/* * Broadcom BCM7xxx System Port Ethernet MAC driver * * Copyright (C) 2014 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "bcmsysport.h" /* I/O accessors register helpers */ #define BCM_SYSPORT_IO_MACRO(name, offset) \ static inline u32 name##_readl(struct bcm_sysport_priv *priv, u32 off) \ { \ u32 reg = __raw_readl(priv->base + offset + off); \ return reg; \ } \ static inline void name##_writel(struct bcm_sysport_priv *priv, \ u32 val, u32 off) \ { \ __raw_writel(val, priv->base + offset + off); \ } \ BCM_SYSPORT_IO_MACRO(intrl2_0, SYS_PORT_INTRL2_0_OFFSET); BCM_SYSPORT_IO_MACRO(intrl2_1, SYS_PORT_INTRL2_1_OFFSET); BCM_SYSPORT_IO_MACRO(umac, SYS_PORT_UMAC_OFFSET); BCM_SYSPORT_IO_MACRO(tdma, SYS_PORT_TDMA_OFFSET); BCM_SYSPORT_IO_MACRO(rdma, SYS_PORT_RDMA_OFFSET); BCM_SYSPORT_IO_MACRO(rxchk, SYS_PORT_RXCHK_OFFSET); BCM_SYSPORT_IO_MACRO(txchk, SYS_PORT_TXCHK_OFFSET); BCM_SYSPORT_IO_MACRO(rbuf, SYS_PORT_RBUF_OFFSET); BCM_SYSPORT_IO_MACRO(tbuf, SYS_PORT_TBUF_OFFSET); BCM_SYSPORT_IO_MACRO(topctrl, SYS_PORT_TOPCTRL_OFFSET); /* L2-interrupt masking/unmasking helpers, does automatic saving of the applied * mask in a software copy to avoid CPU_MASK_STATUS reads in hot-paths. */ #define BCM_SYSPORT_INTR_L2(which) \ static inline void intrl2_##which##_mask_clear(struct bcm_sysport_priv *priv, \ u32 mask) \ { \ intrl2_##which##_writel(priv, mask, INTRL2_CPU_MASK_CLEAR); \ priv->irq##which##_mask &= ~(mask); \ } \ static inline void intrl2_##which##_mask_set(struct bcm_sysport_priv *priv, \ u32 mask) \ { \ intrl2_## which##_writel(priv, mask, INTRL2_CPU_MASK_SET); \ priv->irq##which##_mask |= (mask); \ } \ BCM_SYSPORT_INTR_L2(0) BCM_SYSPORT_INTR_L2(1) /* Register accesses to GISB/RBUS registers are expensive (few hundred * nanoseconds), so keep the check for 64-bits explicit here to save * one register write per-packet on 32-bits platforms. */ static inline void dma_desc_set_addr(struct bcm_sysport_priv *priv, void __iomem *d, dma_addr_t addr) { #ifdef CONFIG_PHYS_ADDR_T_64BIT __raw_writel(upper_32_bits(addr) & DESC_ADDR_HI_MASK, d + DESC_ADDR_HI_STATUS_LEN); #endif __raw_writel(lower_32_bits(addr), d + DESC_ADDR_LO); } static inline void tdma_port_write_desc_addr(struct bcm_sysport_priv *priv, struct dma_desc *desc, unsigned int port) { /* Ports are latched, so write upper address first */ tdma_writel(priv, desc->addr_status_len, TDMA_WRITE_PORT_HI(port)); tdma_writel(priv, desc->addr_lo, TDMA_WRITE_PORT_LO(port)); } /* Ethtool operations */ static int bcm_sysport_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bcm_sysport_priv *priv = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; return phy_ethtool_sset(priv->phydev, cmd); } static int bcm_sysport_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) { struct bcm_sysport_priv *priv = netdev_priv(dev); if (!netif_running(dev)) return -EINVAL; return phy_ethtool_gset(priv->phydev, cmd); } static int bcm_sysport_set_rx_csum(struct net_device *dev, netdev_features_t wanted) { struct bcm_sysport_priv *priv = netdev_priv(dev); u32 reg; priv->rx_chk_en = !!(wanted & NETIF_F_RXCSUM); reg = rxchk_readl(priv, RXCHK_CONTROL); if (priv->rx_chk_en) reg |= RXCHK_EN; else reg &= ~RXCHK_EN; /* If UniMAC forwards CRC, we need to skip over it to get * a valid CHK bit to be set in the per-packet status word */ if (priv->rx_chk_en && priv->crc_fwd) reg |= RXCHK_SKIP_FCS; else reg &= ~RXCHK_SKIP_FCS; /* If Broadcom tags are enabled (e.g: using a switch), make * sure we tell the RXCHK hardware to expect a 4-bytes Broadcom * tag after the Ethernet MAC Source Address. */ if (netdev_uses_dsa(dev)) reg |= RXCHK_BRCM_TAG_EN; else reg &= ~RXCHK_BRCM_TAG_EN; rxchk_writel(priv, reg, RXCHK_CONTROL); return 0; } static int bcm_sysport_set_tx_csum(struct net_device *dev, netdev_features_t wanted) { struct bcm_sysport_priv *priv = netdev_priv(dev); u32 reg; /* Hardware transmit checksum requires us to enable the Transmit status * block prepended to the packet contents */ priv->tsb_en = !!(wanted & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)); reg = tdma_readl(priv, TDMA_CONTROL); if (priv->tsb_en) reg |= TSB_EN; else reg &= ~TSB_EN; tdma_writel(priv, reg, TDMA_CONTROL); return 0; } static int bcm_sysport_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t changed = features ^ dev->features; netdev_features_t wanted = dev->wanted_features; int ret = 0; if (changed & NETIF_F_RXCSUM) ret = bcm_sysport_set_rx_csum(dev, wanted); if (changed & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ret = bcm_sysport_set_tx_csum(dev, wanted); return ret; } /* Hardware counters must be kept in sync because the order/offset * is important here (order in structure declaration = order in hardware) */ static const struct bcm_sysport_stats bcm_sysport_gstrings_stats[] = { /* general stats */ STAT_NETDEV(rx_packets), STAT_NETDEV(tx_packets), STAT_NETDEV(rx_bytes), STAT_NETDEV(tx_bytes), STAT_NETDEV(rx_errors), STAT_NETDEV(tx_errors), STAT_NETDEV(rx_dropped), STAT_NETDEV(tx_dropped), STAT_NETDEV(multicast), /* UniMAC RSV counters */ STAT_MIB_RX("rx_64_octets", mib.rx.pkt_cnt.cnt_64), STAT_MIB_RX("rx_65_127_oct", mib.rx.pkt_cnt.cnt_127), STAT_MIB_RX("rx_128_255_oct", mib.rx.pkt_cnt.cnt_255), STAT_MIB_RX("rx_256_511_oct", mib.rx.pkt_cnt.cnt_511), STAT_MIB_RX("rx_512_1023_oct", mib.rx.pkt_cnt.cnt_1023), STAT_MIB_RX("rx_1024_1518_oct", mib.rx.pkt_cnt.cnt_1518), STAT_MIB_RX("rx_vlan_1519_1522_oct", mib.rx.pkt_cnt.cnt_mgv), STAT_MIB_RX("rx_1522_2047_oct", mib.rx.pkt_cnt.cnt_2047), STAT_MIB_RX("rx_2048_4095_oct", mib.rx.pkt_cnt.cnt_4095), STAT_MIB_RX("rx_4096_9216_oct", mib.rx.pkt_cnt.cnt_9216), STAT_MIB_RX("rx_pkts", mib.rx.pkt), STAT_MIB_RX("rx_bytes", mib.rx.bytes), STAT_MIB_RX("rx_multicast", mib.rx.mca), STAT_MIB_RX("rx_broadcast", mib.rx.bca), STAT_MIB_RX("rx_fcs", mib.rx.fcs), STAT_MIB_RX("rx_control", mib.rx.cf), STAT_MIB_RX("rx_pause", mib.rx.pf), STAT_MIB_RX("rx_unknown", mib.rx.uo), STAT_MIB_RX("rx_align", mib.rx.aln), STAT_MIB_RX("rx_outrange", mib.rx.flr), STAT_MIB_RX("rx_code", mib.rx.cde), STAT_MIB_RX("rx_carrier", mib.rx.fcr), STAT_MIB_RX("rx_oversize", mib.rx.ovr), STAT_MIB_RX("rx_jabber", mib.rx.jbr), STAT_MIB_RX("rx_mtu_err", mib.rx.mtue), STAT_MIB_RX("rx_good_pkts", mib.rx.pok), STAT_MIB_RX("rx_unicast", mib.rx.uc), STAT_MIB_RX("rx_ppp", mib.rx.ppp), STAT_MIB_RX("rx_crc", mib.rx.rcrc), /* UniMAC TSV counters */ STAT_MIB_TX("tx_64_octets", mib.tx.pkt_cnt.cnt_64), STAT_MIB_TX("tx_65_127_oct", mib.tx.pkt_cnt.cnt_127), STAT_MIB_TX("tx_128_255_oct", mib.tx.pkt_cnt.cnt_255), STAT_MIB_TX("tx_256_511_oct", mib.tx.pkt_cnt.cnt_511), STAT_MIB_TX("tx_512_1023_oct", mib.tx.pkt_cnt.cnt_1023), STAT_MIB_TX("tx_1024_1518_oct", mib.tx.pkt_cnt.cnt_1518), STAT_MIB_TX("tx_vlan_1519_1522_oct", mib.tx.pkt_cnt.cnt_mgv), STAT_MIB_TX("tx_1522_2047_oct", mib.tx.pkt_cnt.cnt_2047), STAT_MIB_TX("tx_2048_4095_oct", mib.tx.pkt_cnt.cnt_4095), STAT_MIB_TX("tx_4096_9216_oct", mib.tx.pkt_cnt.cnt_9216), STAT_MIB_TX("tx_pkts", mib.tx.pkts), STAT_MIB_TX("tx_multicast", mib.tx.mca), STAT_MIB_TX("tx_broadcast", mib.tx.bca), STAT_MIB_TX("tx_pause", mib.tx.pf), STAT_MIB_TX("tx_control", mib.tx.cf), STAT_MIB_TX("tx_fcs_err", mib.tx.fcs), STAT_MIB_TX("tx_oversize", mib.tx.ovr), STAT_MIB_TX("tx_defer", mib.tx.drf), STAT_MIB_TX("tx_excess_defer", mib.tx.edf), STAT_MIB_TX("tx_single_col", mib.tx.scl), STAT_MIB_TX("tx_multi_col", mib.tx.mcl), STAT_MIB_TX("tx_late_col", mib.tx.lcl), STAT_MIB_TX("tx_excess_col", mib.tx.ecl), STAT_MIB_TX("tx_frags", mib.tx.frg), STAT_MIB_TX("tx_total_col", mib.tx.ncl), STAT_MIB_TX("tx_jabber", mib.tx.jbr), STAT_MIB_TX("tx_bytes", mib.tx.bytes), STAT_MIB_TX("tx_good_pkts", mib.tx.pok), STAT_MIB_TX("tx_unicast", mib.tx.uc), /* UniMAC RUNT counters */ STAT_RUNT("rx_runt_pkts", mib.rx_runt_cnt), STAT_RUNT("rx_runt_valid_fcs", mib.rx_runt_fcs), STAT_RUNT("rx_runt_inval_fcs_align", mib.rx_runt_fcs_align), STAT_RUNT("rx_runt_bytes", mib.rx_runt_bytes), /* RXCHK misc statistics */ STAT_RXCHK("rxchk_bad_csum", mib.rxchk_bad_csum, RXCHK_BAD_CSUM_CNTR), STAT_RXCHK("rxchk_other_pkt_disc", mib.rxchk_other_pkt_disc, RXCHK_OTHER_DISC_CNTR), /* RBUF misc statistics */ STAT_RBUF("rbuf_ovflow_cnt", mib.rbuf_ovflow_cnt, RBUF_OVFL_DISC_CNTR), STAT_RBUF("rbuf_err_cnt", mib.rbuf_err_cnt, RBUF_ERR_PKT_CNTR), STAT_MIB_SOFT("alloc_rx_buff_failed", mib.alloc_rx_buff_failed), STAT_MIB_SOFT("rx_dma_failed", mib.rx_dma_failed), STAT_MIB_SOFT("tx_dma_failed", mib.tx_dma_failed), }; #define BCM_SYSPORT_STATS_LEN ARRAY_SIZE(bcm_sysport_gstrings_stats) static void bcm_sysport_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); strlcpy(info->version, "0.1", sizeof(info->version)); strlcpy(info->bus_info, "platform", sizeof(info->bus_info)); info->n_stats = BCM_SYSPORT_STATS_LEN; } static u32 bcm_sysport_get_msglvl(struct net_device *dev) { struct bcm_sysport_priv *priv = netdev_priv(dev); return priv->msg_enable; } static void bcm_sysport_set_msglvl(struct net_device *dev, u32 enable) { struct bcm_sysport_priv *priv = netdev_priv(dev); priv->msg_enable = enable; } static int bcm_sysport_get_sset_count(struct net_device *dev, int string_set) { switch (string_set) { case ETH_SS_STATS: return BCM_SYSPORT_STATS_LEN; default: return -EOPNOTSUPP; } } static void bcm_sysport_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) { memcpy(data + i * ETH_GSTRING_LEN, bcm_sysport_gstrings_stats[i].stat_string, ETH_GSTRING_LEN); } break; default: break; } } static void bcm_sysport_update_mib_counters(struct bcm_sysport_priv *priv) { int i, j = 0; for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) { const struct bcm_sysport_stats *s; u8 offset = 0; u32 val = 0; char *p; s = &bcm_sysport_gstrings_stats[i]; switch (s->type) { case BCM_SYSPORT_STAT_NETDEV: case BCM_SYSPORT_STAT_SOFT: continue; case BCM_SYSPORT_STAT_MIB_RX: case BCM_SYSPORT_STAT_MIB_TX: case BCM_SYSPORT_STAT_RUNT: if (s->type != BCM_SYSPORT_STAT_MIB_RX) offset = UMAC_MIB_STAT_OFFSET; val = umac_readl(priv, UMAC_MIB_START + j + offset); break; case BCM_SYSPORT_STAT_RXCHK: val = rxchk_readl(priv, s->reg_offset); if (val == ~0) rxchk_writel(priv, 0, s->reg_offset); break; case BCM_SYSPORT_STAT_RBUF: val = rbuf_readl(priv, s->reg_offset); if (val == ~0) rbuf_writel(priv, 0, s->reg_offset); break; } j += s->stat_sizeof; p = (char *)priv + s->stat_offset; *(u32 *)p = val; } netif_dbg(priv, hw, priv->netdev, "updated MIB counters\n"); } static void bcm_sysport_get_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct bcm_sysport_priv *priv = netdev_priv(dev); int i; if (netif_running(dev)) bcm_sysport_update_mib_counters(priv); for (i = 0; i < BCM_SYSPORT_STATS_LEN; i++) { const struct bcm_sysport_stats *s; char *p; s = &bcm_sysport_gstrings_stats[i]; if (s->type == BCM_SYSPORT_STAT_NETDEV) p = (char *)&dev->stats; else p = (char *)priv; p += s->stat_offset; data[i] = *(u32 *)p; } } static void bcm_sysport_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct bcm_sysport_priv *priv = netdev_priv(dev); u32 reg; wol->supported = WAKE_MAGIC | WAKE_MAGICSECURE; wol->wolopts = priv->wolopts; if (!(priv->wolopts & WAKE_MAGICSECURE)) return; /* Return the programmed SecureOn password */ reg = umac_readl(priv, UMAC_PSW_MS); put_unaligned_be16(reg, &wol->sopass[0]); reg = umac_readl(priv, UMAC_PSW_LS); put_unaligned_be32(reg, &wol->sopass[2]); } static int bcm_sysport_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) { struct bcm_sysport_priv *priv = netdev_priv(dev); struct device *kdev = &priv->pdev->dev; u32 supported = WAKE_MAGIC | WAKE_MAGICSECURE; if (!device_can_wakeup(kdev)) return -ENOTSUPP; if (wol->wolopts & ~supported) return -EINVAL; /* Program the SecureOn password */ if (wol->wolopts & WAKE_MAGICSECURE) { umac_writel(priv, get_unaligned_be16(&wol->sopass[0]), UMAC_PSW_MS); umac_writel(priv, get_unaligned_be32(&wol->sopass[2]), UMAC_PSW_LS); } /* Flag the device and relevant IRQ as wakeup capable */ if (wol->wolopts) { device_set_wakeup_enable(kdev, 1); if (priv->wol_irq_disabled) enable_irq_wake(priv->wol_irq); priv->wol_irq_disabled = 0; } else { device_set_wakeup_enable(kdev, 0); /* Avoid unbalanced disable_irq_wake calls */ if (!priv->wol_irq_disabled) disable_irq_wake(priv->wol_irq); priv->wol_irq_disabled = 1; } priv->wolopts = wol->wolopts; return 0; } static int bcm_sysport_get_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct bcm_sysport_priv *priv = netdev_priv(dev); u32 reg; reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(0)); ec->tx_coalesce_usecs = (reg >> RING_TIMEOUT_SHIFT) * 8192 / 1000; ec->tx_max_coalesced_frames = reg & RING_INTR_THRESH_MASK; reg = rdma_readl(priv, RDMA_MBDONE_INTR); ec->rx_coalesce_usecs = (reg >> RDMA_TIMEOUT_SHIFT) * 8192 / 1000; ec->rx_max_coalesced_frames = reg & RDMA_INTR_THRESH_MASK; return 0; } static int bcm_sysport_set_coalesce(struct net_device *dev, struct ethtool_coalesce *ec) { struct bcm_sysport_priv *priv = netdev_priv(dev); unsigned int i; u32 reg; /* Base system clock is 125Mhz, DMA timeout is this reference clock * divided by 1024, which