/********************************************************************** * Author: Cavium, Inc. * * Contact: support@cavium.com * Please include "LiquidIO" in the subject. * * Copyright (c) 2003-2016 Cavium, Inc. * * This file is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License, Version 2, as * published by the Free Software Foundation. * * This file is distributed in the hope that it will be useful, but * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or * NONINFRINGEMENT. See the GNU General Public License for more details. ***********************************************************************/ #include #include #include #include "liquidio_common.h" #include "octeon_droq.h" #include "octeon_iq.h" #include "response_manager.h" #include "octeon_device.h" #include "cn23xx_vf_device.h" #include "octeon_main.h" #include "octeon_mailbox.h" u32 cn23xx_vf_get_oq_ticks(struct octeon_device *oct, u32 time_intr_in_us) { /* This gives the SLI clock per microsec */ u32 oqticks_per_us = (u32)oct->pfvf_hsword.coproc_tics_per_us; /* This gives the clock cycles per millisecond */ oqticks_per_us *= 1000; /* This gives the oq ticks (1024 core clock cycles) per millisecond */ oqticks_per_us /= 1024; /* time_intr is in microseconds. The next 2 steps gives the oq ticks * corressponding to time_intr. */ oqticks_per_us *= time_intr_in_us; oqticks_per_us /= 1000; return oqticks_per_us; } static int cn23xx_vf_reset_io_queues(struct octeon_device *oct, u32 num_queues) { u32 loop = BUSY_READING_REG_VF_LOOP_COUNT; int ret_val = 0; u32 q_no; u64 d64; for (q_no = 0; q_no < num_queues; q_no++) { /* set RST bit to 1. This bit applies to both IQ and OQ */ d64 = octeon_read_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no)); d64 |= CN23XX_PKT_INPUT_CTL_RST; octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no), d64); } /* wait until the RST bit is clear or the RST and QUIET bits are set */ for (q_no = 0; q_no < num_queues; q_no++) { u64 reg_val = octeon_read_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no)); while ((READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) && !(READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_QUIET) && loop) { WRITE_ONCE(reg_val, octeon_read_csr64( oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no))); loop--; } if (!loop) { dev_err(&oct->pci_dev->dev, "clearing the reset reg failed or setting the quiet reg failed for qno: %u\n", q_no); return -1; } WRITE_ONCE(reg_val, READ_ONCE(reg_val) & ~CN23XX_PKT_INPUT_CTL_RST); octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no), READ_ONCE(reg_val)); WRITE_ONCE(reg_val, octeon_read_csr64( oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no))); if (READ_ONCE(reg_val) & CN23XX_PKT_INPUT_CTL_RST) { dev_err(&oct->pci_dev->dev, "clearing the reset failed for qno: %u\n", q_no); ret_val = -1; } } return ret_val; } static int cn23xx_vf_setup_global_input_regs(struct octeon_device *oct) { struct octeon_cn23xx_vf *cn23xx = (struct octeon_cn23xx_vf *)oct->chip; struct octeon_instr_queue *iq; u64 