (val & TSR_TI) napi_schedule_irqoff(&priv->napi); if (unlikely(val & TSR_DE)) netdev_err(dev, "TX DMA error\n"); /* should never happen with automatic status retrieval */ if (unlikely(val & TSR_TO)) netdev_err(dev, "TX Status FIFO overflow\n"); ret = IRQ_HANDLED; } /* rx interrupt */ val = nb8800_readl(priv, NB8800_RXC_SR); if (val) { nb8800_writel(priv, NB8800_RXC_SR, val); if (likely(val & (RSR_RI | RSR_DI))) { nb8800_writel(priv, NB8800_RX_ITR, priv->rx_itr_poll); napi_schedule_irqoff(&priv->napi); } if (unlikely(val & RSR_DE)) netdev_err(dev, "RX DMA error\n"); /* should never happen with automatic status retrieval */ if (unlikely(val & RSR_RO)) netdev_err(dev, "RX Status FIFO overflow\n"); ret = IRQ_HANDLED; } return ret; } static void nb8800_mac_config(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); bool gigabit = priv->speed == SPEED_1000; u32 mac_mode_mask = RGMII_MODE | HALF_DUPLEX | GMAC_MODE; u32 mac_mode = 0; u32 slot_time; u32 phy_clk; u32 ict; if (!priv->duplex) mac_mode |= HALF_DUPLEX; if (gigabit) { if (priv->phy_mode == PHY_INTERFACE_MODE_RGMII) mac_mode |= RGMII_MODE; mac_mode |= GMAC_MODE; phy_clk = 125000000; /* Should be 512 but register is only 8 bits */ slot_time = 255; } else { phy_clk = 25000000; slot_time = 128; } ict = DIV_ROUND_UP(phy_clk, clk_get_rate(priv->clk)); nb8800_writeb(priv, NB8800_IC_THRESHOLD, ict); nb8800_writeb(priv, NB8800_SLOT_TIME, slot_time); nb8800_maskb(priv, NB8800_MAC_MODE, mac_mode_mask, mac_mode); } static void nb8800_pause_config(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct phy_device *phydev = dev->phydev; u32 rxcr; if (priv->pause_aneg) { if (!phydev || !phydev->link) return; priv->pause_rx = phydev->pause; priv->pause_tx = phydev->pause ^ phydev->asym_pause; } nb8800_modb(priv, NB8800_RX_CTL, RX_PAUSE_EN, priv->pause_rx); rxcr = nb8800_readl(priv, NB8800_RXC_CR); if (!!(rxcr & RCR_FL) == priv->pause_tx) return; if (netif_running(dev)) { napi_disable(&priv->napi); netif_tx_lock_bh(dev); nb8800_dma_stop(dev); nb8800_modl(priv, NB8800_RXC_CR, RCR_FL, priv->pause_tx); nb8800_start_rx(dev); netif_tx_unlock_bh(dev); napi_enable(&priv->napi); } else { nb8800_modl(priv, NB8800_RXC_CR, RCR_FL, priv->pause_tx); } } static void nb8800_link_reconfigure(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct phy_device *phydev = dev->phydev; int change = 0; if (phydev->link) { if (phydev->speed != priv->speed) { priv->speed = phydev->speed; change = 1; } if (phydev->duplex != priv->duplex) { priv->duplex = phydev->duplex; change = 1; } if (change) nb8800_mac_config(dev); nb8800_pause_config(dev); } if (phydev->link != priv->link) { priv->link = phydev->link; change = 1; } if (change) phy_print_status(phydev); } static void nb8800_update_mac_addr(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); int i; for (i = 0; i < ETH_ALEN; i++) nb8800_writeb(priv, NB8800_SRC_ADDR(i), dev->dev_addr[i]); for (i = 0; i < ETH_ALEN; i++) nb8800_writeb(priv, NB8800_UC_ADDR(i), dev->dev_addr[i]); } static int