yield roughly 8.192 us, our maximum value has * to fit in the RING_TIMEOUT_MASK (16 bits). */ if (ec->tx_max_coalesced_frames > RING_INTR_THRESH_MASK || ec->tx_coalesce_usecs > (RING_TIMEOUT_MASK * 8) + 1 || ec->rx_max_coalesced_frames > RDMA_INTR_THRESH_MASK || ec->rx_coalesce_usecs > (RDMA_TIMEOUT_MASK * 8) + 1) return -EINVAL; if ((ec->tx_coalesce_usecs == 0 && ec->tx_max_coalesced_frames == 0) || (ec->rx_coalesce_usecs == 0 && ec->rx_max_coalesced_frames == 0)) return -EINVAL; for (i = 0; i < dev->num_tx_queues; i++) { reg = tdma_readl(priv, TDMA_DESC_RING_INTR_CONTROL(i)); reg &= ~(RING_INTR_THRESH_MASK | RING_TIMEOUT_MASK << RING_TIMEOUT_SHIFT); reg |= ec->tx_max_coalesced_frames; reg |= DIV_ROUND_UP(ec->tx_coalesce_usecs * 1000, 8192) << RING_TIMEOUT_SHIFT; tdma_writel(priv, reg, TDMA_DESC_RING_INTR_CONTROL(i)); } reg = rdma_readl(priv, RDMA_MBDONE_INTR); reg &= ~(RDMA_INTR_THRESH_MASK | RDMA_TIMEOUT_MASK << RDMA_TIMEOUT_SHIFT); reg |= ec->rx_max_coalesced_frames; reg |= DIV_ROUND_UP(ec->rx_coalesce_usecs * 1000, 8192) << RDMA_TIMEOUT_SHIFT; rdma_writel(priv, reg, RDMA_MBDONE_INTR); return 0; } static void bcm_sysport_free_cb(struct bcm_sysport_cb *cb) { dev_kfree_skb_any(cb->skb); cb->skb = NULL; dma_unmap_addr_set(cb, dma_addr, 0); } static struct sk_buff *bcm_sysport_rx_refill(struct bcm_sysport_priv *priv, struct bcm_sysport_cb *cb) { struct device *kdev = &priv->pdev->dev; struct net_device *ndev = priv->netdev; struct sk_buff *skb, *rx_skb; dma_addr_t mapping; /* Allocate a new SKB for a new packet */ skb = netdev_alloc_skb(priv->netdev, RX_BUF_LENGTH); if (!skb) { priv->mib.alloc_rx_buff_failed++; netif_err(priv, rx_err, ndev, "SKB alloc failed\n"); return NULL; } mapping = dma_map_single(kdev, skb->data, RX_BUF_LENGTH, DMA_FROM_DEVICE); if (dma_mapping_error(kdev, mapping)) { priv->mib.rx_dma_failed++; dev_kfree_skb_any(skb); netif_err(priv, rx_err, ndev, "DMA mapping failure\n"); return NULL; } /* Grab the current SKB on the ring */ rx_skb = cb->skb; if (likely(rx_skb)) dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr), RX_BUF_LENGTH, DMA_FROM_DEVICE); /* Put the new SKB on the ring */ cb->skb = skb; dma_unmap_addr_set(cb, dma_addr, mapping); dma_desc_set_addr(priv, cb->bd_addr, mapping); netif_dbg(priv, rx_status, ndev, "RX refill\n"); /* Return the current SKB to the caller */ return rx_skb; } static int bcm_sysport_alloc_rx_bufs(struct bcm_sysport_priv *priv) { struct bcm_sysport_cb *cb; struct sk_buff *skb; unsigned int i; for (i = 0; i < priv->num_rx_bds; i++) { cb = &priv->rx_cbs[i]; skb = bcm_sysport_rx_refill(priv, cb); if (skb) dev_kfree_skb(skb); if (!cb->skb) return -ENOMEM; } return 0; } /* Poll the hardware for up to budget packets to process */ static unsigned int bcm_sysport_desc_rx(struct bcm_sysport_priv *priv, unsigned int budget) { struct net_device *ndev = priv->netdev; unsigned int processed = 0, to_process; struct bcm_sysport_cb *cb; struct sk_buff *skb; unsigned int p_index; u16 len, status; struct bcm_rsb *rsb; /* Determine how much we should process since last call */ p_index = rdma_readl(priv, RDMA_PROD_INDEX); p_index &= RDMA_PROD_INDEX_MASK; if (p_index < priv->rx_c_index) to_process = (RDMA_CONS_INDEX_MASK + 1) - priv->rx_c_index + p_index; else to_process = p_index - priv->rx_c_index; netif_dbg(priv, rx_status, ndev, "p_index=%d rx_c_index=%d to_process=%d\n", p_index, priv->rx_c_index, to_process); while ((processed < to_process) && (processed < budget)) { cb = &priv->rx_cbs[priv->rx_read_ptr]; skb = bcm_sysport_rx_refill(priv, cb); /* We do not have a backing SKB, so we do not a corresponding * DMA mapping for this incoming packet since * bcm_sysport_rx_refill always either has both skb and mapping * or none. */ if (unlikely(!skb)) { netif_err(priv, rx_err, ndev, "out of memory!\n"); ndev->stats.rx_dropped++; ndev->stats.rx_errors++; goto next; } /* Extract the Receive Status Block prepended */ rsb = (struct bcm_rsb *)skb->data; len = (rsb->rx_status_len >> DESC_LEN_SHIFT) & DESC_LEN_MASK; status = (rsb->rx_status_len >> DESC_STATUS_SHIFT) & DESC_STATUS_MASK; netif_dbg(priv, rx_status, ndev, "p=%d, c=%d, rd_ptr=%d, len=%d, flag=0x%04x\n", p_index, priv->rx_c_index, priv->rx_read_ptr, len, status); if (unlikely(len > RX_BUF_LENGTH)) { netif_err(priv, rx_status, ndev, "oversized packet\n"); ndev->stats.rx_length_errors++; ndev->stats.rx_errors++; dev_kfree_skb_any(skb); goto next; } if (unlikely(!(status & DESC_EOP) || !(status & DESC_SOP))) { netif_err(priv, rx_status, ndev, "fragmented packet!\n"); ndev->stats.rx_dropped++; ndev->stats.rx_errors++; dev_kfree_skb_any(skb); goto next; } if (unlikely(status & (RX_STATUS_ERR | RX_STATUS_OVFLOW))) { netif_err(priv, rx_err, ndev, "error packet\n"); if (status & RX_STATUS_OVFLOW) ndev->stats.rx_over_errors++; ndev->stats.rx_dropped++; ndev->stats.rx_errors++; dev_kfree_skb_any(skb); goto next; } skb_put(skb, len); /* Hardware validated our checksum */ if (likely(status & DESC_L4_CSUM)) skb->ip_summed = CHECKSUM_UNNECESSARY; /* Hardware pre-pends packets with 2bytes before Ethernet * header plus we have the Receive Status Block, strip off all * of this from the SKB. */ skb_pull(skb, sizeof(*rsb) + 2); len -= (sizeof(*rsb) + 2); /* UniMAC may forward CRC */ if (priv->crc_fwd) { skb_trim(skb, len - ETH_FCS_LEN); len -= ETH_FCS_LEN; } skb->protocol = eth_type_trans(skb, ndev); ndev->stats.rx_packets++; ndev->stats.rx_bytes += len; napi_gro_receive(&priv->napi, skb); next: processed++; priv->rx_read_ptr++; if (priv->rx_read_ptr == priv->num_rx_bds) priv->rx_read_ptr = 0; } return processed; } static void bcm_sysport_tx_reclaim_one(struct bcm_sysport_priv *priv, struct bcm_sysport_cb *cb, unsigned int *bytes_compl, unsigned int *pkts_compl) { struct device *kdev = &priv->pdev->dev; struct net_device *ndev = priv->netdev; if (cb->skb) { ndev->stats.tx_bytes += cb->skb->len; *bytes_compl += cb->skb->len; dma_unmap_single(kdev, dma_unmap_addr(cb, dma_addr), dma_unmap_len(cb, dma_len), DMA_TO_DEVICE); ndev->stats.tx_packets++; (*pkts_compl)++; bcm_sysport_free_cb(cb); /* SKB fragment */ } else if (dma_unmap_addr(cb, dma_addr)) { ndev->stats.tx_bytes += dma_unmap_len(cb, dma_len); dma_unmap_page(kdev, dma_unmap_addr(cb, dma_addr), dma_unmap_len(cb, dma_len), DMA_TO_DEVICE); dma_unmap_addr_set(cb, dma_addr, 0); } } /* Reclaim queued SKBs for transmission completion, lockless version */ static unsigned int __bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv, struct bcm_sysport_tx_ring *ring) { struct net_device *ndev = priv->netdev; unsigned int c_index, last_c_index, last_tx_cn, num_tx_cbs; unsigned int pkts_compl = 0, bytes_compl = 0; struct bcm_sysport_cb *cb; struct netdev_queue *txq; u32 hw_ind; txq = netdev_get_tx_queue(ndev, ring->index); /* Compute how many descriptors have been processed since last call */ hw_ind = tdma_readl(priv, TDMA_DESC_RING_PROD_CONS_INDEX(ring->index)); c_index = (hw_ind >> RING_CONS_INDEX_SHIFT) & RING_CONS_INDEX_MASK; ring->p_index = (hw_ind & RING_PROD_INDEX_MASK); last_c_index = ring->c_index; num_tx_cbs = ring->size; c_index &= (num_tx_cbs - 1); if (c_index >= last_c_index) last_tx_cn = c_index - last_c_index; else last_tx_cn = num_tx_cbs - last_c_index + c_index; netif_dbg(priv, tx_done, ndev, "ring=%d c_index=%d last_tx_cn=%d last_c_index=%d\n", ring->index, c_index, last_tx_cn, last_c_index); while (last_tx_cn-- > 0) { cb = ring->cbs + last_c_index; bcm_sysport_tx_reclaim_one(priv, cb, &bytes_compl, &pkts_compl); ring->desc_count++; last_c_index++; last_c_index &= (num_tx_cbs - 1); } ring->c_index = c_index; if (netif_tx_queue_stopped(txq) && pkts_compl) netif_tx_wake_queue(txq); netif_dbg(priv, tx_done, ndev, "ring=%d c_index=%d pkts_compl=%d, bytes_compl=%d\n", ring->index, ring->c_index, pkts_compl, bytes_compl); return pkts_compl; } /* Locked version of the per-ring TX reclaim routine */ static unsigned int bcm_sysport_tx_reclaim(struct bcm_sysport_priv *priv, struct bcm_sysport_tx_ring *ring) { unsigned int released; unsigned long flags; spin_lock_irqsave(&ring->lock, flags); released = __bcm_sysport_tx_reclaim(priv, ring); spin_unlock_irqrestore(&ring->lock, flags); return released; } static int bcm_sysport_tx_poll(struct napi_struct *napi, int budget) { struct bcm_sysport_tx_ring *ring = container_of(napi, struct bcm_sysport_tx_ring, napi); unsigned int work_done = 0; work_done = bcm_sysport_tx_reclaim(ring->priv, ring); if (work_done == 0) { napi_complete(napi); /* re-enable TX interrupt */ intrl2_1_mask_clear(ring->priv, BIT(ring->index)); return 0; } return budget; } static void bcm_sysport_tx_reclaim_all(struct bcm_sysport_priv *priv) { unsigned int q; for (q = 0; q < priv->netdev->num_tx_queues; q++) bcm_sysport_tx_reclaim(priv, &priv->tx_rings[q]); } static int bcm_sysport_poll(struct napi_struct *napi, int budget) { struct bcm_sysport_priv *priv = container_of(napi, struct bcm_sysport_priv, napi); unsigned int work_done = 0; work_done = bcm_sysport_desc_rx(priv, budget); priv->rx_c_index += work_done; priv->rx_c_index &= RDMA_CONS_INDEX_MASK; rdma_writel(priv, priv->rx_c_index, RDMA_CONS_INDEX); if (work_done < budget) { napi_complete(napi); /* re-enable RX interrupts */ intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE); } return work_done; } static void bcm_sysport_resume_from_wol(struct bcm_sysport_priv *priv) { u32 reg; /* Stop monitoring MPD interrupt */ intrl2_0_mask_set(priv, INTRL2_0_MPD); /* Clear the MagicPacket detection logic */ reg = umac_readl(priv, UMAC_MPD_CTRL); reg &= ~MPD_EN; umac_writel(priv, reg, UMAC_MPD_CTRL); netif_dbg(priv, wol, priv->netdev, "resumed from WOL\n"); } /* RX and misc interrupt routine */ static irqreturn_t bcm_sysport_rx_isr(int irq, void *dev_id) { struct net_device *dev = dev_id; struct bcm_sysport_priv *priv = netdev_priv(dev); priv->irq0_stat = intrl2_0_readl(priv, INTRL2_CPU_STATUS) & ~intrl2_0_readl(priv, INTRL2_CPU_MASK_STATUS); intrl2_0_writel(priv, priv->irq0_stat, INTRL2_CPU_CLEAR); if (unlikely(priv->irq0_stat == 0)) { netdev_warn(priv->netdev, "spurious RX interrupt\n"); return IRQ_NONE; } if (priv->irq0_stat & INTRL2_0_RDMA_MBDONE) { if (likely(napi_schedule_prep(&priv->napi))) { /* disable RX interrupts */ intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE); __napi_schedule(&priv->napi); } } /* TX ring is full, perform a full reclaim since we do not know * which one would trigger this interrupt */ if (priv->irq0_stat & INTRL2_0_TX_RING_FULL) bcm_sysport_tx_reclaim_all(priv); if (priv->irq0_stat & INTRL2_0_MPD) { netdev_info(priv->netdev, "Wake-on-LAN interrupt!\n"); bcm_sysport_resume_from_wol(priv); } return IRQ_HANDLED; } /* TX interrupt service routine */ static irqreturn_t bcm_sysport_tx_isr(int irq, void *dev_id) { struct net_device *dev = dev_id; struct bcm_sysport_priv *priv = netdev_priv(dev); struct bcm_sysport_tx_ring *txr; unsigned int ring; priv->irq1_stat = intrl2_1_readl(priv, INTRL2_CPU_STATUS) & ~intrl2_1_readl(priv, INTRL2_CPU_MASK_STATUS); intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); if (unlikely(priv->irq1_stat == 0)) { netdev_warn(priv->netdev, "spurious TX interrupt\n"); return IRQ_NONE; } for (ring = 0; ring < dev->num_tx_queues; ring++) { if (!(priv->irq1_stat & BIT(ring))) continue; txr = &priv->tx_rings[ring]; if (likely(napi_schedule_prep(&txr->napi))) { intrl2_1_mask_set(priv, BIT(ring)); __napi_schedule(&txr->napi); } } return IRQ_HANDLED; } static irqreturn_t bcm_sysport_wol_isr(int irq, void *dev_id) { struct bcm_sysport_priv *priv = dev_id; pm_wakeup_event(&priv->pdev->dev, 0); return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void bcm_sysport_poll_controller(struct net_device *dev) { struct bcm_sysport_priv *priv = netdev_priv(dev); disable_irq(priv->irq0); bcm_sysport_rx_isr(priv->irq0, priv); enable_irq(priv->irq0); disable_irq(priv->irq1); bcm_sysport_tx_isr(priv->irq1, priv); enable_irq(priv->irq1); } #endif static struct sk_buff *bcm_sysport_insert_tsb(struct sk_buff *skb, struct net_device *dev) { struct sk_buff *nskb; struct bcm_tsb *tsb; u32 csum_info; u8 ip_proto; u16 csum_start; u16 ip_ver; /* Re-allocate SKB if needed */ if (unlikely(skb_headroom(skb) < sizeof(*tsb))) { nskb = skb_realloc_headroom(skb, sizeof(*tsb)); dev_kfree_skb(skb); if (!nskb) { dev->stats.tx_errors++; dev->stats.tx_dropped++; return NULL; } skb = nskb; } tsb = (struct bcm_tsb *)skb_push(skb, sizeof(*tsb)); /* Zero-out TSB by default */ memset(tsb, 0, sizeof(*tsb)); if (skb->ip_summed == CHECKSUM_PARTIAL) { ip_ver = htons(skb->protocol); switch (ip_ver) { case ETH_P_IP: ip_proto = ip_hdr(skb)->protocol; break; case ETH_P_IPV6: ip_proto = ipv6_hdr(skb)->nexthdr; break; default: return skb; } /* Get the checksum offset and the L4 (transport) offset */ csum_start = skb_checksum_start_offset(skb) - sizeof(*tsb); csum_info = (csum_start + skb->csum_offset) & L4_CSUM_PTR_MASK; csum_info |= (csum_start << L4_PTR_SHIFT); if (ip_proto == IPPROTO_TCP || ip_proto == IPPROTO_UDP) { csum_info |= L4_LENGTH_VALID; if (ip_proto == IPPROTO_UDP && ip_ver == ETH_P_IP) csum_info |= L4_UDP; } else { csum_info = 0; } tsb->l4_ptr_dest_map = csum_info; } return skb; } static netdev_tx_t bcm_sysport_xmit(struct sk_buff *skb, struct net_device *dev) { struct bcm_sysport_priv *priv = netdev_priv(dev); struct device *kdev = &priv->pdev->dev; struct bcm_sysport_tx_ring *ring; struct bcm_sysport_cb *cb; struct netdev_queue *txq; struct dma_desc *desc; unsigned int skb_len; unsigned long flags; dma_addr_t mapping; u32 len_status; u16 queue; int ret; queue = skb_get_queue_mapping(skb); txq = netdev_get_tx_queue(dev, queue); ring = &priv->tx_rings[queue]; /* lock against tx reclaim in BH context and TX ring full interrupt */ spin_lock_irqsave(&ring->lock, flags); if (unlikely(ring->desc_count == 0)) { netif_tx_stop_queue(txq); netdev_err(dev, "queue %d awake and ring full!