q_no, intr_threshold; u64 d64; if (cn23xx_vf_reset_io_queues(oct, oct->sriov_info.rings_per_vf)) return -1; for (q_no = 0; q_no < (oct->sriov_info.rings_per_vf); q_no++) { void __iomem *inst_cnt_reg; octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_DOORBELL(q_no), 0xFFFFFFFF); iq = oct->instr_queue[q_no]; if (iq) inst_cnt_reg = iq->inst_cnt_reg; else inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no); d64 = octeon_read_csr64(oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no)); d64 &= 0xEFFFFFFFFFFFFFFFL; octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no), d64); /* Select ES, RO, NS, RDSIZE,DPTR Fomat#0 for * the Input Queues */ octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no), CN23XX_PKT_INPUT_CTL_MASK); /* set the wmark level to trigger PI_INT */ intr_threshold = CFG_GET_IQ_INTR_PKT(cn23xx->conf) & CN23XX_PKT_IN_DONE_WMARK_MASK; writeq((readq(inst_cnt_reg) & ~(CN23XX_PKT_IN_DONE_WMARK_MASK << CN23XX_PKT_IN_DONE_WMARK_BIT_POS)) | (intr_threshold << CN23XX_PKT_IN_DONE_WMARK_BIT_POS), inst_cnt_reg); } return 0; } static void cn23xx_vf_setup_global_output_regs(struct octeon_device *oct) { u32 reg_val; u32 q_no; for (q_no = 0; q_no < (oct->sriov_info.rings_per_vf); q_no++) { octeon_write_csr(oct, CN23XX_VF_SLI_OQ_PKTS_CREDIT(q_no), 0xFFFFFFFF); reg_val = octeon_read_csr(oct, CN23XX_VF_SLI_OQ_PKTS_SENT(q_no)); reg_val &= 0xEFFFFFFFFFFFFFFFL; reg_val = octeon_read_csr(oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no)); /* clear IPTR */ reg_val &= ~CN23XX_PKT_OUTPUT_CTL_IPTR; /* set DPTR */ reg_val |= CN23XX_PKT_OUTPUT_CTL_DPTR; /* reset BMODE */ reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_BMODE); /* No Relaxed Ordering, No Snoop, 64-bit Byte swap * for Output Queue ScatterList reset ROR_P, NSR_P */ reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR_P); reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR_P); #ifdef __LITTLE_ENDIAN_BITFIELD reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ES_P); #else reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES_P); #endif /* No Relaxed Ordering, No Snoop, 64-bit Byte swap * for Output Queue Data reset ROR, NSR */ reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_ROR); reg_val &= ~(CN23XX_PKT_OUTPUT_CTL_NSR); /* set the ES bit */ reg_val |= (CN23XX_PKT_OUTPUT_CTL_ES); /* write all the selected settings */ octeon_write_csr(oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no), reg_val); } } static int cn23xx_setup_vf_device_regs(struct octeon_device *oct) { if (cn23xx_vf_setup_global_input_regs(oct)) return -1; cn23xx_vf_setup_global_output_regs(oct); return 0; } static void cn23xx_setup_vf_iq_regs(struct octeon_device *oct, u32 iq_no) { struct octeon_instr_queue *iq = oct->instr_queue[iq_no]; u64 pkt_in_done; /* Write the start of the input queue's ring and its size */ octeon_write_csr64(oct, CN23XX_VF_SLI_IQ_BASE_ADDR64(iq_no), iq->base_addr_dma); octeon_write_csr(oct, CN23XX_VF_SLI_IQ_SIZE(iq_no), iq->max_count); /* Remember the doorbell & instruction count register addr * for this