/* * This file is part of the Chelsio T4 Ethernet driver for Linux. * * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "cxgb4.h" #include "t4_regs.h" #include "t4fw_api.h" /** * t4_wait_op_done_val - wait until an operation is completed * @adapter: the adapter performing the operation * @reg: the register to check for completion * @mask: a single-bit field within @reg that indicates completion * @polarity: the value of the field when the operation is completed * @attempts: number of check iterations * @delay: delay in usecs between iterations * @valp: where to store the value of the register at completion time * * Wait until an operation is completed by checking a bit in a register * up to @attempts times. If @valp is not NULL the value of the register * at the time it indicated completion is stored there. Returns 0 if the * operation completes and -EAGAIN otherwise. */ static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay, u32 *valp) { while (1) { u32 val = t4_read_reg(adapter, reg); if (!!(val & mask) == polarity) { if (valp) *valp = val; return 0; } if (--attempts == 0) return -EAGAIN; if (delay) udelay(delay); } } static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask, int polarity, int attempts, int delay) { return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts, delay, NULL); } /** * t4_set_reg_field - set a register field to a value * @adapter: the adapter to program * @addr: the register address * @mask: specifies the portion of the register to modify * @val: the new value for the register field * * Sets a register field specified by the supplied mask to the * given value. */ void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask, u32 val) { u32 v = t4_read_reg(adapter, addr) & ~mask; t4_write_reg(adapter, addr, v | val); (void) t4_read_reg(adapter, addr); /* flush */ } /** * t4_read_indirect - read indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect address * @data_reg: register holding the value of the indirect register * @vals: where the read register values are stored * @nregs: how many indirect registers to read * @start_idx: index of first indirect register to read * * Reads registers that are accessed indirectly through an address/data * register pair. */ void t4_read_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx); *vals++ = t4_read_reg(adap, data_reg); start_idx++; } } /** * t4_write_indirect - write indirectly addressed registers * @adap: the adapter * @addr_reg: register holding the indirect addresses * @data_reg: register holding the value for the indirect registers * @vals: values to write * @nregs: how many indirect registers to write * @start_idx: address of first indirect register to write * * Writes a sequential block of registers that are accessed indirectly * through an address/data register pair. */ void t4_write_indirect(struct adapter *adap, unsigned int addr_reg, unsigned int data_reg, const u32 *vals, unsigned int nregs, unsigned int start_idx) { while (nregs--) { t4_write_reg(adap, addr_reg, start_idx++); t4_write_reg(adap, data_reg, *vals++); } } /* * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor * mechanism. This guarantees that we get the real value even if we're * operating within a Virtual Machine and the Hypervisor is trapping our * Configuration Space accesses. */ void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val) { u32 req = ENABLE | FUNCTION(adap->fn) | reg; if (is_t4(adap->params.chip)) req |= F_LOCALCFG; t4_write_reg(adap, PCIE_CFG_SPACE_REQ, req); *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA); /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a * Configuration Space read. (None of the other fields matter when * ENABLE is 0 so a simple register write is easier than a * read-modify-write via t4_set_reg_field().) */ t4_write_reg(adap, PCIE_CFG_SPACE_REQ, 0); } /* * t4_report_fw_error - report firmware error * @adap: the adapter * * The adapter firmware can indicate error conditions to the host. * If the firmware has indicated an error, print out the reason for * the firmware error. */ static void t4_report_fw_error(struct adapter *adap) { static const char *const reason[] = { "Crash", /* PCIE_FW_EVAL_CRASH */ "During Device Preparation", /* PCIE_FW_EVAL_PREP */ "During Device Configuration", /* PCIE_FW_EVAL_CONF */ "During Device Initialization", /* PCIE_FW_EVAL_INIT */ "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */ "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */ "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */ "Reserved", /* reserved */ }; u32 pcie_fw; pcie_fw = t4_read_reg(adap, MA_PCIE_FW); if (pcie_fw & PCIE_FW_ERR) dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n", reason[PCIE_FW_EVAL_G(pcie_fw)]); } /* * Get the reply to a mailbox command and store it in @rpl in big-endian order. */ static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit, u32 mbox_addr) { for ( ; nflit; nflit--, mbox_addr += 8) *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr)); } /* * Handle a FW assertion reported in a mailbox. */ static void fw_asrt(struct adapter *adap, u32 mbox_addr) { struct fw_debug_cmd asrt; get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr); dev_alert(adap->pdev_dev, "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n", asrt.u.assert.filename_0_7, ntohl(asrt.u.assert.line), ntohl(asrt.u.assert.x), ntohl(asrt.u.assert.y)); } static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg) { dev_err(adap->pdev_dev, "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox, (unsigned long long)t4_read_reg64(adap, data_reg), (unsigned long long)t4_read_reg64(adap, data_reg + 8), (unsigned long long)t4_read_reg64(adap, data_reg + 16), (unsigned long long)t4_read_reg64(adap, data_reg + 24), (unsigned long long)t4_read_reg64(adap, data_reg + 32), (unsigned long long)t4_read_reg64(adap, data_reg + 40), (unsigned long long)t4_read_reg64(adap, data_reg + 48), (unsigned long long)t4_read_reg64(adap, data_reg + 56)); } /** * t4_wr_mbox_meat - send a command to FW through the given mailbox * @adap: the adapter * @mbox: index of the mailbox to use * @cmd: the command to write * @size: command length in bytes * @rpl: where to optionally store the reply * @sleep_ok: if true we may sleep while awaiting command completion * * Sends the given command to FW through the selected mailbox and waits * for the FW to execute the command. If @rpl is not %NULL it is used to * store the FW's reply to the command. The command and its optional * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms * to respond. @sleep_ok determines whether we may sleep while awaiting * the response. If sleeping is allowed we use progressive backoff * otherwise we spin. * * The return value is 0 on success or a negative errno on failure. A * failure can happen either because we are not able to execute the * command or FW executes it but signals an error. In the latter case * the return value is the error code indicated by FW (negated). */ int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size, void *rpl, bool sleep_ok) { static const int delay[] = { 1, 1, 3, 5, 10, 10, 20, 50, 100, 200 }; u32 v; u64 res; int i, ms, delay_idx; const __be64 *p = cmd; u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA); u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL); if ((size & 15) || size > MBOX_LEN) return -EINVAL; /* * If the device is off-line, as in EEH, commands will time out. * Fail them early so we don't waste time waiting. */ if (adap->pdev->error_state != pci_channel_io_normal) return -EIO; v = MBOWNER_GET(t4_read_reg(adap, ctl_reg)); for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) v = MBOWNER_GET(t4_read_reg(adap, ctl_reg)); if (v != MBOX_OWNER_DRV) return v ? -EBUSY : -ETIMEDOUT; for (i = 0; i < size; i += 8) t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++)); t4_write_reg(adap, ctl_reg, MBMSGVALID | MBOWNER(MBOX_OWNER_FW)); t4_read_reg(adap, ctl_reg); /* flush write */ delay_idx = 0; ms = delay[0]; for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { if (sleep_ok) { ms = delay[delay_idx]; /* last element may repeat */ if (delay_idx < ARRAY_SIZE(delay) - 1) delay_idx++; msleep(ms); } else mdelay(ms); v = t4_read_reg(adap, ctl_reg); if (MBOWNER_GET(v) == MBOX_OWNER_DRV) { if (!