\n", queue); ret = NETDEV_TX_BUSY; goto out; } /* Insert TSB and checksum infos */ if (priv->tsb_en) { skb = bcm_sysport_insert_tsb(skb, dev); if (!skb) { ret = NETDEV_TX_OK; goto out; } } /* The Ethernet switch we are interfaced with needs packets to be at * least 64 bytes (including FCS) otherwise they will be discarded when * they enter the switch port logic. When Broadcom tags are enabled, we * need to make sure that packets are at least 68 bytes * (including FCS and tag) because the length verification is done after * the Broadcom tag is stripped off the ingress packet. */ if (skb_padto(skb, ETH_ZLEN + ENET_BRCM_TAG_LEN)) { ret = NETDEV_TX_OK; goto out; } skb_len = skb->len < ETH_ZLEN + ENET_BRCM_TAG_LEN ? ETH_ZLEN + ENET_BRCM_TAG_LEN : skb->len; mapping = dma_map_single(kdev, skb->data, skb_len, DMA_TO_DEVICE); if (dma_mapping_error(kdev, mapping)) { priv->mib.tx_dma_failed++; netif_err(priv, tx_err, dev, "DMA map failed at %p (len=%d)\n", skb->data, skb_len); ret = NETDEV_TX_OK; goto out; } /* Remember the SKB for future freeing */ cb = &ring->cbs[ring->curr_desc]; cb->skb = skb; dma_unmap_addr_set(cb, dma_addr, mapping); dma_unmap_len_set(cb, dma_len, skb_len); /* Fetch a descriptor entry from our pool */ desc = ring->desc_cpu; desc->addr_lo = lower_32_bits(mapping); len_status = upper_32_bits(mapping) & DESC_ADDR_HI_MASK; len_status |= (skb_len << DESC_LEN_SHIFT); len_status |= (DESC_SOP | DESC_EOP | TX_STATUS_APP_CRC) << DESC_STATUS_SHIFT; if (skb->ip_summed == CHECKSUM_PARTIAL) len_status |= (DESC_L4_CSUM << DESC_STATUS_SHIFT); ring->curr_desc++; if (ring->curr_desc == ring->size) ring->curr_desc = 0; ring->desc_count--; /* Ensure write completion of the descriptor status/length * in DRAM before the System Port WRITE_PORT register latches * the value */ wmb(); desc->addr_status_len = len_status; wmb(); /* Write this descriptor address to the RING write port */ tdma_port_write_desc_addr(priv, desc, ring->index); /* Check ring space and update SW control flow */ if (ring->desc_count == 0) netif_tx_stop_queue(txq); netif_dbg(priv, tx_queued, dev, "ring=%d desc_count=%d, curr_desc=%d\n", ring->index, ring->desc_count, ring->curr_desc); ret = NETDEV_TX_OK; out: spin_unlock_irqrestore(&ring->lock, flags); return ret; } static void bcm_sysport_tx_timeout(struct net_device *dev) { netdev_warn(dev, "transmit timeout!\n"); dev->trans_start = jiffies; dev->stats.tx_errors++; netif_tx_wake_all_queues(dev); } /* phylib adjust link callback */ static void bcm_sysport_adj_link(struct net_device *dev) { struct bcm_sysport_priv *priv = netdev_priv(dev); struct phy_device *phydev = priv->phydev; unsigned int changed = 0; u32 cmd_bits = 0, reg; if (priv->old_link != phydev->link) { changed = 1; priv->old_link = phydev->link; } if (priv->old_duplex != phydev->duplex) { changed = 1; priv->old_duplex = phydev->duplex; } switch (phydev->speed) { case SPEED_2500: cmd_bits = CMD_SPEED_2500; break; case SPEED_1000: cmd_bits = CMD_SPEED_1000; break; case SPEED_100: cmd_bits = CMD_SPEED_100; break; case SPEED_10: cmd_bits = CMD_SPEED_10; break; default: break; } cmd_bits <<= CMD_SPEED_SHIFT; if (phydev->duplex == DUPLEX_HALF) cmd_bits |= CMD_HD_EN; if (priv->old_pause != phydev->pause) { changed = 1; priv->old_pause = phydev->pause; } if (!phydev->pause) cmd_bits |= CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE; if (!changed) return; if (phydev->link) { reg = umac_readl(priv, UMAC_CMD); reg &= ~((CMD_SPEED_MASK << CMD_SPEED_SHIFT) | CMD_HD_EN | CMD_RX_PAUSE_IGNORE | CMD_TX_PAUSE_IGNORE); reg |= cmd_bits; umac_writel(priv, reg, UMAC_CMD); } phy_print_status(priv->phydev); } static int bcm_sysport_init_tx_ring(struct bcm_sysport_priv *priv, unsigned int index) { struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index]; struct device *kdev = &priv->pdev->dev; size_t size; void *p; u32 reg; /* Simple descriptors partitioning for now */ size = 256; /* We just need one DMA descriptor which is DMA-able, since writing to * the port will allocate a new descriptor in its internal linked-list */ p = dma_zalloc_coherent(kdev, sizeof(struct dma_desc), &ring->desc_dma, GFP_KERNEL); if (!p) { netif_err(priv, hw, priv->netdev, "DMA alloc failed\n"); return -ENOMEM; } ring->cbs = kcalloc(size, sizeof(struct bcm_sysport_cb), GFP_KERNEL); if (!ring->cbs) { netif_err(priv, hw, priv->netdev, "CB allocation failed\n"); return -ENOMEM; } /* Initialize SW view of the ring */ spin_lock_init(&ring->lock); ring->priv = priv; netif_napi_add(priv->netdev, &ring->napi, bcm_sysport_tx_poll, 64); ring->index = index; ring->size = size; ring->alloc_size = ring->size; ring->desc_cpu = p; ring->desc_count = ring->size; ring->curr_desc = 0; /* Initialize HW ring */ tdma_writel(priv, RING_EN, TDMA_DESC_RING_HEAD_TAIL_PTR(index)); tdma_writel(priv, 0, TDMA_DESC_RING_COUNT(index)); tdma_writel(priv, 1, TDMA_DESC_RING_INTR_CONTROL(index)); tdma_writel(priv, 0, TDMA_DESC_RING_PROD_CONS_INDEX(index)); tdma_writel(priv, RING_IGNORE_STATUS, TDMA_DESC_RING_MAPPING(index)); tdma_writel(priv, 0, TDMA_DESC_RING_PCP_DEI_VID(index)); /* Program the number of descriptors as MAX_THRESHOLD and half of * its size for the hysteresis trigger */ tdma_writel(priv, ring->size | 1 << RING_HYST_THRESH_SHIFT, TDMA_DESC_RING_MAX_HYST(index)); /* Enable the ring queue in the arbiter */ reg = tdma_readl(priv, TDMA_TIER1_ARB_0_QUEUE_EN); reg |= (1 << index); tdma_writel(priv, reg, TDMA_TIER1_ARB_0_QUEUE_EN); napi_enable(&ring->napi); netif_dbg(priv, hw, priv->netdev, "TDMA cfg, size=%d, desc_cpu=%p\n", ring->size, ring->desc_cpu); return 0; } static void bcm_sysport_fini_tx_ring(struct bcm_sysport_priv *priv, unsigned int index) { struct bcm_sysport_tx_ring *ring = &priv->tx_rings[index]; struct device *kdev = &priv->pdev->dev; u32 reg; /* Caller should stop the TDMA engine */ reg = tdma_readl(priv, TDMA_STATUS); if (!