/* bnx2x_cmn.h: Broadcom Everest network driver. * * Copyright (c) 2007-2011 Broadcom Corporation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation. * * Maintained by: Eilon Greenstein * Written by: Eliezer Tamir * Based on code from Michael Chan's bnx2 driver * UDP CSUM errata workaround by Arik Gendelman * Slowpath and fastpath rework by Vladislav Zolotarov * Statistics and Link management by Yitchak Gertner * */ #ifndef BNX2X_CMN_H #define BNX2X_CMN_H #include #include #include #include #include "bnx2x.h" /* This is used as a replacement for an MCP if it's not present */ extern int load_count[2][3]; /* per-path: 0-common, 1-port0, 2-port1 */ extern int num_queues; /************************ Macros ********************************/ #define BNX2X_PCI_FREE(x, y, size) \ do { \ if (x) { \ dma_free_coherent(&bp->pdev->dev, size, (void *)x, y); \ x = NULL; \ y = 0; \ } \ } while (0) #define BNX2X_FREE(x) \ do { \ if (x) { \ kfree((void *)x); \ x = NULL; \ } \ } while (0) #define BNX2X_PCI_ALLOC(x, y, size) \ do { \ x = dma_alloc_coherent(&bp->pdev->dev, size, y, GFP_KERNEL); \ if (x == NULL) \ goto alloc_mem_err; \ memset((void *)x, 0, size); \ } while (0) #define BNX2X_ALLOC(x, size) \ do { \ x = kzalloc(size, GFP_KERNEL); \ if (x == NULL) \ goto alloc_mem_err; \ } while (0) /*********************** Interfaces **************************** * Functions that need to be implemented by each driver version */ /* Init */ /** * bnx2x_send_unload_req - request unload mode from the MCP. * * @bp: driver handle * @unload_mode: requested function's unload mode * * Return unload mode returned by the MCP: COMMON, PORT or FUNC. */ u32 bnx2x_send_unload_req(struct bnx2x *bp, int unload_mode); /** * bnx2x_send_unload_done - send UNLOAD_DONE command to the MCP. * * @bp: driver handle */ void bnx2x_send_unload_done(struct bnx2x *bp); /** * bnx2x_config_rss_pf - configure RSS parameters. * * @bp: driver handle * @ind_table: indirection table to configure * @config_hash: re-configure RSS hash keys configuration */ int bnx2x_config_rss_pf(struct bnx2x *bp, u8 *ind_table, bool config_hash); /** * bnx2x__init_func_obj - init function object * * @bp: driver handle * * Initializes the Function Object with the appropriate * parameters which include a function slow path driver * interface. */ void bnx2x__init_func_obj(struct bnx2x *bp); /** * bnx2x_setup_queue - setup eth queue. * * @bp: driver handle * @fp: pointer to the fastpath structure * @leading: boolean * */ int bnx2x_setup_queue(struct bnx2x *bp, struct bnx2x_fastpath *fp, bool leading); /** * bnx2x_setup_leading - bring up a leading eth queue. * * @bp: driver handle */ int bnx2x_setup_leading(struct bnx2x *bp); /** * bnx2x_fw_command - send the MCP a request * * @bp: driver handle * @command: request * @param: request's parameter * * block until there is a reply */ u32 bnx2x_fw_command(struct bnx2x *bp, u32 command, u32 param); /** * bnx2x_initial_phy_init - initialize link parameters structure variables. * * @bp: driver handle * @load_mode: current mode */ u8 bnx2x_initial_phy_init(struct bnx2x *bp, int load_mode); /** * bnx2x_link_set - configure hw according to link parameters structure. * * @bp: driver handle */ void bnx2x_link_set(struct bnx2x *bp); /** * bnx2x_link_test - query link status. * * @bp: driver handle * @is_serdes: bool * * Returns 0 if link is UP. */ u8 bnx2x_link_test(struct bnx2x *bp, u8 is_serdes); /** * bnx2x_drv_pulse - write driver pulse to shmem * * @bp: driver handle * * writes the value in bp->fw_drv_pulse_wr_seq to drv_pulse mbox * in the shmem. */ void bnx2x_drv_pulse(struct bnx2x *bp); /** * bnx2x_igu_ack_sb - update IGU with current SB value * * @bp: driver handle * @igu_sb_id: SB id * @segment: SB segment * @index: SB index * @op: SB operation * @update: is HW update required */ void bnx2x_igu_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 segment, u16 index, u8 op, u8 update); /* Disable transactions from chip to host */ void bnx2x_pf_disable(struct bnx2x *bp); /** * bnx2x__link_status_update - handles link status change. * * @bp: driver handle */ void bnx2x__link_status_update(struct bnx2x *bp); /** * bnx2x_link_report - report link status to upper layer. * * @bp: driver handle */ void bnx2x_link_report(struct bnx2x *bp); /* None-atomic version of bnx2x_link_report() */ void __bnx2x_link_report(struct bnx2x *bp); /** * bnx2x_get_mf_speed - calculate MF speed. * * @bp: driver handle * * Takes into account current linespeed and MF configuration. */ u16 bnx2x_get_mf_speed(struct bnx2x *bp); /** * bnx2x_msix_sp_int - MSI-X slowpath interrupt handler * * @irq: irq number * @dev_instance: private