(v & MBMSGVALID)) { t4_write_reg(adap, ctl_reg, 0); continue; } res = t4_read_reg64(adap, data_reg); if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) { fw_asrt(adap, data_reg); res = FW_CMD_RETVAL_V(EIO); } else if (rpl) { get_mbox_rpl(adap, rpl, size / 8, data_reg); } if (FW_CMD_RETVAL_G((int)res)) dump_mbox(adap, mbox, data_reg); t4_write_reg(adap, ctl_reg, 0); return -FW_CMD_RETVAL_G((int)res); } } dump_mbox(adap, mbox, data_reg); dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n", *(const u8 *)cmd, mbox); t4_report_fw_error(adap); return -ETIMEDOUT; } /** * t4_mc_read - read from MC through backdoor accesses * @adap: the adapter * @addr: address of first byte requested * @idx: which MC to access * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from MC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ int t4_mc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) { int i; u32 mc_bist_cmd, mc_bist_cmd_addr, mc_bist_cmd_len; u32 mc_bist_status_rdata, mc_bist_data_pattern; if (is_t4(adap->params.chip)) { mc_bist_cmd = MC_BIST_CMD; mc_bist_cmd_addr = MC_BIST_CMD_ADDR; mc_bist_cmd_len = MC_BIST_CMD_LEN; mc_bist_status_rdata = MC_BIST_STATUS_RDATA; mc_bist_data_pattern = MC_BIST_DATA_PATTERN; } else { mc_bist_cmd = MC_REG(MC_P_BIST_CMD, idx); mc_bist_cmd_addr = MC_REG(MC_P_BIST_CMD_ADDR, idx); mc_bist_cmd_len = MC_REG(MC_P_BIST_CMD_LEN, idx); mc_bist_status_rdata = MC_REG(MC_P_BIST_STATUS_RDATA, idx); mc_bist_data_pattern = MC_REG(MC_P_BIST_DATA_PATTERN, idx); } if (t4_read_reg(adap, mc_bist_cmd) & START_BIST) return -EBUSY; t4_write_reg(adap, mc_bist_cmd_addr, addr & ~0x3fU); t4_write_reg(adap, mc_bist_cmd_len, 64); t4_write_reg(adap, mc_bist_data_pattern, 0xc); t4_write_reg(adap, mc_bist_cmd, BIST_OPCODE(1) | START_BIST | BIST_CMD_GAP(1)); i = t4_wait_op_done(adap, mc_bist_cmd, START_BIST, 0, 10, 1); if (i) return i; #define MC_DATA(i) MC_BIST_STATUS_REG(mc_bist_status_rdata, i) for (i = 15; i >= 0; i--) *data++ = htonl(t4_read_reg(adap, MC_DATA(i))); if (ecc) *ecc = t4_read_reg64(adap, MC_DATA(16)); #undef MC_DATA return 0; } /** * t4_edc_read - read from EDC through backdoor accesses * @adap: the adapter * @idx: which EDC to access * @addr: address of first byte requested * @data: 64 bytes of data containing the requested address * @ecc: where to store the corresponding 64-bit ECC word * * Read 64 bytes of data from EDC starting at a 64-byte-aligned address * that covers the requested address @addr. If @parity is not %NULL it * is assigned the 64-bit ECC word for the read data. */ int t4_edc_read(struct adapter *adap, int idx, u32 addr, __be32 *data, u64 *ecc) { int i; u32 edc_bist_cmd, edc_bist_cmd_addr, edc_bist_cmd_len; u32 edc_bist_cmd_data_pattern, edc_bist_status_rdata; if (is_t4(adap->params.chip)) { edc_bist_cmd = EDC_REG(EDC_BIST_CMD, idx); edc_bist_cmd_addr = EDC_REG(EDC_BIST_CMD_ADDR, idx); edc_bist_cmd_len = EDC_REG(EDC_BIST_CMD_LEN, idx); edc_bist_cmd_data_pattern = EDC_REG(EDC_BIST_DATA_PATTERN, idx); edc_bist_status_rdata = EDC_REG(EDC_BIST_STATUS_RDATA, idx); } else { edc_bist_cmd = EDC_REG_T5(EDC_H_BIST_CMD, idx); edc_bist_cmd_addr = EDC_REG_T5(EDC_H_BIST_CMD_ADDR, idx); edc_bist_cmd_len = EDC_REG_T5(EDC_H_BIST_CMD_LEN, idx); edc_bist_cmd_data_pattern = EDC_REG_T5(EDC_H_BIST_DATA_PATTERN, idx); edc_bist_status_rdata = EDC_REG_T5(EDC_H_BIST_STATUS_RDATA, idx); } if (t4_read_reg(adap, edc_bist_cmd) & START_BIST) return -EBUSY; t4_write_reg(adap, edc_bist_cmd_addr, addr & ~0x3fU); t4_write_reg(adap, edc_bist_cmd_len, 64); t4_write_reg(adap, edc_bist_cmd_data_pattern, 0xc); t4_write_reg(adap, edc_bist_cmd, BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST); i = t4_wait_op_done(adap, edc_bist_cmd, START_BIST, 0, 10, 1); if (i) return i; #define EDC_DATA(i) (EDC_BIST_STATUS_REG(edc_bist_status_rdata, i)) for (i = 15; i >= 0; i--) *data++ = htonl(t4_read_reg(adap, EDC_DATA(i))); if (ecc) *ecc = t4_read_reg64(adap, EDC_DATA(16)); #undef EDC_DATA return 0; } /** * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window * @adap: the adapter * @win: PCI-E Memory Window to use * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC * @addr: address within indicated memory type * @len: amount of memory to transfer * @buf: host memory buffer * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0) * * Reads/writes an [almost] arbitrary memory region in the firmware: the * firmware memory address and host buffer must be aligned on 32-bit * boudaries; the length may be arbitrary. The memory is transferred as * a raw byte sequence from/to the firmware's memory. If this memory * contains data structures which contain multi-byte integers, it's the * caller's responsibility to perform appropriate byte order conversions. */ int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr, u32 len, __be32 *buf, int dir) { u32 pos, offset, resid, memoffset; u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base; /* Argument sanity checks ... */ if (addr & 0x3) return -EINVAL; /* It's convenient to be able to handle lengths which aren't a * multiple of 32-bits because we often end up transferring files to * the firmware. So we'll handle that by normalizing the length here * and then handling any residual transfer at the end. */ resid = len & 0x3; len -= resid; /* Offset into the region of memory which is being accessed * MEM_EDC0 = 0 * MEM_EDC1 = 1 * MEM_MC = 2 -- T4 * MEM_MC0 = 2 -- For T5 * MEM_MC1 = 3 -- For T5 */ edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A)); if (mtype != MEM_MC1) memoffset = (mtype * (edc_size * 1024 * 1024)); else { mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap, MA_EXT_MEMORY1_BAR_A)); memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024; } /* Determine the PCIE_MEM_ACCESS_OFFSET */ addr = addr + memoffset; /* Each PCI-E Memory Window is programmed with a window size -- or * "aperture" -- which controls the granularity of its mapping onto * adapter memory. We need to grab that aperture in order to know * how to use the specified window. The window is also programmed * with the base address of the Memory Window in BAR0's address * space. For T4 this is an absolute PCI-E Bus Address. For T5 * the address is relative to BAR0. */ mem_reg = t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, win)); mem_aperture = 1 << (GET_WINDOW(mem_reg) + 10); mem_base = GET_PCIEOFST(mem_reg) << 10; if (is_t4(adap->params.chip)) mem_base -= adap->t4_bar0; win_pf = is_t4(adap->params.chip) ? 0 : V_PFNUM(adap->fn); /* Calculate our initial PCI-E Memory Window Position and Offset into * that Window. */ pos = addr & ~(mem_aperture-1); offset = addr - pos; /* Set up initial PCI-E Memory Window to cover the start of our * transfer. (Read it back to ensure that changes propagate before we * attempt to use the new value.) */ t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win), pos | win_pf); t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win)); /* Transfer data to/from the adapter as long as there's an integral * number of 32-bit transfers to complete. */ while (len > 0) { if (dir == T4_MEMORY_READ) *buf++ = (__force __be32) t4_read_reg(adap, mem_base + offset); else t4_write_reg(adap, mem_base + offset, (__force u32) *buf++); offset += sizeof(__be32); len -= sizeof(__be32); /* If we've reached the end of our current window aperture, * move the PCI-E Memory Window on to the next. Note that * doing this here after "len" may be 0 allows us to set up * the PCI-E Memory Window for a possible final residual * transfer below ... */ if (offset == mem_aperture) { pos += mem_aperture; offset = 0; t4_write_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win), pos | win_pf); t4_read_reg(adap, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET, win)); } } /* If the original transfer had a length which wasn't a multiple of * 32-bits, now's where we need to finish off the transfer of the * residual amount. The PCI-E Memory Window has already been moved * above (if necessary) to cover this final transfer. */ if (resid) { union { __be32 word; char byte[4]; } last; unsigned char *bp; int i; if (dir == T4_MEMORY_READ) { last.word = (__force __be32) t4_read_reg(adap, mem_base + offset); for (bp = (unsigned char *)buf, i = resid; i < 4; i++) bp[i] = last.byte[i]; } else { last.word = *buf; for (i = resid; i < 4; i++) last.byte[i] = 0; t4_write_reg(adap, mem_base + offset, (__force u32) last.word); } } return 0; } #define EEPROM_STAT_ADDR 0x7bfc #define VPD_BASE 0x400 #define VPD_BASE_OLD 0 #define VPD_LEN 1024 #define CHELSIO_VPD_UNIQUE_ID 0x82 /** * t4_seeprom_wp - enable/disable EEPROM write protection * @adapter: the adapter * @enable: whether to enable or disable write protection * * Enables or disables write protection on the serial EEPROM. */ int t4_seeprom_wp(struct adapter *adapter, bool enable) { unsigned int v = enable ? 