nb8800_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *sock = addr; if (netif_running(dev)) return -EBUSY; ether_addr_copy(dev->dev_addr, sock->sa_data); nb8800_update_mac_addr(dev); return 0; } static void nb8800_mc_init(struct net_device *dev, int val) { struct nb8800_priv *priv = netdev_priv(dev); nb8800_writeb(priv, NB8800_MC_INIT, val); readb_poll_timeout_atomic(priv->base + NB8800_MC_INIT, val, !val, 1, 1000); } static void nb8800_set_rx_mode(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct netdev_hw_addr *ha; int i; if (dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) { nb8800_mac_af(dev, false); return; } nb8800_mac_af(dev, true); nb8800_mc_init(dev, 0); netdev_for_each_mc_addr(ha, dev) { for (i = 0; i < ETH_ALEN; i++) nb8800_writeb(priv, NB8800_MC_ADDR(i), ha->addr[i]); nb8800_mc_init(dev, 0xff); } } #define RX_DESC_SIZE (RX_DESC_COUNT * sizeof(struct nb8800_rx_desc)) #define TX_DESC_SIZE (TX_DESC_COUNT * sizeof(struct nb8800_tx_desc)) static void nb8800_dma_free(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); unsigned int i; if (priv->rx_bufs) { for (i = 0; i < RX_DESC_COUNT; i++) if (priv->rx_bufs[i].page) put_page(priv->rx_bufs[i].page); kfree(priv->rx_bufs); priv->rx_bufs = NULL; } if (priv->tx_bufs) { for (i = 0; i < TX_DESC_COUNT; i++) kfree_skb(priv->tx_bufs[i].skb); kfree(priv->tx_bufs); priv->tx_bufs = NULL; } if (priv->rx_descs) { dma_free_coherent(dev->dev.parent, RX_DESC_SIZE, priv->rx_descs, priv->rx_desc_dma); priv->rx_descs = NULL; } if (priv->tx_descs) { dma_free_coherent(dev->dev.parent, TX_DESC_SIZE, priv->tx_descs, priv->tx_desc_dma); priv->tx_descs = NULL; } } static void nb8800_dma_reset(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct nb8800_rx_desc *rxd; struct nb8800_tx_desc *txd; unsigned int i; for (i = 0; i < RX_DESC_COUNT; i++) { dma_addr_t rx_dma = priv->rx_desc_dma + i * sizeof(*rxd); rxd = &priv->rx_descs[i]; rxd->desc.n_addr = rx_dma + sizeof(*rxd); rxd->desc.r_addr = rx_dma + offsetof(struct nb8800_rx_desc, report); rxd->desc.config = priv->rx_dma_config; rxd->report = 0; } rxd->desc.n_addr = priv->rx_desc_dma; rxd->desc.config |= DESC_EOC; priv->rx_eoc = RX_DESC_COUNT - 1; for (i = 0; i < TX_DESC_COUNT; i++) { struct nb8800_tx_buf *txb = &priv->tx_bufs[i]; dma_addr_t r_dma = txb->dma_desc + offsetof(struct nb8800_tx_desc, report); txd = &priv->tx_descs[i]; txd->desc[0].r_addr = r_dma; txd->desc[1].r_addr = r_dma; txd->report = 0; } priv->tx_next = 0; priv->tx_queue = 0; priv->tx_done = 0; atomic_set(&priv->tx_free, TX_DESC_COUNT); nb8800_writel(priv, NB8800_RX_DESC_ADDR, priv->rx_desc_dma); wmb(); /* ensure all setup is written before starting */ } static int nb8800_dma_init(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); unsigned int n_rx = RX_DESC_COUNT; unsigned int n_tx = TX_DESC_COUNT; unsigned int i; int err; priv->rx_descs = dma_alloc_coherent(dev->dev.parent, RX_DESC_SIZE, &priv->rx_desc_dma, GFP_KERNEL); if (!priv->rx_descs) goto err_out; priv->rx_bufs = kcalloc(n_rx, sizeof(*priv->rx_bufs), GFP_KERNEL); if (!priv->rx_bufs) goto err_out; for (i = 0; i < n_rx; i++) { err = nb8800_alloc_rx(dev, i, false); if (err) goto err_out; } priv->tx_descs = dma_alloc_coherent(dev->dev.parent, TX_DESC_SIZE, &priv->tx_desc_dma, GFP_KERNEL); if (!priv->tx_descs) goto err_out; priv->tx_bufs = kcalloc(n_tx, sizeof(*priv->tx_bufs), GFP_KERNEL); if (!priv->tx_bufs) goto err_out; for (i = 0; i < n_tx; i++) priv->tx_bufs[i].dma_desc = priv->tx_desc_dma + i * sizeof(struct nb8800_tx_desc); nb8800_dma_reset(dev); return 0; err_out: nb8800_dma_free(dev); return -ENOMEM; } static int nb8800_dma_stop(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct nb8800_tx_buf *txb = &priv->tx_bufs[0]; struct nb8800_tx_desc *txd = &priv->tx_descs[0]; int retry = 5; u32 txcr; u32 rxcr; int err; unsigned int i; /* wait for tx to finish */ err = readl_poll_timeout_atomic(priv->base + NB8800_TXC_CR, txcr, !(txcr & TCR_EN) && priv->tx_done == priv->tx_next, 1000, 1000000); if (err) return err; /* The rx DMA only stops if it reaches the end of chain. * To make this happen, we set the EOC flag on all rx * descriptors, put the device in loopback mode, and send * a few dummy frames. The interrupt handler will ignore * these since NAPI is disabled and no real frames are in * the tx queue. */ for (i = 0; i < RX_DESC_COUNT; i++) priv->rx_descs[i].desc.config |= DESC_EOC; txd->desc[0].s_addr = txb->dma_desc + offsetof(struct nb8800_tx_desc, buf); txd->desc[0].config = DESC_BTS(2) | DESC_DS | DESC_EOF | DESC_EOC | 8; memset(txd->buf, 0, sizeof(txd->buf)); nb8800_mac_af(dev, false); nb8800_setb(priv, NB8800_MAC_MODE, LOOPBACK_EN); do { nb8800_writel(priv, NB8800_TX_DESC_ADDR, txb->dma_desc); wmb(); nb8800_writel(priv, NB8800_TXC_CR, txcr | TCR_EN); err = readl_poll_timeout_atomic(priv->base + NB8800_RXC_CR, rxcr, !(rxcr & RCR_EN), 1000, 100000); } while (err && --retry); nb8800_mac_af(dev, true); nb8800_clearb(priv, NB8800_MAC_MODE, LOOPBACK_EN); nb8800_dma_reset(dev); return retry ? 0 : -ETIMEDOUT; } static void nb8800_pause_adv(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct phy_device *phydev = dev->phydev; u32 adv = 0; if (!phydev) return; if (priv->pause_rx) adv |= ADVERTISED_Pause | ADVERTISED_Asym_Pause; if (priv->pause_tx) adv ^= ADVERTISED_Asym_Pause; phydev->supported |= adv; phydev->advertising |= adv; } static int nb8800_open(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct phy_device *phydev; int err; /* clear any pending interrupts */ nb8800_writel(priv, NB8800_RXC_SR, 0xf); nb8800_writel(priv, NB8800_TXC_SR, 0xf); err = nb8800_dma_init(dev); if (err) return err; err = request_irq(dev->irq, nb8800_irq, 0, dev_name(&dev->dev), dev); if (err) goto err_free_dma; nb8800_mac_rx(dev, true); nb8800_mac_tx(dev, true); phydev = of_phy_connect(dev, priv->phy_node, nb8800_link_reconfigure, 0, priv->phy_mode); if (!phydev) { err = -ENODEV; goto err_free_irq; } nb8800_pause_adv(dev); netdev_reset_queue(dev); napi_enable(&priv->napi); netif_start_queue(dev); nb8800_start_rx(dev); phy_start(phydev); return 0; err_free_irq: free_irq(dev->irq, dev); err_free_dma: nb8800_dma_free(dev); return err; } static int nb8800_stop(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); struct phy_device *phydev = dev->phydev; phy_stop(phydev); netif_stop_queue(dev); napi_disable(&priv->napi); nb8800_dma_stop(dev); nb8800_mac_rx(dev, false); nb8800_mac_tx(dev, false); phy_disconnect(phydev); free_irq(dev->irq, dev); nb8800_dma_free(dev); return 0; } static int nb8800_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) { return phy_mii_ioctl(dev->phydev, rq, cmd); } static const struct net_device_ops nb8800_netdev_ops = { .ndo_open = nb8800_open, .ndo_stop = nb8800_stop, .ndo_start_xmit = nb8800_xmit, .ndo_set_mac_address = nb8800_set_mac_address, .ndo_set_rx_mode = nb8800_set_rx_mode, .ndo_do_ioctl = nb8800_ioctl, .ndo_validate_addr = eth_validate_addr, }; static int nb8800_nway_reset(struct net_device *dev) { struct phy_device *phydev = dev->phydev; if (!phydev) return -ENODEV; return genphy_restart_aneg(phydev); } static void nb8800_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pp) { struct nb8800_priv *priv = netdev_priv(dev); pp->autoneg = priv->pause_aneg; pp->rx_pause = priv->pause_rx; pp->tx_pause = priv->pause_tx; } static int nb8800_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pp) { struct nb8800_priv *priv = netdev_priv(dev); struct phy_device *phydev = dev->phydev; priv->pause_aneg = pp->autoneg; priv->pause_rx = pp->rx_pause; priv->pause_tx = pp->tx_pause; nb8800_pause_adv(dev); if (!priv->pause_aneg) nb8800_pause_config(dev); else if (phydev) phy_start_aneg(phydev); return 0; } static const char nb8800_stats_names[][ETH_GSTRING_LEN] = { "rx_bytes_ok", "rx_frames_ok", "rx_undersize_frames", "rx_fragment_frames", "rx_64_byte_frames", "rx_127_byte_frames", "rx_255_byte_frames", "rx_511_byte_frames", "rx_1023_byte_frames", "rx_max_size_frames", "rx_oversize_frames", "rx_bad_fcs_frames", "rx_broadcast_frames", "rx_multicast_frames", "rx_control_frames", "rx_pause_frames", "rx_unsup_control_frames", "rx_align_error_frames", "rx_overrun_frames", "rx_jabber_frames", "rx_bytes", "rx_frames", "tx_bytes_ok", "tx_frames_ok", "tx_64_byte_frames", "tx_127_byte_frames", "tx_255_byte_frames", "tx_511_byte_frames", "tx_1023_byte_frames", "tx_max_size_frames", "tx_oversize_frames", "tx_broadcast_frames", "tx_multicast_frames", "tx_control_frames", "tx_pause_frames", "tx_underrun_frames", "tx_single_collision_frames", "tx_multi_collision_frames", "tx_deferred_collision_frames", "tx_late_collision_frames", "tx_excessive_collision_frames", "tx_bytes", "tx_frames", "tx_collisions", }; #define NB8800_NUM_STATS ARRAY_SIZE(nb8800_stats_names) static int nb8800_get_sset_count(struct net_device *dev, int sset) { if (sset == ETH_SS_STATS) return NB8800_NUM_STATS; return -EOPNOTSUPP; } static void nb8800_get_strings(struct net_device *dev, u32 sset, u8 *buf) { if (sset == ETH_SS_STATS) memcpy(buf, &nb8800_stats_names, sizeof(nb8800_stats_names)); } static u32 nb8800_read_stat(struct net_device *dev, int index) { struct