instance */ irqreturn_t bnx2x_msix_sp_int(int irq, void *dev_instance); /** * bnx2x_interrupt - non MSI-X interrupt handler * * @irq: irq number * @dev_instance: private instance */ irqreturn_t bnx2x_interrupt(int irq, void *dev_instance); #ifdef BCM_CNIC /** * bnx2x_cnic_notify - send command to cnic driver * * @bp: driver handle * @cmd: command */ int bnx2x_cnic_notify(struct bnx2x *bp, int cmd); /** * bnx2x_setup_cnic_irq_info - provides cnic with IRQ information * * @bp: driver handle */ void bnx2x_setup_cnic_irq_info(struct bnx2x *bp); #endif /** * bnx2x_int_enable - enable HW interrupts. * * @bp: driver handle */ void bnx2x_int_enable(struct bnx2x *bp); /** * bnx2x_int_disable_sync - disable interrupts. * * @bp: driver handle * @disable_hw: true, disable HW interrupts. * * This function ensures that there are no * ISRs or SP DPCs (sp_task) are running after it returns. */ void bnx2x_int_disable_sync(struct bnx2x *bp, int disable_hw); /** * bnx2x_nic_init - init driver internals. * * @bp: driver handle * @load_code: COMMON, PORT or FUNCTION * * Initializes: * - rings * - status blocks * - etc. */ void bnx2x_nic_init(struct bnx2x *bp, u32 load_code); /** * bnx2x_alloc_mem - allocate driver's memory. * * @bp: driver handle */ int bnx2x_alloc_mem(struct bnx2x *bp); /** * bnx2x_free_mem - release driver's memory. * * @bp: driver handle */ void bnx2x_free_mem(struct bnx2x *bp); /** * bnx2x_set_num_queues - set number of queues according to mode. * * @bp: driver handle */ void bnx2x_set_num_queues(struct bnx2x *bp); /** * bnx2x_chip_cleanup - cleanup chip internals. * * @bp: driver handle * @unload_mode: COMMON, PORT, FUNCTION * * - Cleanup MAC configuration. * - Closes clients. * - etc. */ void bnx2x_chip_cleanup(struct bnx2x *bp, int unload_mode); /** * bnx2x_acquire_hw_lock - acquire HW lock. * * @bp: driver handle * @resource: resource bit which was locked */ int bnx2x_acquire_hw_lock(struct bnx2x *bp, u32 resource); /** * bnx2x_release_hw_lock - release HW lock. * * @bp: driver handle * @resource: resource bit which was locked */ int bnx2x_release_hw_lock(struct bnx2x *bp, u32 resource); /** * bnx2x_release_leader_lock - release recovery leader lock * * @bp: driver handle */ int bnx2x_release_leader_lock(struct bnx2x *bp); /** * bnx2x_set_eth_mac - configure eth MAC address in the HW * * @bp: driver handle * @set: set or clear * * Configures according to the value in netdev->dev_addr. */ int bnx2x_set_eth_mac(struct bnx2x *bp, bool set); /** * bnx2x_set_rx_mode - set MAC filtering configurations. * * @dev: netdevice * * called with netif_tx_lock from dev_mcast.c * If bp->state is OPEN, should be called with * netif_addr_lock_bh() */ void bnx2x_set_rx_mode(struct net_device *dev); /** * bnx2x_set_storm_rx_mode - configure MAC filtering rules in a FW. * * @bp: driver handle * * If bp->state is OPEN, should be called with * netif_addr_lock_bh(). */ void bnx2x_set_storm_rx_mode(struct bnx2x *bp); /** * bnx2x_set_q_rx_mode - configures rx_mode for a single queue. * * @bp: driver handle * @cl_id: client id * @rx_mode_flags: rx mode configuration * @rx_accept_flags: rx accept configuration * @tx_accept_flags: tx accept configuration (tx switch) * @ramrod_flags: ramrod configuration */ void bnx2x_set_q_rx_mode(struct bnx2x *bp, u8 cl_id, unsigned long rx_mode_flags, unsigned long rx_accept_flags, unsigned long tx_accept_flags, unsigned long ramrod_flags); /* Parity errors related */ void bnx2x_inc_load_cnt(struct bnx2x *bp); u32 bnx2x_dec_load_cnt(struct bnx2x *bp); bool bnx2x_chk_parity_attn(struct bnx2x *bp, bool *global, bool print); bool bnx2x_reset_is_done(struct bnx2x *bp, int engine); void bnx2x_set_reset_in_progress(struct bnx2x *bp); void bnx2x_set_reset_global(struct bnx2x *bp); void bnx2x_disable_close_the_gate(struct bnx2x *bp); /** * bnx2x_sp_event - handle ramrods completion. * * @fp: fastpath handle for the event * @rr_cqe: eth_rx_cqe */ void bnx2x_sp_event(struct bnx2x_fastpath *fp, union eth_rx_cqe *rr_cqe); /** * bnx2x_ilt_set_info - prepare ILT configurations. * * @bp: driver handle */ void bnx2x_ilt_set_info(struct bnx2x *bp); /** * bnx2x_dcbx_init - initialize dcbx protocol. * * @bp: driver handle */ void bnx2x_dcbx_init(struct bnx2x *bp); /** * bnx2x_set_power_state - set power state to the requested value. * * @bp: driver handle * @state: required state D0 or D3hot * * Currently only D0 and D3hot are supported. */ int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state); /** * bnx2x_update_max_mf_config - update MAX part of MF configuration in HW. * * @bp: driver handle * @value: new value */ void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value); /* Error