0xc : 0; int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v); return ret < 0 ? ret : 0; } /** * get_vpd_params - read VPD parameters from VPD EEPROM * @adapter: adapter to read * @p: where to store the parameters * * Reads card parameters stored in VPD EEPROM. */ int get_vpd_params(struct adapter *adapter, struct vpd_params *p) { u32 cclk_param, cclk_val; int i, ret, addr; int ec, sn, pn; u8 *vpd, csum; unsigned int vpdr_len, kw_offset, id_len; vpd = vmalloc(VPD_LEN); if (!vpd) return -ENOMEM; ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd); if (ret < 0) goto out; /* The VPD shall have a unique identifier specified by the PCI SIG. * For chelsio adapters, the identifier is 0x82. The first byte of a VPD * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software * is expected to automatically put this entry at the * beginning of the VPD. */ addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD; ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd); if (ret < 0) goto out; if (vpd[0] != PCI_VPD_LRDT_ID_STRING) { dev_err(adapter->pdev_dev, "missing VPD ID string\n"); ret = -EINVAL; goto out; } id_len = pci_vpd_lrdt_size(vpd); if (id_len > ID_LEN) id_len = ID_LEN; i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA); if (i < 0) { dev_err(adapter->pdev_dev, "missing VPD-R section\n"); ret = -EINVAL; goto out; } vpdr_len = pci_vpd_lrdt_size(&vpd[i]); kw_offset = i + PCI_VPD_LRDT_TAG_SIZE; if (vpdr_len + kw_offset > VPD_LEN) { dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len); ret = -EINVAL; goto out; } #define FIND_VPD_KW(var, name) do { \ var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \ if (var < 0) { \ dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \ ret = -EINVAL; \ goto out; \ } \ var += PCI_VPD_INFO_FLD_HDR_SIZE; \ } while (0) FIND_VPD_KW(i, "RV"); for (csum = 0; i >= 0; i--) csum += vpd[i]; if (csum) { dev_err(adapter->pdev_dev, "corrupted VPD EEPROM, actual csum %u\n", csum); ret = -EINVAL; goto out; } FIND_VPD_KW(ec, "EC"); FIND_VPD_KW(sn, "SN"); FIND_VPD_KW(pn, "PN"); #undef FIND_VPD_KW memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len); strim(p->id); memcpy(p->ec, vpd + ec, EC_LEN); strim(p->ec); i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE); memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN)); strim(p->sn); i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE); memcpy(p->pn, vpd + pn, min(i, PN_LEN)); strim(p->pn); /* * Ask firmware for the Core Clock since it knows how to translate the * Reference Clock ('V2') VPD field into a Core Clock value ... */ cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); ret = t4_query_params(adapter, adapter->mbox, 0, 0, 1, &cclk_param, &cclk_val); out: vfree(vpd); if (ret) return ret; p->cclk = cclk_val; return 0; } /* serial flash and firmware constants */ enum { SF_ATTEMPTS = 10, /* max retries for SF operations */ /* flash command opcodes */ SF_PROG_PAGE = 2, /* program page */ SF_WR_DISABLE = 4, /* disable writes */ SF_RD_STATUS = 5, /* read status register */ SF_WR_ENABLE = 6, /* enable writes */ SF_RD_DATA_FAST = 0xb, /* read flash */ SF_RD_ID = 0x9f, /* read ID */ SF_ERASE_SECTOR = 0xd8, /* erase sector */ FW_MAX_SIZE = 16 * SF_SEC_SIZE, }; /** * sf1_read - read data from the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to read * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @valp: where to store the read data * * Reads up to 4 bytes of data from the serial flash. The location of * the read needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 *valp) { int ret; if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, SF_OP) & SF_BUSY) return -EBUSY; cont = cont ? SF_CONT : 0; lock = lock ? SF_LOCK : 0; t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1)); ret = t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5); if (!ret) *valp = t4_read_reg(adapter, SF_DATA); return ret; } /** * sf1_write - write data to the serial flash * @adapter: the adapter * @byte_cnt: number of bytes to write * @cont: whether another operation will be chained * @lock: whether to lock SF for PL access only * @val: value to write * * Writes up to 4 bytes of data to the serial flash. The location of * the write needs to be specified prior to calling this by issuing the * appropriate commands to the serial flash. */ static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont, int lock, u32 val) { if (!byte_cnt || byte_cnt > 4) return -EINVAL; if (t4_read_reg(adapter, SF_OP) & SF_BUSY) return -EBUSY; cont = cont ? SF_CONT : 0; lock = lock ? SF_LOCK : 0; t4_write_reg(adapter, SF_DATA, val); t4_write_reg(adapter, SF_OP, lock | cont | BYTECNT(byte_cnt - 1) | OP_WR); return t4_wait_op_done(adapter, SF_OP, SF_BUSY, 0, SF_ATTEMPTS, 5); } /** * flash_wait_op - wait for a flash operation to complete * @adapter: the adapter * @attempts: max number of polls of the status register * @delay: delay between polls in ms * * Wait for a flash operation to complete by polling the status register. */ static int flash_wait_op(struct adapter *adapter, int attempts, int delay) { int ret; u32 status; while (1) { if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 || (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0) return ret; if (!