(reg & TDMA_DISABLED)) netdev_warn(priv->netdev, "TDMA not stopped!\n"); /* ring->cbs is the last part in bcm_sysport_init_tx_ring which could * fail, so by checking this pointer we know whether the TX ring was * fully initialized or not. */ if (!ring->cbs) return; napi_disable(&ring->napi); netif_napi_del(&ring->napi); bcm_sysport_tx_reclaim(priv, ring); kfree(ring->cbs); ring->cbs = NULL; if (ring->desc_dma) { dma_free_coherent(kdev, sizeof(struct dma_desc), ring->desc_cpu, ring->desc_dma); ring->desc_dma = 0; } ring->size = 0; ring->alloc_size = 0; netif_dbg(priv, hw, priv->netdev, "TDMA fini done\n"); } /* RDMA helper */ static inline int rdma_enable_set(struct bcm_sysport_priv *priv, unsigned int enable) { unsigned int timeout = 1000; u32 reg; reg = rdma_readl(priv, RDMA_CONTROL); if (enable) reg |= RDMA_EN; else reg &= ~RDMA_EN; rdma_writel(priv, reg, RDMA_CONTROL); /* Poll for RMDA disabling completion */ do { reg = rdma_readl(priv, RDMA_STATUS); if (!!(reg & RDMA_DISABLED) == !enable) return 0; usleep_range(1000, 2000); } while (timeout-- > 0); netdev_err(priv->netdev, "timeout waiting for RDMA to finish\n"); return -ETIMEDOUT; } /* TDMA helper */ static inline int tdma_enable_set(struct bcm_sysport_priv *priv, unsigned int enable) { unsigned int timeout = 1000; u32 reg; reg = tdma_readl(priv, TDMA_CONTROL); if (enable) reg |= TDMA_EN; else reg &= ~TDMA_EN; tdma_writel(priv, reg, TDMA_CONTROL); /* Poll for TMDA disabling completion */ do { reg = tdma_readl(priv, TDMA_STATUS); if (!!(reg & TDMA_DISABLED) == !enable) return 0; usleep_range(1000, 2000); } while (timeout-- > 0); netdev_err(priv->netdev, "timeout waiting for TDMA to finish\n"); return -ETIMEDOUT; } static int bcm_sysport_init_rx_ring(struct bcm_sysport_priv *priv) { struct bcm_sysport_cb *cb; u32 reg; int ret; int i; /* Initialize SW view of the RX ring */ priv->num_rx_bds = NUM_RX_DESC; priv->rx_bds = priv->base + SYS_PORT_RDMA_OFFSET; priv->rx_c_index = 0; priv->rx_read_ptr = 0; priv->rx_cbs = kcalloc(priv->num_rx_bds, sizeof(struct bcm_sysport_cb), GFP_KERNEL); if (!priv->rx_cbs) { netif_err(priv, hw, priv->netdev, "CB allocation failed\n"); return -ENOMEM; } for (i = 0; i < priv->num_rx_bds; i++) { cb = priv->rx_cbs + i; cb->bd_addr = priv->rx_bds + i * DESC_SIZE; } ret = bcm_sysport_alloc_rx_bufs(priv); if (ret) { netif_err(priv, hw, priv->netdev, "SKB allocation failed\n"); return ret; } /* Initialize HW, ensure RDMA is disabled */ reg = rdma_readl(priv, RDMA_STATUS); if (!(reg & RDMA_DISABLED)) rdma_enable_set(priv, 0); rdma_writel(priv, 0, RDMA_WRITE_PTR_LO); rdma_writel(priv, 0, RDMA_WRITE_PTR_HI); rdma_writel(priv, 0, RDMA_PROD_INDEX); rdma_writel(priv, 0, RDMA_CONS_INDEX); rdma_writel(priv, priv->num_rx_bds << RDMA_RING_SIZE_SHIFT | RX_BUF_LENGTH, RDMA_RING_BUF_SIZE); /* Operate the queue in ring mode */ rdma_writel(priv, 0, RDMA_START_ADDR_HI); rdma_writel(priv, 0, RDMA_START_ADDR_LO); rdma_writel(priv, 0, RDMA_END_ADDR_HI); rdma_writel(priv, NUM_HW_RX_DESC_WORDS - 1, RDMA_END_ADDR_LO); rdma_writel(priv, 1, RDMA_MBDONE_INTR); netif_dbg(priv, hw, priv->netdev, "RDMA cfg, num_rx_bds=%d, rx_bds=%p\n", priv->num_rx_bds, priv->rx_bds); return 0; } static void bcm_sysport_fini_rx_ring(struct bcm_sysport_priv *priv) { struct bcm_sysport_cb *cb; unsigned int i; u32 reg; /* Caller should ensure RDMA is disabled */ reg = rdma_readl(priv, RDMA_STATUS); if (!(reg & RDMA_DISABLED)) netdev_warn(priv->netdev, "RDMA not stopped!\n"); for (i = 0; i < priv->num_rx_bds; i++) { cb = &priv->rx_cbs[i]; if (dma_unmap_addr(cb, dma_addr)) dma_unmap_single(&priv->pdev->dev, dma_unmap_addr(cb, dma_addr), RX_BUF_LENGTH, DMA_FROM_DEVICE); bcm_sysport_free_cb(cb); } kfree(priv->rx_cbs); priv->rx_cbs = NULL; netif_dbg(priv, hw, priv->netdev, "RDMA fini done\n"); } static void bcm_sysport_set_rx_mode(struct net_device *dev) { struct bcm_sysport_priv *priv = netdev_priv(dev); u32 reg; reg = umac_readl(priv, UMAC_CMD); if (dev->flags & IFF_PROMISC) reg |= CMD_PROMISC; else reg &= ~CMD_PROMISC; umac_writel(priv, reg, UMAC_CMD); /* No support for ALLMULTI */ if (dev->flags & IFF_ALLMULTI) return; } static inline void umac_enable_set(struct bcm_sysport_priv *priv, u32 mask, unsigned int enable) { u32 reg; reg = umac_readl(priv, UMAC_CMD); if (enable) reg |= mask; else reg &= ~mask; umac_writel(priv, reg, UMAC_CMD); /* UniMAC stops on a packet boundary, wait for a full-sized packet * to be processed (1 msec). */ if (enable == 0) usleep_range(1000, 2000); } static inline void umac_reset(struct bcm_sysport_priv *priv) { u32 reg; reg = umac_readl(priv, UMAC_CMD); reg |= CMD_SW_RESET; umac_writel(priv, reg, UMAC_CMD); udelay(10); reg = umac_readl(priv, UMAC_CMD); reg &= ~CMD_SW_RESET; umac_writel(priv, reg, UMAC_CMD); } static void umac_set_hw_addr(struct bcm_sysport_priv *priv, unsigned char *addr) { umac_writel(priv, (addr[0] << 24) | (addr[1] << 16) | (addr[2] << 8) | addr[3], UMAC_MAC0); umac_writel(priv, (addr[4] << 8) | addr[5], UMAC_MAC1); } static void topctrl_flush(struct bcm_sysport_priv *priv) { topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL); topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL); mdelay(1); topctrl_writel(priv, 0, RX_FLUSH_CNTL); topctrl_writel(priv, 0, TX_FLUSH_CNTL); } static int bcm_sysport_change_mac(struct net_device *dev, void *p) { struct bcm_sysport_priv *priv = netdev_priv(dev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EINVAL; memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); /* interface is disabled, changes to MAC will be reflected on next * open call */ if (!netif_running(dev)) return 0; umac_set_hw_addr(priv, dev->dev_addr); return 0; } static void bcm_sysport_netif_start(struct net_device *dev) { struct bcm_sysport_priv *priv = netdev_priv(dev); /* Enable NAPI */ napi_enable(&priv->napi); /* Enable RX interrupt and TX ring full interrupt */ intrl2_0_mask_clear(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL); phy_start(priv->phydev); /* Enable TX interrupts for the 32 TXQs */ intrl2_1_mask_clear(priv, 0xffffffff); /* Last call before we start the real business */ netif_tx_start_all_queues(dev); } static void rbuf_init(struct bcm_sysport_priv *priv) { u32 reg; reg = rbuf_readl(priv, RBUF_CONTROL); reg |= RBUF_4B_ALGN | RBUF_RSB_EN; rbuf_writel(priv, reg, RBUF_CONTROL); } static int bcm_sysport_open(struct net_device *dev) { struct bcm_sysport_priv *priv = netdev_priv(dev); unsigned int i; int ret; /* Reset UniMAC */ umac_reset(priv); /* Flush TX and RX FIFOs at TOPCTRL level */ topctrl_flush(priv); /* Disable the UniMAC RX/TX */ umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 0); /* Enable RBUF 2bytes alignment and Receive Status Block */ rbuf_init(priv); /* Set maximum frame length */ umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); /* Set MAC address */ umac_set_hw_addr(priv, dev->dev_addr); /* Read CRC forward */ priv->crc_fwd = !!