handling */ void bnx2x_panic_dump(struct bnx2x *bp); void bnx2x_fw_dump_lvl(struct bnx2x *bp, const char *lvl); /* dev_close main block */ int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode); /* dev_open main block */ int bnx2x_nic_load(struct bnx2x *bp, int load_mode); /* hard_xmit callback */ netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev); /* setup_tc callback */ int bnx2x_setup_tc(struct net_device *dev, u8 num_tc); /* select_queue callback */ u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb); /* reload helper */ int bnx2x_reload_if_running(struct net_device *dev); int bnx2x_change_mac_addr(struct net_device *dev, void *p); /* NAPI poll Rx part */ int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget); void bnx2x_update_rx_prod(struct bnx2x *bp, struct bnx2x_fastpath *fp, u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod); /* NAPI poll Tx part */ int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata); /* suspend/resume callbacks */ int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state); int bnx2x_resume(struct pci_dev *pdev); /* Release IRQ vectors */ void bnx2x_free_irq(struct bnx2x *bp); void bnx2x_free_fp_mem(struct bnx2x *bp); int bnx2x_alloc_fp_mem(struct bnx2x *bp); void bnx2x_init_rx_rings(struct bnx2x *bp); void bnx2x_free_skbs(struct bnx2x *bp); void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw); void bnx2x_netif_start(struct bnx2x *bp); /** * bnx2x_enable_msix - set msix configuration. * * @bp: driver handle * * fills msix_table, requests vectors, updates num_queues * according to number of available vectors. */ int bnx2x_enable_msix(struct bnx2x *bp); /** * bnx2x_enable_msi - request msi mode from OS, updated internals accordingly * * @bp: driver handle */ int bnx2x_enable_msi(struct bnx2x *bp); /** * bnx2x_poll - NAPI callback * * @napi: napi structure * @budget: * */ int bnx2x_poll(struct napi_struct *napi, int budget); /** * bnx2x_alloc_mem_bp - allocate memories outsize main driver structure * * @bp: driver handle */ int __devinit bnx2x_alloc_mem_bp(struct bnx2x *bp); /** * bnx2x_free_mem_bp - release memories outsize main driver structure * * @bp: driver handle */ void bnx2x_free_mem_bp(struct bnx2x *bp); /** * bnx2x_change_mtu - change mtu netdev callback * * @dev: net device * @new_mtu: requested mtu * */ int bnx2x_change_mtu(struct net_device *dev, int new_mtu); #if defined(NETDEV_FCOE_WWNN) && defined(BCM_CNIC) /** * bnx2x_fcoe_get_wwn - return the requested WWN value for this port * * @dev: net_device * @wwn: output buffer * @type: WWN type: NETDEV_FCOE_WWNN (node) or NETDEV_FCOE_WWPN (port) * */ int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type); #endif netdev_features_t bnx2x_fix_features(struct net_device *dev, netdev_features_t features); int bnx2x_set_features(struct net_device *dev, netdev_features_t features); /** * bnx2x_tx_timeout - tx timeout netdev callback * * @dev: net device */ void bnx2x_tx_timeout(struct net_device *dev); /*********************** Inlines **********************************/ /*********************** Fast path ********************************/ static inline void bnx2x_update_fpsb_idx(struct bnx2x_fastpath *fp) { barrier(); /* status block is written to by the chip */ fp->fp_hc_idx = fp->sb_running_index[SM_RX_ID]; } static inline void bnx2x_update_rx_prod_gen(struct bnx2x *bp, struct bnx2x_fastpath *fp, u16 bd_prod, u16 rx_comp_prod, u16 rx_sge_prod, u32 start) { struct ustorm_eth_rx_producers rx_prods = {0}; u32 i; /* Update producers */ rx_prods.bd_prod = bd_prod; rx_prods.cqe_prod = rx_comp_prod; rx_prods.sge_prod = rx_sge_prod; /* * Make sure that the BD and SGE data is updated before updating the * producers since FW might read the BD/SGE right after the producer * is updated. * This is only applicable for weak-ordered memory model archs such * as IA-64. The following barrier is also mandatory since FW will * assumes BDs must have buffers. */ wmb(); for (i = 0; i < sizeof(rx_prods)/4; i++) REG_WR(bp, start + i*4, ((u32 *)&rx_prods)[i]); mmiowb(); /* keep prod updates ordered */ DP(NETIF_MSG_RX_STATUS, "queue[%d]: wrote bd_prod %u cqe_prod %u sge_prod %u\n", fp->index, bd_prod, rx_comp_prod, rx_sge_prod); } static inline void bnx2x_igu_ack_sb_gen(struct bnx2x *bp, u8 igu_sb_id, u8 segment, u16 index, u8 op, u8 update, u32 igu_addr) { struct igu_regular cmd_data = {0}; cmd_data.sb_id_and_flags = ((index << IGU_REGULAR_SB_INDEX_SHIFT) | (segment << IGU_REGULAR_SEGMENT_ACCESS_SHIFT) | (update << IGU_REGULAR_BUPDATE_SHIFT) | (op << IGU_REGULAR_ENABLE_INT_SHIFT)); DP(NETIF_MSG_HW, "write 0x%08x to IGU addr 0x%x\n", cmd_data.sb_id_and_flags, igu_addr); REG_WR(bp, igu_addr, cmd_data.sb_id_and_flags); /* Make sure that ACK is written */ mmiowb(); barrier(); } static inline void bnx2x_igu_clear_sb_gen(struct bnx2x *bp, u8 func, u8 idu_sb_id, bool is_Pf) { u32 data, ctl, cnt = 100; u32 igu_addr_data = IGU_REG_COMMAND_REG_32LSB_DATA; u32 igu_addr_ctl = IGU_REG_COMMAND_REG_CTRL; u32 igu_addr_ack = IGU_REG_CSTORM_TYPE_0_SB_CLEANUP + (idu_sb_id/32)*4; u32 sb_bit = 1 << (idu_sb_id%32); u32 func_encode = func | ((is_Pf == true ? 