queue */ iq->doorbell_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_IQ_DOORBELL(iq_no); iq->inst_cnt_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_IQ_INSTR_COUNT64(iq_no); dev_dbg(&oct->pci_dev->dev, "InstQ[%d]:dbell reg @ 0x%p instcnt_reg @ 0x%p\n", iq_no, iq->doorbell_reg, iq->inst_cnt_reg); /* Store the current instruction counter (used in flush_iq * calculation) */ pkt_in_done = readq(iq->inst_cnt_reg); if (oct->msix_on) { /* Set CINT_ENB to enable IQ interrupt */ writeq((pkt_in_done | CN23XX_INTR_CINT_ENB), iq->inst_cnt_reg); } iq->reset_instr_cnt = 0; } static void cn23xx_setup_vf_oq_regs(struct octeon_device *oct, u32 oq_no) { struct octeon_droq *droq = oct->droq[oq_no]; octeon_write_csr64(oct, CN23XX_VF_SLI_OQ_BASE_ADDR64(oq_no), droq->desc_ring_dma); octeon_write_csr(oct, CN23XX_VF_SLI_OQ_SIZE(oq_no), droq->max_count); octeon_write_csr(oct, CN23XX_VF_SLI_OQ_BUFF_INFO_SIZE(oq_no), droq->buffer_size); /* Get the mapped address of the pkt_sent and pkts_credit regs */ droq->pkts_sent_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_OQ_PKTS_SENT(oq_no); droq->pkts_credit_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_OQ_PKTS_CREDIT(oq_no); } static void cn23xx_vf_mbox_thread(struct work_struct *work) { struct cavium_wk *wk = (struct cavium_wk *)work; struct octeon_mbox *mbox = (struct octeon_mbox *)wk->ctxptr; octeon_mbox_process_message(mbox); } static int cn23xx_free_vf_mbox(struct octeon_device *oct) { cancel_delayed_work_sync(&oct->mbox[0]->mbox_poll_wk.work); vfree(oct->mbox[0]); return 0; } static int cn23xx_setup_vf_mbox(struct octeon_device *oct) { struct octeon_mbox *mbox = NULL; mbox = vmalloc(sizeof(*mbox)); if (!mbox) return 1; memset(mbox, 0, sizeof(struct octeon_mbox)); spin_lock_init(&mbox->lock); mbox->oct_dev = oct; mbox->q_no = 0; mbox->state = OCTEON_MBOX_STATE_IDLE; /* VF mbox interrupt reg */ mbox->mbox_int_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_VF_SLI_PKT_MBOX_INT(0); /* VF reads from SIG0 reg */ mbox->mbox_read_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_PKT_PF_VF_MBOX_SIG(0, 0); /* VF writes into SIG1 reg */ mbox->mbox_write_reg = (u8 *)oct->mmio[0].hw_addr + CN23XX_SLI_PKT_PF_VF_MBOX_SIG(0, 1); INIT_DELAYED_WORK(&mbox->mbox_poll_wk.work, cn23xx_vf_mbox_thread); mbox->mbox_poll_wk.ctxptr = mbox; oct->mbox[0] = mbox; writeq(OCTEON_PFVFSIG, mbox->mbox_read_reg); return 0; } static int cn23xx_enable_vf_io_queues(struct octeon_device *oct) { u32 q_no; for (q_no = 0; q_no < oct->num_iqs; q_no++) { u64 reg_val; /* set the corresponding IQ IS_64B bit */ if (oct->io_qmask.iq64B & BIT_ULL(q_no)) { reg_val = octeon_read_csr64( oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no)); reg_val |= CN23XX_PKT_INPUT_CTL_IS_64B; octeon_write_csr64( oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } /* set the corresponding IQ ENB bit */ if (oct->io_qmask.iq & BIT_ULL(q_no)) { reg_val = octeon_read_csr64( oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no)); reg_val |= CN23XX_PKT_INPUT_CTL_RING_ENB; octeon_write_csr64( oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(q_no), reg_val); } } for (q_no = 0; q_no < oct->num_oqs; q_no++) { u32 reg_val; /* set the corresponding OQ ENB bit */ if (oct->io_qmask.oq & BIT_ULL(q_no)) { reg_val = octeon_read_csr( oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no)); reg_val |= CN23XX_PKT_OUTPUT_CTL_RING_ENB; octeon_write_csr( oct, CN23XX_VF_SLI_OQ_PKT_CONTROL(q_no), reg_val); } } return 0; } static void cn23xx_disable_vf_io_queues(struct octeon_device *oct) { u32 num_queues = oct->num_iqs; /* per HRM, rings can only be disabled via reset operation, * NOT via SLI_PKT()_INPUT/OUTPUT_CONTROL[ENB] */ if (num_queues < oct->num_oqs) num_queues = oct->num_oqs; cn23xx_vf_reset_io_queues(oct, num_queues); } void cn23xx_vf_ask_pf_to_do_flr(struct octeon_device *oct) { struct octeon_mbox_cmd mbox_cmd; mbox_cmd.msg.u64 = 0; mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; mbox_cmd.msg.s.resp_needed = 0; mbox_cmd.msg.s.cmd = OCTEON_VF_FLR_REQUEST; mbox_cmd.msg.s.len = 1; mbox_cmd.q_no = 0; mbox_cmd.recv_len = 0; mbox_cmd.recv_status = 0; mbox_cmd.fn = NULL; mbox_cmd.fn_arg = NULL; octeon_mbox_write(oct, &mbox_cmd); } static void octeon_pfvf_hs_callback(struct octeon_device *oct, struct octeon_mbox_cmd *cmd, void *arg) { u32 major = 0; memcpy((uint8_t *)&oct->pfvf_hsword, cmd->msg.s.params, CN23XX_MAILBOX_MSGPARAM_SIZE); if (cmd->recv_len > 1) { major = ((struct lio_version *)(cmd->data))->major; major = major << 16; } atomic_set((atomic_t *)arg, major | 1); } int cn23xx_octeon_pfvf_handshake(struct octeon_device *oct) { struct octeon_mbox_cmd mbox_cmd; u32 q_no, count = 0; atomic_t status; u32 pfmajor; u32 vfmajor; u32 ret; /* Sending VF_ACTIVE indication to the PF driver */ dev_dbg(&oct->pci_dev->dev, "requesting info from pf\n"); mbox_cmd.msg.u64 = 0; mbox_cmd.msg.s.type = OCTEON_MBOX_REQUEST; mbox_cmd.msg.s.resp_needed = 1; mbox_cmd.msg.s.cmd = OCTEON_VF_ACTIVE; mbox_cmd.msg.s.len = 2; mbox_cmd.data[0] = 0; ((struct lio_version *)&mbox_cmd.data[0])->major = LIQUIDIO_BASE_MAJOR_VERSION; ((struct lio_version *)&mbox_cmd.data[0])->minor = LIQUIDIO_BASE_MINOR_VERSION; ((struct lio_version *)&mbox_cmd.data[0])->micro = LIQUIDIO_BASE_MICRO_VERSION; mbox_cmd.q_no = 0; mbox_cmd.recv_len = 0; mbox_cmd.recv_status = 0; mbox_cmd.fn = (octeon_mbox_callback_t)octeon_pfvf_hs_callback; mbox_cmd.fn_arg = &status; octeon_mbox_write(oct, &mbox_cmd); atomic_set(&status, 0); do { schedule_timeout_uninterruptible(1); } while ((!atomic_read(&status)) && (count++ < 100000)); ret = atomic_read(&status); if (!ret) { dev_err(&oct->pci_dev->dev, "octeon_pfvf_handshake timeout\n"); return 1; } for (q_no = 0 ; q_no < oct->num_iqs ; q_no++) oct->instr_queue[q_no]->txpciq.s.pkind = oct->pfvf_hsword.pkind; vfmajor = LIQUIDIO_BASE_MAJOR_VERSION; pfmajor = ret >> 16; if (pfmajor != vfmajor) { dev_err(&oct->pci_dev->dev, "VF Liquidio driver (major version %d) is not compatible with Liquidio PF driver (major version %d)\n", vfmajor, pfmajor); return 1; } dev_dbg(&oct->pci_dev->dev, "VF Liquidio driver (major