(status & 1)) return 0; if (--attempts == 0) return -EAGAIN; if (delay) msleep(delay); } } /** * t4_read_flash - read words from serial flash * @adapter: the adapter * @addr: the start address for the read * @nwords: how many 32-bit words to read * @data: where to store the read data * @byte_oriented: whether to store data as bytes or as words * * Read the specified number of 32-bit words from the serial flash. * If @byte_oriented is set the read data is stored as a byte array * (i.e., big-endian), otherwise as 32-bit words in the platform's * natural endianess. */ static int t4_read_flash(struct adapter *adapter, unsigned int addr, unsigned int nwords, u32 *data, int byte_oriented) { int ret; if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3)) return -EINVAL; addr = swab32(addr) | SF_RD_DATA_FAST; if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 || (ret = sf1_read(adapter, 1, 1, 0, data)) != 0) return ret; for ( ; nwords; nwords--, data++) { ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data); if (nwords == 1) t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ if (ret) return ret; if (byte_oriented) *data = (__force __u32) (htonl(*data)); } return 0; } /** * t4_write_flash - write up to a page of data to the serial flash * @adapter: the adapter * @addr: the start address to write * @n: length of data to write in bytes * @data: the data to write * * Writes up to a page of data (256 bytes) to the serial flash starting * at the given address. All the data must be written to the same page. */ static int t4_write_flash(struct adapter *adapter, unsigned int addr, unsigned int n, const u8 *data) { int ret; u32 buf[64]; unsigned int i, c, left, val, offset = addr & 0xff; if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE) return -EINVAL; val = swab32(addr) | SF_PROG_PAGE; if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 1, 1, val)) != 0) goto unlock; for (left = n; left; left -= c) { c = min(left, 4U); for (val = 0, i = 0; i < c; ++i) val = (val << 8) + *data++; ret = sf1_write(adapter, c, c != left, 1, val); if (ret) goto unlock; } ret = flash_wait_op(adapter, 8, 1); if (ret) goto unlock; t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ /* Read the page to verify the write succeeded */ ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1); if (ret) return ret; if (memcmp(data - n, (u8 *)buf + offset, n)) { dev_err(adapter->pdev_dev, "failed to correctly write the flash page at %#x\n", addr); return -EIO; } return 0; unlock: t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ return ret; } /** * t4_get_fw_version - read the firmware version * @adapter: the adapter * @vers: where to place the version * * Reads the FW version from flash. */ int t4_get_fw_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, fw_ver), 1, vers, 0); } /** * t4_get_tp_version - read the TP microcode version * @adapter: the adapter * @vers: where to place the version * * Reads the TP microcode version from flash. */ int t4_get_tp_version(struct adapter *adapter, u32 *vers) { return t4_read_flash(adapter, FLASH_FW_START + offsetof(struct fw_hdr, tp_microcode_ver), 1, vers, 0); } /* Is the given firmware API compatible with the one the driver was compiled * with? */ static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2) { /* short circuit if it's the exact same firmware version */ if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver) return 1; #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x) if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) && SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe)) return 1; #undef SAME_INTF return 0; } /* The firmware in the filesystem is usable, but should it be installed? * This routine explains itself in detail if it indicates the filesystem * firmware should be installed. */ static int should_install_fs_fw(struct adapter *adap, int card_fw_usable, int k, int c) { const char *reason; if (!card_fw_usable) { reason = "incompatible or unusable"; goto install; } if (k > c) { reason = "older than the version supported with this driver"; goto install; } return 0; install: dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, " "installing firmware %u.