1 : 0) << IGU_FID_ENCODE_IS_PF_SHIFT); u32 addr_encode = IGU_CMD_E2_PROD_UPD_BASE + idu_sb_id; /* Not supported in BC mode */ if (CHIP_INT_MODE_IS_BC(bp)) return; data = (IGU_USE_REGISTER_cstorm_type_0_sb_cleanup << IGU_REGULAR_CLEANUP_TYPE_SHIFT) | IGU_REGULAR_CLEANUP_SET | IGU_REGULAR_BCLEANUP; ctl = addr_encode << IGU_CTRL_REG_ADDRESS_SHIFT | func_encode << IGU_CTRL_REG_FID_SHIFT | IGU_CTRL_CMD_TYPE_WR << IGU_CTRL_REG_TYPE_SHIFT; DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", data, igu_addr_data); REG_WR(bp, igu_addr_data, data); mmiowb(); barrier(); DP(NETIF_MSG_HW, "write 0x%08x to IGU(via GRC) addr 0x%x\n", ctl, igu_addr_ctl); REG_WR(bp, igu_addr_ctl, ctl); mmiowb(); barrier(); /* wait for clean up to finish */ while (!(REG_RD(bp, igu_addr_ack) & sb_bit) && --cnt) msleep(20); if (!(REG_RD(bp, igu_addr_ack) & sb_bit)) { DP(NETIF_MSG_HW, "Unable to finish IGU cleanup: " "idu_sb_id %d offset %d bit %d (cnt %d)\n", idu_sb_id, idu_sb_id/32, idu_sb_id%32, cnt); } } static inline void bnx2x_hc_ack_sb(struct bnx2x *bp, u8 sb_id, u8 storm, u16 index, u8 op, u8 update) { u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 + COMMAND_REG_INT_ACK); struct igu_ack_register igu_ack; igu_ack.status_block_index = index; igu_ack.sb_id_and_flags = ((sb_id << IGU_ACK_REGISTER_STATUS_BLOCK_ID_SHIFT) | (storm << IGU_ACK_REGISTER_STORM_ID_SHIFT) | (update << IGU_ACK_REGISTER_UPDATE_INDEX_SHIFT) | (op << IGU_ACK_REGISTER_INTERRUPT_MODE_SHIFT)); DP(BNX2X_MSG_OFF, "write 0x%08x to HC addr 0x%x\n", (*(u32 *)&igu_ack), hc_addr); REG_WR(bp, hc_addr, (*(u32 *)&igu_ack)); /* Make sure that ACK is written */ mmiowb(); barrier(); } static inline void bnx2x_ack_sb(struct bnx2x *bp, u8 igu_sb_id, u8 storm, u16 index, u8 op, u8 update) { if (bp->common.int_block == INT_BLOCK_HC) bnx2x_hc_ack_sb(bp, igu_sb_id, storm, index, op, update); else { u8 segment; if (CHIP_INT_MODE_IS_BC(bp)) segment = storm; else if (igu_sb_id != bp->igu_dsb_id) segment = IGU_SEG_ACCESS_DEF; else if (storm == ATTENTION_ID) segment = IGU_SEG_ACCESS_ATTN; else segment = IGU_SEG_ACCESS_DEF; bnx2x_igu_ack_sb(bp, igu_sb_id, segment, index, op, update); } } static inline u16 bnx2x_hc_ack_int(struct bnx2x *bp) { u32 hc_addr = (HC_REG_COMMAND_REG + BP_PORT(bp)*32 + COMMAND_REG_SIMD_MASK); u32 result = REG_RD(bp, hc_addr); DP(BNX2X_MSG_OFF, "read 0x%08x from HC addr 0x%x\n", result, hc_addr); barrier(); return result; } static inline u16 bnx2x_igu_ack_int(struct bnx2x *bp) { u32 igu_addr = (BAR_IGU_INTMEM + IGU_REG_SISR_MDPC_WMASK_LSB_UPPER*8); u32 result = REG_RD(bp, igu_addr); DP(NETIF_MSG_HW, "read 0x%08x from IGU addr 0x%x\n", result, igu_addr); barrier(); return result; } static inline u16 bnx2x_ack_int(struct bnx2x *bp) { barrier(); if (bp->common.int_block == INT_BLOCK_HC) return bnx2x_hc_ack_int(bp); else return bnx2x_igu_ack_int(bp); } static inline int bnx2x_has_tx_work_unload(struct bnx2x_fp_txdata *txdata) { /* Tell compiler that consumer and producer can change */ barrier(); return txdata->tx_pkt_prod != txdata->tx_pkt_cons; } static inline u16 bnx2x_tx_avail(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) { s16 used; u16 prod; u16 cons; prod = txdata->tx_bd_prod; cons = txdata->tx_bd_cons; /* NUM_TX_RINGS = number of "next-page" entries It will be used as a threshold */ used = SUB_S16(prod, cons) + (s16)NUM_TX_RINGS; #ifdef BNX2X_STOP_ON_ERROR WARN_ON(used < 0); WARN_ON(used > bp->tx_ring_size); WARN_ON((bp->tx_ring_size - used) > MAX_TX_AVAIL); #endif return (s16)(bp->tx_ring_size) - used; } static inline int bnx2x_tx_queue_has_work(struct bnx2x_fp_txdata *txdata) { u16 hw_cons; /* Tell compiler that status block fields can change */ barrier(); hw_cons = le16_to_cpu(*txdata->tx_cons_sb); return hw_cons != txdata->tx_pkt_cons; } static inline bool bnx2x_has_tx_work(struct bnx2x_fastpath *fp) { u8 cos; for_each_cos_in_tx_queue(fp, cos) if (bnx2x_tx_queue_has_work(&fp->txdata[cos])) return true; return false; } static inline int bnx2x_has_rx_work(struct bnx2x_fastpath *fp) { u16 rx_cons_sb; /* Tell compiler that status block fields can change */ barrier(); rx_cons_sb = le16_to_cpu(*fp->rx_cons_sb); if ((rx_cons_sb & MAX_RCQ_DESC_CNT) == MAX_RCQ_DESC_CNT) rx_cons_sb++; return (fp->rx_comp_cons != rx_cons_sb); } /** * bnx2x_tx_disable - disables tx from stack point of view * * @bp: driver handle */ static inline void bnx2x_tx_disable(struct bnx2x *bp) { netif_tx_disable(bp->dev); netif_carrier_off(bp->dev); } static inline void bnx2x_free_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, u16 index) { struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; struct page *page = sw_buf->page; struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; /* Skip "next page" elements */ if (!page) return; dma_unmap_page(&bp->pdev->dev, dma_unmap_addr(sw_buf, mapping), SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE); __free_pages(page, PAGES_PER_SGE_SHIFT); sw_buf->page = NULL; sge->addr_hi = 0; sge->addr_lo = 0; } static inline void bnx2x_add_all_napi(struct bnx2x *bp) { int i; /* Add NAPI objects */ for_each_rx_queue(bp, i) netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi), bnx2x_poll, BNX2X_NAPI_WEIGHT); } static inline void bnx2x_del_all_napi(struct bnx2x *bp) { int i; for_each_rx_queue(bp, i) netif_napi_del(&bnx2x_fp(bp, i, napi)); } static inline void bnx2x_disable_msi(struct bnx2x *bp) { if (bp->flags & USING_MSIX_FLAG) { pci_disable_msix(bp->pdev); bp->flags &= ~USING_MSIX_FLAG; } else if (bp->flags & USING_MSI_FLAG) { pci_disable_msi(bp->pdev); bp->flags &= ~USING_MSI_FLAG; } } static inline int bnx2x_calc_num_queues(struct bnx2x *bp) { return num_queues ? min_t(int, num_queues, BNX2X_MAX_QUEUES(bp)) : min_t(int, num_online_cpus(), BNX2X_MAX_QUEUES(bp)); } static inline void bnx2x_clear_sge_mask_next_elems(struct bnx2x_fastpath *fp) { int i, j; for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { int idx = RX_SGE_CNT * i - 1; for (j = 0; j < 2; j++) { BIT_VEC64_CLEAR_BIT(fp->sge_mask, idx); idx--; } } } static inline void bnx2x_init_sge_ring_bit_mask(struct bnx2x_fastpath *fp) { /* Set the mask to all 1-s: it's faster to compare to 0 than to 0xf-s */ memset(fp->sge_mask, 0xff, sizeof(fp->sge_mask)); /* Clear the two last indices in the page to 1: these are the indices that correspond to the "next" element, hence will never be indicated and should be removed from the calculations. */ bnx2x_clear_sge_mask_next_elems(fp); } static inline int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp, u16 index) { struct page *page = alloc_pages(GFP_ATOMIC, PAGES_PER_SGE_SHIFT); struct sw_rx_page *sw_buf = &fp->rx_page_ring[index]; struct eth_rx_sge *sge = &fp->rx_sge_ring[index]; dma_addr_t mapping; if (unlikely(page == NULL)) return -ENOMEM; mapping = dma_map_page(&bp->pdev->dev, page, 0, SGE_PAGE_SIZE*PAGES_PER_SGE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { __free_pages(page, PAGES_PER_SGE_SHIFT); return -ENOMEM; } sw_buf->page = page; dma_unmap_addr_set(sw_buf, mapping, mapping); sge->addr_hi = cpu_to_le32(U64_HI(mapping)); sge->addr_lo = cpu_to_le32(U64_LO(mapping)); return 0; } static inline int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp, u16 index) { u8 *data; struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index]; struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index]; dma_addr_t mapping; data = kmalloc(fp->rx_buf_size + NET_SKB_PAD, GFP_ATOMIC); if (unlikely(data == NULL)) return -ENOMEM; mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD, fp->rx_buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) { kfree(data); return -ENOMEM; } rx_buf->data = data; dma_unmap_addr_set(rx_buf, mapping, mapping); rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping)); rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping)); return 0; } /* note that we are not allocating a new buffer, * we are just moving one from cons to prod * we are not creating a new mapping, * so there is no need to check for dma_mapping_error(). */ static inline void bnx2x_reuse_rx_data(struct bnx2x_fastpath *fp, u16 cons, u16 prod) { struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons]; struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod]; struct eth_rx_bd *cons_bd = &fp->rx_desc_ring[cons]; struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod]; dma_unmap_addr_set(prod_rx_buf, mapping, dma_unmap_addr(cons_rx_buf, mapping)); prod_rx_buf->data = cons_rx_buf->data; *prod_bd = *cons_bd; } /************************* Init ******************************************/ /** * bnx2x_func_start - init function * * @bp: driver handle * * Must be called before sending CLIENT_SETUP for the first client. */ static inline int bnx2x_func_start(struct bnx2x *bp) { struct bnx2x_func_state_params func_params = {0}; struct