version %d), Liquidio PF driver (major version %d)\n", vfmajor, pfmajor); dev_dbg(&oct->pci_dev->dev, "got data from pf pkind is %d\n", oct->pfvf_hsword.pkind); return 0; } static void cn23xx_handle_vf_mbox_intr(struct octeon_ioq_vector *ioq_vector) { struct octeon_device *oct = ioq_vector->oct_dev; u64 mbox_int_val; if (!ioq_vector->droq_index) { /* read and clear by writing 1 */ mbox_int_val = readq(oct->mbox[0]->mbox_int_reg); writeq(mbox_int_val, oct->mbox[0]->mbox_int_reg); if (octeon_mbox_read(oct->mbox[0])) schedule_delayed_work(&oct->mbox[0]->mbox_poll_wk.work, msecs_to_jiffies(0)); } } static u64 cn23xx_vf_msix_interrupt_handler(void *dev) { struct octeon_ioq_vector *ioq_vector = (struct octeon_ioq_vector *)dev; struct octeon_device *oct = ioq_vector->oct_dev; struct octeon_droq *droq = oct->droq[ioq_vector->droq_index]; u64 pkts_sent; u64 ret = 0; dev_dbg(&oct->pci_dev->dev, "In %s octeon_dev @ %p\n", __func__, oct); pkts_sent = readq(droq->pkts_sent_reg); /* If our device has interrupted, then proceed. Also check * for all f's if interrupt was triggered on an error * and the PCI read fails. */ if (!pkts_sent || (pkts_sent == 0xFFFFFFFFFFFFFFFFULL)) return ret; /* Write count reg in sli_pkt_cnts to clear these int. */ if ((pkts_sent & CN23XX_INTR_PO_INT) || (pkts_sent & CN23XX_INTR_PI_INT)) { if (pkts_sent & CN23XX_INTR_PO_INT) ret |= MSIX_PO_INT; } if (pkts_sent & CN23XX_INTR_PI_INT) /* We will clear the count when we update the read_index. */ ret |= MSIX_PI_INT; if (pkts_sent & CN23XX_INTR_MBOX_INT) { cn23xx_handle_vf_mbox_intr(ioq_vector); ret |= MSIX_MBOX_INT; } return ret; } static u32 cn23xx_update_read_index(struct octeon_instr_queue *iq) { u32 pkt_in_done = readl(iq->inst_cnt_reg); u32 last_done; u32 new_idx; last_done = pkt_in_done - iq->pkt_in_done; iq->pkt_in_done = pkt_in_done; /* Modulo of the new index with the IQ size will give us * the new index. The iq->reset_instr_cnt is always zero for * cn23xx, so no extra adjustments are needed. */ new_idx = (iq->octeon_read_index + (u32)(last_done & CN23XX_PKT_IN_DONE_CNT_MASK)) % iq->max_count; return new_idx; } static void cn23xx_enable_vf_interrupt(struct octeon_device *oct, u8 intr_flag) { struct octeon_cn23xx_vf *cn23xx = (struct octeon_cn23xx_vf *)oct->chip; u32 q_no, time_threshold; if (intr_flag & OCTEON_OUTPUT_INTR) { for (q_no = 0; q_no < oct->num_oqs; q_no++) { /* Set up interrupt packet and time thresholds * for all the OQs */ time_threshold = cn23xx_vf_get_oq_ticks( oct, (u32)CFG_GET_OQ_INTR_TIME(cn23xx->conf)); octeon_write_csr64( oct, CN23XX_VF_SLI_OQ_PKT_INT_LEVELS(q_no), (CFG_GET_OQ_INTR_PKT(cn23xx->conf) | ((u64)time_threshold << 32))); } } if (intr_flag & OCTEON_INPUT_INTR) { for (q_no = 0; q_no < oct->num_oqs; q_no++) { /* Set CINT_ENB to enable IQ interrupt */ octeon_write_csr64( oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no), ((octeon_read_csr64( oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no)) & ~CN23XX_PKT_IN_DONE_CNT_MASK) | CN23XX_INTR_CINT_ENB)); } } /* Set queue-0 MBOX_ENB to enable VF