nb8800_priv *priv = netdev_priv(dev); nb8800_writeb(priv, NB8800_STAT_INDEX, index); return nb8800_readl(priv, NB8800_STAT_DATA); } static void nb8800_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *estats, u64 *st) { unsigned int i; u32 rx, tx; for (i = 0; i < NB8800_NUM_STATS / 2; i++) { rx = nb8800_read_stat(dev, i); tx = nb8800_read_stat(dev, i | 0x80); st[i] = rx; st[i + NB8800_NUM_STATS / 2] = tx; } } static const struct ethtool_ops nb8800_ethtool_ops = { .nway_reset = nb8800_nway_reset, .get_link = ethtool_op_get_link, .get_pauseparam = nb8800_get_pauseparam, .set_pauseparam = nb8800_set_pauseparam, .get_sset_count = nb8800_get_sset_count, .get_strings = nb8800_get_strings, .get_ethtool_stats = nb8800_get_ethtool_stats, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static int nb8800_hw_init(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); u32 val; val = TX_RETRY_EN | TX_PAD_EN | TX_APPEND_FCS; nb8800_writeb(priv, NB8800_TX_CTL1, val); /* Collision retry count */ nb8800_writeb(priv, NB8800_TX_CTL2, 5); val = RX_PAD_STRIP | RX_AF_EN; nb8800_writeb(priv, NB8800_RX_CTL, val); /* Chosen by fair dice roll */ nb8800_writeb(priv, NB8800_RANDOM_SEED, 4); /* TX cycles per deferral period */ nb8800_writeb(priv, NB8800_TX_SDP, 12); /* The following three threshold values have been * experimentally determined for good results. */ /* RX/TX FIFO threshold for partial empty (64-bit entries) */ nb8800_writeb(priv, NB8800_PE_THRESHOLD, 0); /* RX/TX FIFO threshold for partial full (64-bit entries) */ nb8800_writeb(priv, NB8800_PF_THRESHOLD, 255); /* Buffer size for transmit (64-bit entries) */ nb8800_writeb(priv, NB8800_TX_BUFSIZE, 64); /* Configure tx DMA */ val = nb8800_readl(priv, NB8800_TXC_CR); val &= TCR_LE; /* keep endian setting */ val |= TCR_DM; /* DMA descriptor mode */ val |= TCR_RS; /* automatically store tx status */ val |= TCR_DIE; /* interrupt on DMA chain completion */ val |= TCR_TFI(7); /* interrupt after 7 frames transmitted */ val |= TCR_BTS(2); /* 32-byte bus transaction size */ nb8800_writel(priv, NB8800_TXC_CR, val); /* TX complete interrupt after 10 ms or 7 frames (see above) */ val = clk_get_rate(priv->clk) / 100; nb8800_writel(priv, NB8800_TX_ITR, val); /* Configure rx DMA */ val = nb8800_readl(priv, NB8800_RXC_CR); val &= RCR_LE; /* keep endian setting */ val |= RCR_DM; /* DMA descriptor mode */ val |= RCR_RS; /* automatically store rx status */ val |= RCR_DIE; /* interrupt at end of DMA chain */ val |= RCR_RFI(7); /* interrupt after 7 frames received */ val |= RCR_BTS(2); /* 32-byte bus transaction size */ nb8800_writel(priv, NB8800_RXC_CR, val); /* The rx interrupt can fire before the DMA has completed * unless a small delay is added. 