bnx2x_func_start_params *start_params = &func_params.params.start; /* Prepare parameters for function state transitions */ __set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags); func_params.f_obj = &bp->func_obj; func_params.cmd = BNX2X_F_CMD_START; /* Function parameters */ start_params->mf_mode = bp->mf_mode; start_params->sd_vlan_tag = bp->mf_ov; if (CHIP_IS_E1x(bp)) start_params->network_cos_mode = OVERRIDE_COS; else start_params->network_cos_mode = STATIC_COS; return bnx2x_func_state_change(bp, &func_params); } /** * bnx2x_set_fw_mac_addr - fill in a MAC address in FW format * * @fw_hi: pointer to upper part * @fw_mid: pointer to middle part * @fw_lo: pointer to lower part * @mac: pointer to MAC address */ static inline void bnx2x_set_fw_mac_addr(u16 *fw_hi, u16 *fw_mid, u16 *fw_lo, u8 *mac) { ((u8 *)fw_hi)[0] = mac[1]; ((u8 *)fw_hi)[1] = mac[0]; ((u8 *)fw_mid)[0] = mac[3]; ((u8 *)fw_mid)[1] = mac[2]; ((u8 *)fw_lo)[0] = mac[5]; ((u8 *)fw_lo)[1] = mac[4]; } static inline void bnx2x_free_rx_sge_range(struct bnx2x *bp, struct bnx2x_fastpath *fp, int last) { int i; if (fp->disable_tpa) return; for (i = 0; i < last; i++) bnx2x_free_rx_sge(bp, fp, i); } static inline void bnx2x_free_tpa_pool(struct bnx2x *bp, struct bnx2x_fastpath *fp, int last) { int i; for (i = 0; i < last; i++) { struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i]; struct sw_rx_bd *first_buf = &tpa_info->first_buf; u8 *data = first_buf->data; if (data == NULL) { DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i); continue; } if (tpa_info->tpa_state == BNX2X_TPA_START) dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(first_buf, mapping), fp->rx_buf_size, DMA_FROM_DEVICE); kfree(data); first_buf->data = NULL; } } static inline void bnx2x_init_tx_ring_one(struct bnx2x_fp_txdata *txdata) { int i; for (i = 1; i <= NUM_TX_RINGS; i++) { struct eth_tx_next_bd *tx_next_bd = &txdata->tx_desc_ring[TX_DESC_CNT * i - 1].next_bd; tx_next_bd->addr_hi = cpu_to_le32(U64_HI(txdata->tx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); tx_next_bd->addr_lo = cpu_to_le32(U64_LO(txdata->tx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_TX_RINGS))); } SET_FLAG(txdata->tx_db.data.header.header, DOORBELL_HDR_DB_TYPE, 1); txdata->tx_db.data.zero_fill1 = 0; txdata->tx_db.data.prod = 0; txdata->tx_pkt_prod = 0; txdata->tx_pkt_cons = 0; txdata->tx_bd_prod = 0; txdata->tx_bd_cons = 0; txdata->tx_pkt = 0; } static inline void bnx2x_init_tx_rings(struct bnx2x *bp) { int i; u8 cos; for_each_tx_queue(bp, i) for_each_cos_in_tx_queue(&bp->fp[i], cos) bnx2x_init_tx_ring_one(&bp->fp[i].txdata[cos]); } static inline void bnx2x_set_next_page_rx_bd(struct bnx2x_fastpath *fp) { int i; for (i = 1; i <= NUM_RX_RINGS; i++) { struct eth_rx_bd *rx_bd; rx_bd = &fp->rx_desc_ring[RX_DESC_CNT * i - 2]; rx_bd->addr_hi = cpu_to_le32(U64_HI(fp->rx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); rx_bd->addr_lo = cpu_to_le32(U64_LO(fp->rx_desc_mapping + BCM_PAGE_SIZE*(i % NUM_RX_RINGS))); } } static inline void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp) { int i; for (i = 1; i <= NUM_RX_SGE_PAGES; i++) { struct eth_rx_sge *sge; sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2]; sge->addr_hi = cpu_to_le32(U64_HI(fp->rx_sge_mapping + BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); sge->addr_lo = cpu_to_le32(U64_LO(fp->rx_sge_mapping + BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES))); } } static inline void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp) { int i; for (i = 1; i <= NUM_RCQ_RINGS; i++) { struct eth_rx_cqe_next_page *nextpg; nextpg = (struct eth_rx_cqe_next_page *) &fp->rx_comp_ring[RCQ_DESC_CNT * i - 1]; nextpg->addr_hi = cpu_to_le32(U64_HI(fp->rx_comp_mapping + BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); nextpg->addr_lo = cpu_to_le32(U64_LO(fp->rx_comp_mapping + BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS))); } } /* Returns the number of actually allocated BDs */ static inline int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp, int rx_ring_size) { struct bnx2x *bp = fp->bp; u16 ring_prod, cqe_ring_prod; int i; fp->rx_comp_cons = 0; cqe_ring_prod = ring_prod = 0; /* This routine is called only during fo init so * fp->eth_q_stats.rx_skb_alloc_failed = 0 */ for (i = 0; i < rx_ring_size; i++) { if (bnx2x_alloc_rx_data(bp, fp, ring_prod) < 0) { fp->eth_q_stats.rx_skb_alloc_failed++; continue; } ring_prod = NEXT_RX_IDX(ring_prod); cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod); WARN_ON(ring_prod <= (i - fp->eth_q_stats.rx_skb_alloc_failed)); } if (fp->eth_q_stats.rx_skb_alloc_failed) BNX2X_ERR("was only able to allocate " "%d rx