mailbox interrupt */ if (intr_flag & OCTEON_MBOX_INTR) { octeon_write_csr64( oct, CN23XX_VF_SLI_PKT_MBOX_INT(0), (octeon_read_csr64(oct, CN23XX_VF_SLI_PKT_MBOX_INT(0)) | CN23XX_INTR_MBOX_ENB)); } } static void cn23xx_disable_vf_interrupt(struct octeon_device *oct, u8 intr_flag) { u32 q_no; if (intr_flag & OCTEON_OUTPUT_INTR) { for (q_no = 0; q_no < oct->num_oqs; q_no++) { /* Write all 1's in INT_LEVEL reg to disable PO_INT */ octeon_write_csr64( oct, CN23XX_VF_SLI_OQ_PKT_INT_LEVELS(q_no), 0x3fffffffffffff); } } if (intr_flag & OCTEON_INPUT_INTR) { for (q_no = 0; q_no < oct->num_oqs; q_no++) { octeon_write_csr64( oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no), (octeon_read_csr64( oct, CN23XX_VF_SLI_IQ_INSTR_COUNT64(q_no)) & ~(CN23XX_INTR_CINT_ENB | CN23XX_PKT_IN_DONE_CNT_MASK))); } } if (intr_flag & OCTEON_MBOX_INTR) { octeon_write_csr64( oct, CN23XX_VF_SLI_PKT_MBOX_INT(0), (octeon_read_csr64(oct, CN23XX_VF_SLI_PKT_MBOX_INT(0)) & ~CN23XX_INTR_MBOX_ENB)); } } int cn23xx_setup_octeon_vf_device(struct octeon_device *oct) { struct octeon_cn23xx_vf *cn23xx = (struct octeon_cn23xx_vf *)oct->chip; u32 rings_per_vf; u64 reg_val; if (octeon_map_pci_barx(oct, 0, 0)) return 1; /* INPUT_CONTROL[RPVF] gives the VF IOq count */ reg_val = octeon_read_csr64(oct, CN23XX_VF_SLI_IQ_PKT_CONTROL64(0)); oct->pf_num = (reg_val >> CN23XX_PKT_INPUT_CTL_PF_NUM_POS) & CN23XX_PKT_INPUT_CTL_PF_NUM_MASK; oct->vf_num = (reg_val >> CN23XX_PKT_INPUT_CTL_VF_NUM_POS) & CN23XX_PKT_INPUT_CTL_VF_NUM_MASK; reg_val = reg_val >> CN23XX_PKT_INPUT_CTL_RPVF_POS; rings_per_vf = reg_val & CN23XX_PKT_INPUT_CTL_RPVF_MASK; cn23xx->conf = oct_get_config_info(oct, LIO_23XX); if (!cn23xx->conf) { dev_err(&oct->pci_dev->dev, "%s No Config found for CN23XX\n", __func__); octeon_unmap_pci_barx(oct, 0); return 1; } if (oct->sriov_info.rings_per_vf > rings_per_vf) { dev_warn(&oct->pci_dev->dev, "num_queues:%d greater than PF configured rings_per_vf:%d. Reducing to %d.\n", oct->sriov_info.rings_per_vf, rings_per_vf, rings_per_vf); oct->sriov_info.rings_per_vf = rings_per_vf; } else { if (rings_per_vf > num_present_cpus()) { dev_warn(&oct->pci_dev->dev, "PF configured rings_per_vf:%d greater than num_cpu:%d. Using rings_per_vf:%d equal to num cpus\n", rings_per_vf, num_present_cpus(), num_present_cpus()); oct->sriov_info.rings_per_vf = num_present_cpus(); } else { oct->sriov_info.rings_per_vf = rings_per_vf; } } oct->fn_list.setup_iq_regs = cn23xx_setup_vf_iq_regs; oct->fn_list.setup_oq_regs = cn23xx_setup_vf_oq_regs; oct->fn_list.setup_mbox = cn23xx_setup_vf_mbox; oct->fn_list.free_mbox = cn23xx_free_vf_mbox; oct->fn_list.msix_interrupt_handler = cn23xx_vf_msix_interrupt_handler; oct->fn_list.setup_device_regs = cn23xx_setup_vf_device_regs; oct->fn_list.update_iq_read_idx = cn23xx_update_read_index; oct->fn_list.enable_interrupt = cn23xx_enable_vf_interrupt; oct->fn_list.disable_interrupt = cn23xx_disable_vf_interrupt; oct->fn_list.enable_io_queues = cn23xx_enable_vf_io_queues; oct->fn_list.disable_io_queues = cn23xx_disable_vf_io_queues; return 0; }