50 us is hopefully enough. */ priv->rx_itr_irq = clk_get_rate(priv->clk) / 20000; /* In NAPI poll mode we want to disable interrupts, but the * hardware does not permit this. Delay 10 ms instead. */ priv->rx_itr_poll = clk_get_rate(priv->clk) / 100; nb8800_writel(priv, NB8800_RX_ITR, priv->rx_itr_irq); priv->rx_dma_config = RX_BUF_SIZE | DESC_BTS(2) | DESC_DS | DESC_EOF; /* Flow control settings */ /* Pause time of 0.1 ms */ val = 100000 / 512; nb8800_writeb(priv, NB8800_PQ1, val >> 8); nb8800_writeb(priv, NB8800_PQ2, val & 0xff); /* Auto-negotiate by default */ priv->pause_aneg = true; priv->pause_rx = true; priv->pause_tx = true; nb8800_mc_init(dev, 0); return 0; } static int nb8800_tangox_init(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); u32 pad_mode = PAD_MODE_MII; switch (priv->phy_mode) { case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_GMII: pad_mode = PAD_MODE_MII; break; case PHY_INTERFACE_MODE_RGMII: pad_mode = PAD_MODE_RGMII; break; case PHY_INTERFACE_MODE_RGMII_TXID: pad_mode = PAD_MODE_RGMII | PAD_MODE_GTX_CLK_DELAY; break; default: dev_err(dev->dev.parent, "unsupported phy mode %s\n", phy_modes(priv->phy_mode)); return -EINVAL; } nb8800_writeb(priv, NB8800_TANGOX_PAD_MODE, pad_mode); return 0; } static int nb8800_tangox_reset(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); int clk_div; nb8800_writeb(priv, NB8800_TANGOX_RESET, 0); usleep_range(1000, 10000); nb8800_writeb(priv, NB8800_TANGOX_RESET, 1); wmb(); /* ensure reset is cleared before proceeding */ clk_div = DIV_ROUND_UP(clk_get_rate(priv->clk), 2 * MAX_MDC_CLOCK); nb8800_writew(priv, NB8800_TANGOX_MDIO_CLKDIV, clk_div); return 0; } static const struct nb8800_ops nb8800_tangox_ops = { .init = nb8800_tangox_init, .reset = nb8800_tangox_reset, }; static int nb8800_tango4_init(struct net_device *dev) { struct nb8800_priv *priv = netdev_priv(dev); int err; err = nb8800_tangox_init(dev); if (err) return err; /* On tango4 interrupt on DMA completion per frame works and gives * better performance despite generating more rx interrupts. */ /* Disable unnecessary interrupt on rx completion */ nb8800_clearl(priv, NB8800_RXC_CR, RCR_RFI(7)); /* Request interrupt on descriptor DMA completion */ priv->rx_dma_config |= DESC_ID; return 0; } static const struct nb8800_ops nb8800_tango4_ops = { .init = nb8800_tango4_init, .reset = nb8800_tangox_reset, }; static const struct of_device_id nb8800_dt_ids[] = { { .compatible = "aurora,nb8800", }, { .compatible = "sigma,smp8642-ethernet", .data = &nb8800_tangox_ops, }, { .compatible = "sigma,smp8734-ethernet", .data = &nb8800_tango4_ops, }, { } }; MODULE_DEVICE_TABLE(of, nb8800_dt_ids); static int nb8800_probe(struct platform_device *pdev) { const struct of_device_id *match; const struct nb8800_ops *ops = NULL; struct nb8800_priv *priv; struct resource *res; struct net_device *dev; struct mii_bus *bus; const unsigned char *mac; void __iomem *base; int irq; int ret; match = of_match_device(nb8800_dt_ids, &pdev->dev); if (match) ops = match->data; irq = platform_get_irq(pdev, 0); if (irq <= 0) { dev_err(&pdev->dev, "No IRQ\n"); return -EINVAL; } res = platform_get_resource(pdev, IORESOURCE_MEM, 0); base = devm_ioremap_resource(&pdev->dev, res); if (IS_ERR(base)) return PTR_ERR(base); dev_dbg(&pdev->dev, "AU-NB8800 Ethernet at %pa\n", &res->start); dev = alloc_etherdev(sizeof(*priv)); if (!dev) return -ENOMEM; platform_set_drvdata(pdev, dev); SET_NETDEV_DEV(dev, &pdev->dev); priv = netdev_priv(dev); priv->base = base; priv->phy_mode = of_get_phy_mode(pdev->dev.of_node); if (priv->phy_mode < 0) priv->phy_mode = PHY_INTERFACE_MODE_RGMII; priv->clk = devm_clk_get(&pdev->dev, NULL); if (IS_ERR(priv->clk)) { dev_err(&pdev->dev, "failed to get clock\n"); ret = PTR_ERR(priv->clk); goto err_free_dev; } ret = clk_prepare_enable(priv->clk); if (ret) goto err_free_dev; spin_lock_init(&priv->tx_lock); if (ops && ops->reset) { ret = ops->reset(dev); if (ret) goto err_disable_clk; } bus = devm_mdiobus_alloc(&pdev->dev); if (!bus) { ret = -ENOMEM; goto err_disable_clk; } bus->name = "nb8800-mii"; bus->read = nb8800_mdio_read; bus->write = nb8800_mdio_write; bus->parent = &pdev->dev; snprintf(bus->id, MII_BUS_ID_SIZE, "%lx.nb8800-mii", (unsigned long)res->start); bus->priv = priv; ret = of_mdiobus_register(bus, pdev->dev.of_node); if (ret) { dev_err(&pdev->dev, "failed to register MII bus\n"); goto err_disable_clk; } if (of_phy_is_fixed_link(pdev->dev.of_node)) { ret = of_phy_register_fixed_link(pdev->dev.of_node); if (ret < 0) { dev_err(&pdev->dev, "bad fixed-link spec\n"); goto err_free_bus; } priv->phy_node = of_node_get(pdev->dev.of_node); } if (!priv->phy_node) priv->phy_node = of_parse_phandle(pdev->dev.of_node, "phy-handle", 0); if (!priv->phy_node) { dev_err(&pdev->dev, "no PHY specified\n"); ret = -ENODEV; goto err_free_bus; } priv->mii_bus = bus; ret = nb8800_hw_init(dev); if (ret) goto err_free_bus; if (ops && ops->init) { ret = ops->init(dev); if (ret) goto err_free_bus; } dev->netdev_ops = &nb8800_netdev_ops; dev->ethtool_ops = &nb8800_ethtool_ops; dev->flags |= IFF_MULTICAST; dev->irq = irq; mac = of_get_mac_address(pdev->dev.of_node); if (mac) ether_addr_copy(dev->dev_addr, mac); if (!is_valid_ether_addr(dev->dev_addr)) eth_hw_addr_random(dev); nb8800_update_mac_addr(dev); netif_carrier_off(dev); ret = register_netdev(dev); if (ret) { netdev_err(dev, "failed to register netdev\n"); goto err_free_dma; } netif_napi_add(dev, &priv->napi, nb8800_poll, NAPI_POLL_WEIGHT); netdev_info(dev, "MAC address %pM\n", dev->dev_addr); return 0; err_free_dma: nb8800_dma_free(dev); err_free_bus: of_node_put(priv->phy_node); mdiobus_unregister(bus); err_disable_clk: clk_disable_unprepare(priv->clk); err_free_dev: free_netdev(dev); return ret; } static int nb8800_remove(struct platform_device *pdev) { struct net_device *ndev = platform_get_drvdata(pdev); struct nb8800_priv *priv = netdev_priv(ndev); unregister_netdev(ndev); of_node_put(priv->phy_node); mdiobus_unregister(priv->mii_bus); clk_disable_unprepare(priv->clk); nb8800_dma_free(ndev); free_netdev(ndev); return 0; } static struct platform_driver nb8800_driver = { .driver = { .name = "nb8800", .of_match_table = nb8800_dt_ids, }, .probe = nb8800_probe, .remove = nb8800_remove, }; module_platform_driver(nb8800_driver); MODULE_DESCRIPTION("Aurora AU-NB8800 Ethernet driver"); MODULE_AUTHOR("Mans Rullgard "); MODULE_LICENSE("GPL");