skbs on queue[%d]\n", (i - fp->eth_q_stats.rx_skb_alloc_failed), fp->index); fp->rx_bd_prod = ring_prod; /* Limit the CQE producer by the CQE ring size */ fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT, cqe_ring_prod); fp->rx_pkt = fp->rx_calls = 0; return i - fp->eth_q_stats.rx_skb_alloc_failed; } /* Statistics ID are global per chip/path, while Client IDs for E1x are per * port. */ static inline u8 bnx2x_stats_id(struct bnx2x_fastpath *fp) { if (!CHIP_IS_E1x(fp->bp)) return fp->cl_id; else return fp->cl_id + BP_PORT(fp->bp) * FP_SB_MAX_E1x; } static inline void bnx2x_init_vlan_mac_fp_objs(struct bnx2x_fastpath *fp, bnx2x_obj_type obj_type) { struct bnx2x *bp = fp->bp; /* Configure classification DBs */ bnx2x_init_mac_obj(bp, &fp->mac_obj, fp->cl_id, fp->cid, BP_FUNC(bp), bnx2x_sp(bp, mac_rdata), bnx2x_sp_mapping(bp, mac_rdata), BNX2X_FILTER_MAC_PENDING, &bp->sp_state, obj_type, &bp->macs_pool); } /** * bnx2x_get_path_func_num - get number of active functions * * @bp: driver handle * * Calculates the number of active (not hidden) functions on the * current path. */ static inline u8 bnx2x_get_path_func_num(struct bnx2x *bp) { u8 func_num = 0, i; /* 57710 has only one function per-port */ if (CHIP_IS_E1(bp)) return 1; /* Calculate a number of functions enabled on the current * PATH/PORT. */ if (CHIP_REV_IS_SLOW(bp)) { if (IS_MF(bp)) func_num = 4; else func_num = 2; } else { for (i = 0; i < E1H_FUNC_MAX / 2; i++) { u32 func_config = MF_CFG_RD(bp, func_mf_config[BP_PORT(bp) + 2 * i]. config); func_num += ((func_config & FUNC_MF_CFG_FUNC_HIDE) ? 0 : 1); } } WARN_ON(!func_num); return func_num; } static inline void bnx2x_init_bp_objs(struct bnx2x *bp) { /* RX_MODE controlling object */ bnx2x_init_rx_mode_obj(bp, &bp->rx_mode_obj); /* multicast configuration controlling object */ bnx2x_init_mcast_obj(bp, &bp->mcast_obj, bp->fp->cl_id, bp->fp->cid, BP_FUNC(bp), BP_FUNC(bp), bnx2x_sp(bp, mcast_rdata), bnx2x_sp_mapping(bp, mcast_rdata), BNX2X_FILTER_MCAST_PENDING, &bp->sp_state, BNX2X_OBJ_TYPE_RX); /* Setup CAM credit pools */ bnx2x_init_mac_credit_pool(bp, &bp->macs_pool, BP_FUNC(bp), bnx2x_get_path_func_num(bp)); /* RSS configuration object */ bnx2x_init_rss_config_obj(bp, &bp->rss_conf_obj, bp->fp->cl_id, bp->fp->cid, BP_FUNC(bp), BP_FUNC(bp), bnx2x_sp(bp, rss_rdata), bnx2x_sp_mapping(bp, rss_rdata), BNX2X_FILTER_RSS_CONF_PENDING, &bp->sp_state, BNX2X_OBJ_TYPE_RX); } static inline u8 bnx2x_fp_qzone_id(struct bnx2x_fastpath *fp) { if (CHIP_IS_E1x(fp->bp)) return fp->cl_id + BP_PORT(fp->bp) * ETH_MAX_RX_CLIENTS_E1H; else return fp->cl_id; } static inline u32 bnx2x_rx_ustorm_prods_offset(struct bnx2x_fastpath *fp) { struct bnx2x *bp = fp->bp; if (!CHIP_IS_E1x(bp)) return USTORM_RX_PRODS_E2_OFFSET(fp->cl_qzone_id); else return USTORM_RX_PRODS_E1X_OFFSET(BP_PORT(bp), fp->cl_id); } static inline void bnx2x_init_txdata(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata, u32 cid, int txq_index, __le16 *tx_cons_sb) { txdata->cid = cid; txdata->txq_index = txq_index; txdata->tx_cons_sb = tx_cons_sb; DP(BNX2X_MSG_SP, "created tx data cid %d, txq %d\n", txdata->cid, txdata->txq_index); } #ifdef BCM_CNIC static inline u8 bnx2x_cnic_eth_cl_id(struct bnx2x *bp, u8 cl_idx) { return bp->cnic_base_cl_id + cl_idx + (bp->pf_num >> 1) * BNX2X_MAX_CNIC_ETH_CL_ID_IDX; } static inline u8 bnx2x_cnic_fw_sb_id(struct bnx2x *bp) { /* the 'first' id is allocated for the cnic */ return bp->base_fw_ndsb; } static inline u8 bnx2x_cnic_igu_sb_id(struct bnx2x *bp) { return bp->igu_base_sb; } static inline void bnx2x_init_fcoe_fp(struct bnx2x *bp) { struct bnx2x_fastpath *fp = bnx2x_fcoe_fp(bp); unsigned long q_type = 0; bnx2x_fcoe(bp, rx_queue) = BNX2X_NUM_ETH_QUEUES(bp); bnx2x_fcoe(bp, cl_id) = bnx2x_cnic_eth_cl_id(bp, BNX2X_FCOE_ETH_CL_ID_IDX); /** Current BNX2X_FCOE_ETH_CID deffinition implies not more than * 16 ETH clients per function when CNIC is enabled! * * Fix it ASAP!!! */ bnx2x_fcoe(bp, cid) = BNX2X_FCOE_ETH_CID; bnx2x_fcoe(bp, fw_sb_id) = DEF_SB_ID; bnx2x_fcoe(bp, igu_sb_id) = bp->igu_dsb_id; bnx2x_fcoe(bp, rx_cons_sb) = BNX2X_FCOE_L2_RX_INDEX; bnx2x_init_txdata(bp, &bnx2x_fcoe(bp, txdata[0]), fp->cid, FCOE_TXQ_IDX(bp), BNX2X_FCOE_L2_TX_INDEX); DP(BNX2X_MSG_SP, "created fcoe tx data (fp index %d)\n", fp->index); /* qZone id equals to FW (per path) client id */ bnx2x_fcoe(bp, cl_qzone_id) = bnx2x_fp_qzone_id(fp); /* init shortcut */ bnx2x_fcoe(bp, ustorm_rx_prods_offset) = bnx2x_rx_ustorm_prods_offset(fp); /* Configure Queue State object */ __set_bit(BNX2X_Q_TYPE_HAS_RX, &q_type); __set_bit(BNX2X_Q_TYPE_HAS_TX, &q_type); /* No multi-CoS for FCoE L2 client */ BUG_ON(fp->max_cos != 