(umac_readl(priv, UMAC_CMD) & CMD_CRC_FWD); priv->phydev = of_phy_connect(dev, priv->phy_dn, bcm_sysport_adj_link, 0, priv->phy_interface); if (!priv->phydev) { netdev_err(dev, "could not attach to PHY\n"); return -ENODEV; } /* Reset house keeping link status */ priv->old_duplex = -1; priv->old_link = -1; priv->old_pause = -1; /* mask all interrupts and request them */ intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET); intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); intrl2_0_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_MASK_SET); intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); intrl2_1_writel(priv, 0, INTRL2_CPU_MASK_CLEAR); ret = request_irq(priv->irq0, bcm_sysport_rx_isr, 0, dev->name, dev); if (ret) { netdev_err(dev, "failed to request RX interrupt\n"); goto out_phy_disconnect; } ret = request_irq(priv->irq1, bcm_sysport_tx_isr, 0, dev->name, dev); if (ret) { netdev_err(dev, "failed to request TX interrupt\n"); goto out_free_irq0; } /* Initialize both hardware and software ring */ for (i = 0; i < dev->num_tx_queues; i++) { ret = bcm_sysport_init_tx_ring(priv, i); if (ret) { netdev_err(dev, "failed to initialize TX ring %d\n", i); goto out_free_tx_ring; } } /* Initialize linked-list */ tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS); /* Initialize RX ring */ ret = bcm_sysport_init_rx_ring(priv); if (ret) { netdev_err(dev, "failed to initialize RX ring\n"); goto out_free_rx_ring; } /* Turn on RDMA */ ret = rdma_enable_set(priv, 1); if (ret) goto out_free_rx_ring; /* Turn on TDMA */ ret = tdma_enable_set(priv, 1); if (ret) goto out_clear_rx_int; /* Turn on UniMAC TX/RX */ umac_enable_set(priv, CMD_RX_EN | CMD_TX_EN, 1); bcm_sysport_netif_start(dev); return 0; out_clear_rx_int: intrl2_0_mask_set(priv, INTRL2_0_RDMA_MBDONE | INTRL2_0_TX_RING_FULL); out_free_rx_ring: bcm_sysport_fini_rx_ring(priv); out_free_tx_ring: for (i = 0; i < dev->num_tx_queues; i++) bcm_sysport_fini_tx_ring(priv, i); free_irq(priv->irq1, dev); out_free_irq0: free_irq(priv->irq0, dev); out_phy_disconnect: phy_disconnect(priv->phydev); return ret; } static void bcm_sysport_netif_stop(struct net_device *dev) { struct bcm_sysport_priv *priv = netdev_priv(dev); /* stop all software from updating hardware */ netif_tx_stop_all_queues(dev); napi_disable(&priv->napi); phy_stop(priv->phydev); /* mask all interrupts */ intrl2_0_mask_set(priv, 0xffffffff); intrl2_0_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); intrl2_1_mask_set(priv, 0xffffffff); intrl2_1_writel(priv, 0xffffffff, INTRL2_CPU_CLEAR); } static int bcm_sysport_stop(struct net_device *dev) { struct bcm_sysport_priv *priv = netdev_priv(dev); unsigned int i; int ret; bcm_sysport_netif_stop(dev); /* Disable UniMAC RX */ umac_enable_set(priv, CMD_RX_EN, 0); ret = tdma_enable_set(priv, 0); if (ret) { netdev_err(dev, "timeout disabling RDMA\n"); return ret; } /* Wait for a maximum packet size to be drained */ usleep_range(2000, 3000); ret = rdma_enable_set(priv, 0); if (ret) { netdev_err(dev, "timeout disabling TDMA\n"); return ret; } /* Disable UniMAC TX */ umac_enable_set(priv, CMD_TX_EN, 0); /* Free RX/TX rings SW structures */ for (i = 0; i < dev->num_tx_queues; i++) bcm_sysport_fini_tx_ring(priv, i); bcm_sysport_fini_rx_ring(priv); free_irq(priv->irq0, dev); free_irq(priv->irq1, dev); /* Disconnect from PHY */ phy_disconnect(priv->phydev); return 0; } static struct ethtool_ops bcm_sysport_ethtool_ops = { .get_settings = bcm_sysport_get_settings, .set_settings = bcm_sysport_set_settings, .get_drvinfo = bcm_sysport_get_drvinfo, .get_msglevel = bcm_sysport_get_msglvl, .set_msglevel = bcm_sysport_set_msglvl, .get_link = ethtool_op_get_link, .get_strings = bcm_sysport_get_strings, .get_ethtool_stats = bcm_sysport_get_stats, .get_sset_count = bcm_sysport_get_sset_count, .get_wol = bcm_sysport_get_wol, .set_wol = bcm_sysport_set_wol, .get_coalesce = bcm_sysport_get_coalesce, .set_coalesce = bcm_sysport_set_coalesce, }; static const struct net_device_ops bcm_sysport_netdev_ops = { .ndo_start_xmit = bcm_sysport_xmit, .ndo_tx_timeout = bcm_sysport_tx_timeout, .ndo_open = bcm_sysport_open, .ndo_stop = bcm_sysport_stop, .ndo_set_features = bcm_sysport_set_features, .ndo_set_rx_mode = bcm_sysport_set_rx_mode, .ndo_set_mac_address = bcm_sysport_change_mac, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = bcm_sysport_poll_controller, #endif }; #define REV_FMT "v%2x.%02x" static int bcm_sysport_probe(struct platform_device *pdev) { struct bcm_sysport_priv *priv; struct device_node *dn; struct net_device *dev; const void *macaddr; struct resource *r; u32 txq, rxq; int ret; dn = pdev->dev.of_node; r = platform_get_resource(pdev, IORESOURCE_MEM, 0); /* Read the Transmit/Receive Queue properties */ if (of_property_read_u32(dn, "systemport,num-txq", &txq)) txq = TDMA_NUM_RINGS; if (of_property_read_u32(dn, "systemport,num-rxq", &rxq)) rxq = 1; dev = alloc_etherdev_mqs(sizeof(*priv), txq, rxq); if (!dev) return -ENOMEM; /* Initialize private members */ priv = netdev_priv(dev); priv->irq0 = platform_get_irq(pdev, 0); priv->irq1 = platform_get_irq(pdev, 1); priv->wol_irq = platform_get_irq(pdev, 2); if (priv->irq0 <= 0 || priv->irq1 <= 0) { dev_err(&pdev->dev, "invalid interrupts\n"); ret = -EINVAL; goto err; } priv->base = devm_ioremap_resource(&pdev->dev, r); if (IS_ERR(priv->base)) { ret = PTR_ERR(priv->base); goto err; } priv->netdev = dev; priv->pdev = pdev; priv->phy_interface = of_get_phy_mode(dn); /* Default to GMII interface mode */ if (priv->phy_interface < 0) priv->phy_interface = PHY_INTERFACE_MODE_GMII; /* In the case of a fixed PHY, the DT node associated * to the PHY is the Ethernet MAC DT node. */ if (of_phy_is_fixed_link(dn)) { ret = of_phy_register_fixed_link(dn); if (ret) { dev_err(&pdev->dev, "failed to register fixed PHY\n"); goto err; } priv->phy_dn = dn; } /* Initialize netdevice members */ macaddr = of_get_mac_address(dn); if (!macaddr || !is_valid_ether_addr(macaddr)) { dev_warn(&pdev->dev, "using random Ethernet MAC\n"); eth_hw_addr_random(dev); } else { ether_addr_copy(dev->dev_addr, macaddr); } SET_NETDEV_DEV(dev, &pdev->dev); dev_set_drvdata(&pdev->dev, dev); dev->ethtool_ops = &bcm_sysport_ethtool_ops; dev->netdev_ops = &bcm_sysport_netdev_ops; netif_napi_add(dev, &priv->napi, bcm_sysport_poll, 64); /* HW supported features, none enabled by default */ dev->hw_features |= NETIF_F_RXCSUM | NETIF_F_HIGHDMA | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM; /* Request the WOL interrupt and advertise suspend if available */ priv->wol_irq_disabled = 1; ret = devm_request_irq(&pdev->dev, priv->wol_irq, bcm_sysport_wol_isr, 0, dev->name, priv); if (!ret) device_set_wakeup_capable(&pdev->dev, 1); /* Set the needed headroom once and for all */ BUILD_BUG_ON(sizeof(struct bcm_tsb) != 8); dev->needed_headroom += sizeof(struct bcm_tsb); /* libphy will adjust the link state accordingly */ netif_carrier_off(dev); ret = register_netdev(dev); if (ret) { dev_err(&pdev->dev, "failed to register net_device\n"); goto err; } priv->rev = topctrl_readl(priv, REV_CNTL) & REV_MASK; dev_info(&pdev->dev, "Broadcom SYSTEMPORT" REV_FMT " at 0x%p (irqs: %d, %d, TXQs: %d, RXQs: %d)\n", (priv->rev >> 8) & 0xff, priv->rev & 0xff, priv->base, priv->irq0, priv->irq1, txq, rxq); return 0; err: free_netdev(dev); return ret; } static int bcm_sysport_remove(struct platform_device *pdev) { struct net_device *dev = dev_get_drvdata(&pdev->dev); /* Not much to do, ndo_close has been called * and we use managed allocations */ unregister_netdev(dev); free_netdev(dev); dev_set_drvdata(&pdev->dev, NULL); return 0; } #ifdef CONFIG_PM_SLEEP static int bcm_sysport_suspend_to_wol(struct bcm_sysport_priv *priv) { struct net_device *ndev = priv->netdev; unsigned int timeout = 1000; u32 reg; /* Password has already been programmed */ reg = umac_readl(priv, UMAC_MPD_CTRL); reg |= MPD_EN; reg &= ~PSW_EN; if (priv->wolopts & WAKE_MAGICSECURE) reg |= PSW_EN; umac_writel(priv, reg, UMAC_MPD_CTRL); /* Make sure RBUF entered WoL mode as result */ do { reg = rbuf_readl(priv, RBUF_STATUS); if (reg & RBUF_WOL_MODE) break; udelay(10); } while (timeout-- > 0); /* Do not leave the UniMAC RBUF matching only MPD packets */ if (!timeout) { reg = umac_readl(priv, UMAC_MPD_CTRL); reg &= ~MPD_EN; umac_writel(priv, reg, UMAC_MPD_CTRL); netif_err(priv, wol, ndev, "failed to enter WOL mode\n"); return -ETIMEDOUT; } /* UniMAC receive needs to be turned on */ umac_enable_set(priv, CMD_RX_EN, 1); /* Enable the interrupt wake-up source */ intrl2_0_mask_clear(priv, INTRL2_0_MPD); netif_dbg(priv, wol, ndev, "entered WOL mode\n"); return 0; } static int bcm_sysport_suspend(struct device *d) { struct net_device *dev = dev_get_drvdata(d); struct bcm_sysport_priv *priv = netdev_priv(dev); unsigned int i; int ret = 0; u32 reg; if (!netif_running(dev)) return 0; bcm_sysport_netif_stop(dev); phy_suspend(priv->phydev); netif_device_detach(dev); /* Disable UniMAC RX */ umac_enable_set(priv, CMD_RX_EN, 0); ret = rdma_enable_set(priv, 0); if (ret) { netdev_err(dev, "RDMA timeout!\n"); return ret; } /* Disable RXCHK if enabled */ if (priv->rx_chk_en) { reg = rxchk_readl(priv, RXCHK_CONTROL); reg &= ~RXCHK_EN; rxchk_writel(priv, reg, RXCHK_CONTROL); } /* Flush RX pipe */ if (!priv->wolopts) topctrl_writel(priv, RX_FLUSH, RX_FLUSH_CNTL); ret = tdma_enable_set(priv, 0); if (ret) { netdev_err(dev, "TDMA timeout!\n"); return ret; } /* Wait for a packet boundary */ usleep_range(2000, 3000); umac_enable_set(priv, CMD_TX_EN, 0); topctrl_writel(priv, TX_FLUSH, TX_FLUSH_CNTL); /* Free RX/TX rings SW structures */ for (i = 0; i < dev->num_tx_queues; i++) bcm_sysport_fini_tx_ring(priv, i); bcm_sysport_fini_rx_ring(priv); /* Get prepared for Wake-on-LAN */ if (device_may_wakeup(d) && priv->wolopts) ret = bcm_sysport_suspend_to_wol(priv); return ret; } static int bcm_sysport_resume(struct device *d) { struct net_device *dev = dev_get_drvdata(d); struct bcm_sysport_priv *priv = netdev_priv(dev); unsigned int i; u32 reg; int ret; if (!netif_running(dev)) return 0; umac_reset(priv); /* We may have been suspended and never received a WOL event that * would turn off MPD detection, take care of that now */ bcm_sysport_resume_from_wol(priv); /* Initialize both hardware and software ring */ for (i = 0; i < dev->num_tx_queues; i++) { ret = bcm_sysport_init_tx_ring(priv, i); if (ret) { netdev_err(dev, "failed to initialize TX ring %d\n", i); goto out_free_tx_rings; } } /* Initialize linked-list */ tdma_writel(priv, TDMA_LL_RAM_INIT_BUSY, TDMA_STATUS); /* Initialize RX ring */ ret = bcm_sysport_init_rx_ring(priv); if (ret) { netdev_err(dev, "failed to initialize RX ring\n"); goto out_free_rx_ring; } netif_device_attach(dev); /* RX pipe enable */ topctrl_writel(priv, 0, RX_FLUSH_CNTL); ret = rdma_enable_set(priv, 1); if (ret) { netdev_err(dev, "failed to enable RDMA\n"); goto out_free_rx_ring; } /* Enable rxhck */ if (priv->rx_chk_en) { reg = rxchk_readl(priv, RXCHK_CONTROL); reg |= RXCHK_EN; rxchk_writel(priv, reg, RXCHK_CONTROL); } rbuf_init(priv); /* Set maximum frame length */ umac_writel(priv, UMAC_MAX_MTU_SIZE, UMAC_MAX_FRAME_LEN); /* Set MAC address */ umac_set_hw_addr(priv, dev->dev_addr); umac_enable_set(priv, CMD_RX_EN, 1); /* TX pipe enable */ topctrl_writel(priv, 0, TX_FLUSH_CNTL); umac_enable_set(priv, CMD_TX_EN, 1); ret = tdma_enable_set(priv, 1); if (ret) { netdev_err(dev, "TDMA timeout!\n"); goto out_free_rx_ring; } phy_resume(priv->phydev); bcm_sysport_netif_start(dev); return 0; out_free_rx_ring: bcm_sysport_fini_rx_ring(priv); out_free_tx_rings: for (i = 0; i < dev->num_tx_queues; i++) bcm_sysport_fini_tx_ring(priv, i); return ret; } #endif static SIMPLE_DEV_PM_OPS(bcm_sysport_pm_ops, bcm_sysport_suspend, bcm_sysport_resume); static const struct of_device_id bcm_sysport_of_match[] = { { .compatible = "brcm,systemport-v1.00" }, { .compatible = "brcm,systemport" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, bcm_sysport_of_match); static struct platform_driver bcm_sysport_driver = { .probe = bcm_sysport_probe, .remove = bcm_sysport_remove, .driver = { .name = "brcm-systemport", .of_match_table = bcm_sysport_of_match, .pm = &bcm_sysport_pm_ops, }, }; module_platform_driver(bcm_sysport_driver); MODULE_AUTHOR("Broadcom Corporation"); MODULE_DESCRIPTION("Broadcom System Port Ethernet MAC driver"); MODULE_ALIAS("platform:brcm-systemport"); MODULE_LICENSE("GPL");