1); bnx2x_init_queue_obj(bp, &fp->q_obj, fp->cl_id, &fp->cid, 1, BP_FUNC(bp), bnx2x_sp(bp, q_rdata), bnx2x_sp_mapping(bp, q_rdata), q_type); DP(NETIF_MSG_IFUP, "queue[%d]: bnx2x_init_sb(%p,%p) cl_id %d fw_sb %d " "igu_sb %d\n", fp->index, bp, fp->status_blk.e2_sb, fp->cl_id, fp->fw_sb_id, fp->igu_sb_id); } #endif static inline int bnx2x_clean_tx_queue(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata) { int cnt = 1000; while (bnx2x_has_tx_work_unload(txdata)) { if (!cnt) { BNX2X_ERR("timeout waiting for queue[%d]: " "txdata->tx_pkt_prod(%d) != txdata->tx_pkt_cons(%d)\n", txdata->txq_index, txdata->tx_pkt_prod, txdata->tx_pkt_cons); #ifdef BNX2X_STOP_ON_ERROR bnx2x_panic(); return -EBUSY; #else break; #endif } cnt--; usleep_range(1000, 1000); } return 0; } int bnx2x_get_link_cfg_idx(struct bnx2x *bp); static inline void __storm_memset_struct(struct bnx2x *bp, u32 addr, size_t size, u32 *data) { int i; for (i = 0; i < size/4; i++) REG_WR(bp, addr + (i * 4), data[i]); } static inline void storm_memset_func_cfg(struct bnx2x *bp, struct tstorm_eth_function_common_config *tcfg, u16 abs_fid) { size_t size = sizeof(struct tstorm_eth_function_common_config); u32 addr = BAR_TSTRORM_INTMEM + TSTORM_FUNCTION_COMMON_CONFIG_OFFSET(abs_fid); __storm_memset_struct(bp, addr, size, (u32 *)tcfg); } static inline void storm_memset_cmng(struct bnx2x *bp, struct cmng_struct_per_port *cmng, u8 port) { size_t size = sizeof(struct cmng_struct_per_port); u32 addr = BAR_XSTRORM_INTMEM + XSTORM_CMNG_PER_PORT_VARS_OFFSET(port); __storm_memset_struct(bp, addr, size, (u32 *)cmng); } /** * bnx2x_wait_sp_comp - wait for the outstanding SP commands. * * @bp: driver handle * @mask: bits that need to be cleared */ static inline bool bnx2x_wait_sp_comp(struct bnx2x *bp, unsigned long mask) { int tout = 5000; /* Wait for 5 secs tops */ while (tout--) { smp_mb(); netif_addr_lock_bh(bp->dev); if (!(bp->sp_state & mask)) { netif_addr_unlock_bh(bp->dev); return true; } netif_addr_unlock_bh(bp->dev); usleep_range(1000, 1000); } smp_mb(); netif_addr_lock_bh(bp->dev); if (bp->sp_state & mask) { BNX2X_ERR("Filtering completion timed out. sp_state 0x%lx, " "mask 0x%lx\n", bp->sp_state, mask); netif_addr_unlock_bh(bp->dev); return false; } netif_addr_unlock_bh(bp->dev); return true; } /** * bnx2x_set_ctx_validation - set CDU context validation values * * @bp: driver handle * @cxt: context of the connection on the host memory * @cid: SW CID of the connection to be configured */ void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt, u32 cid); void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id, u8 sb_index, u8 disable, u16 usec); void bnx2x_acquire_phy_lock(struct bnx2x *bp); void bnx2x_release_phy_lock(struct bnx2x *bp); /** * bnx2x_extract_max_cfg - extract MAX BW part from MF configuration. * * @bp: driver handle * @mf_cfg: MF configuration * */ static inline u16 bnx2x_extract_max_cfg(struct bnx2x *bp, u32 mf_cfg) { u16 max_cfg = (mf_cfg & FUNC_MF_CFG_MAX_BW_MASK) >> FUNC_MF_CFG_MAX_BW_SHIFT; if (!max_cfg) { DP(NETIF_MSG_LINK, "Max BW configured to 0 - using 100 instead\n"); max_cfg = 100; } return max_cfg; } /** * bnx2x_get_iscsi_info - update iSCSI params according to licensing info. * * @bp: driver handle * */ void bnx2x_get_iscsi_info(struct bnx2x *bp); /* returns func by VN for current port */ static inline int func_by_vn(struct bnx2x *bp, int vn) { return 2 * vn + BP_PORT(bp); } /** * bnx2x_link_sync_notify - send notification to other functions. * * @bp: driver handle * */ static inline void bnx2x_link_sync_notify(struct bnx2x *bp) { int func; int vn; /* Set the attention towards other drivers on the same port */ for (vn = VN_0; vn < BP_MAX_VN_NUM(bp); vn++) { if (vn == BP_VN(bp)) continue; func = func_by_vn(bp, vn); REG_WR(bp, MISC_REG_AEU_GENERAL_ATTN_0 + (LINK_SYNC_ATTENTION_BIT_FUNC_0 + func)*4, 1); } } /** * bnx2x_update_drv_flags - update flags in shmem * * @bp: driver handle * @flags: flags to update * @set: set or clear * */ static inline void bnx2x_update_drv_flags(struct bnx2x *bp, u32 flags, u32 set) { if (SHMEM2_HAS(bp, drv_flags)) { u32 drv_flags; bnx2x_acquire_hw_lock(bp, HW_LOCK_DRV_FLAGS); drv_flags = SHMEM2_RD(bp, drv_flags); if (set) SET_FLAGS(drv_flags, flags); else RESET_FLAGS(drv_flags, flags); SHMEM2_WR(bp, drv_flags, drv_flags); DP(NETIF_MSG_HW, "drv_flags 0x%08x\n", drv_flags); bnx2x_release_hw_lock(bp, HW_LOCK_DRV_FLAGS); } } static inline bool bnx2x_is_valid_ether_addr(struct bnx2x *bp, u8 *addr) { if (is_valid_ether_addr(addr)) return true; #ifdef BCM_CNIC if (is_zero_ether_addr(addr) && IS_MF_ISCSI_SD(bp)) return true; #endif return false; } #endif /* BNX2X_CMN_H */