%u.%u.%u on card.\n", FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason, FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); return 1; } int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info, const u8 *fw_data, unsigned int fw_size, struct fw_hdr *card_fw, enum dev_state state, int *reset) { int ret, card_fw_usable, fs_fw_usable; const struct fw_hdr *fs_fw; const struct fw_hdr *drv_fw; drv_fw = &fw_info->fw_hdr; /* Read the header of the firmware on the card */ ret = -t4_read_flash(adap, FLASH_FW_START, sizeof(*card_fw) / sizeof(uint32_t), (uint32_t *)card_fw, 1); if (ret == 0) { card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw); } else { dev_err(adap->pdev_dev, "Unable to read card's firmware header: %d\n", ret); card_fw_usable = 0; } if (fw_data != NULL) { fs_fw = (const void *)fw_data; fs_fw_usable = fw_compatible(drv_fw, fs_fw); } else { fs_fw = NULL; fs_fw_usable = 0; } if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver && (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) { /* Common case: the firmware on the card is an exact match and * the filesystem one is an exact match too, or the filesystem * one is absent/incompatible. */ } else if (fs_fw_usable && state == DEV_STATE_UNINIT && should_install_fs_fw(adap, card_fw_usable, be32_to_cpu(fs_fw->fw_ver), be32_to_cpu(card_fw->fw_ver))) { ret = -t4_fw_upgrade(adap, adap->mbox, fw_data, fw_size, 0); if (ret != 0) { dev_err(adap->pdev_dev, "failed to install firmware: %d\n", ret); goto bye; } /* Installed successfully, update the cached header too. */ memcpy(card_fw, fs_fw, sizeof(*card_fw)); card_fw_usable = 1; *reset = 0; /* already reset as part of load_fw */ } if (!card_fw_usable) { uint32_t d, c, k; d = be32_to_cpu(drv_fw->fw_ver); c = be32_to_cpu(card_fw->fw_ver); k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0; dev_err(adap->pdev_dev, "Cannot find a usable firmware: " "chip state %d, " "driver compiled with %d.%d.%d.%d, " "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n", state, FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d), FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d), FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c), FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k), FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k)); ret = EINVAL; goto bye; } /* We're using whatever's on the card and it's known to be good. */ adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver); adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver); bye: return ret; } /** * t4_flash_erase_sectors - erase a range of flash sectors * @adapter: the adapter * @start: the first sector to erase * @end: the last sector to erase * * Erases the sectors in the given inclusive range. */ static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end) { int ret = 0; if (end >= adapter->params.sf_nsec) return -EINVAL; while (start <= end) { if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 || (ret = sf1_write(adapter, 4, 0, 1, SF_ERASE_SECTOR | (start << 8))) != 0 || (ret = flash_wait_op(adapter, 14, 500)) != 0) { dev_err(adapter->pdev_dev, "erase of flash sector %d failed, error %d\n", start, ret); break; } start++; } t4_write_reg(adapter, SF_OP, 0); /* unlock SF */ return ret; } /** * t4_flash_cfg_addr - return the address of the flash configuration file * @adapter: the adapter * * Return the address within the flash where the Firmware Configuration * File is stored. */ unsigned int t4_flash_cfg_addr(struct adapter *adapter) { if (adapter->params.sf_size == 0x100000) return FLASH_FPGA_CFG_START; else return FLASH_CFG_START; } /** * t4_load_fw - download firmware * @adap: the adapter * @fw_data: the firmware image to write * @size: image size * * Write the supplied firmware image to the card's serial flash. */ int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size) { u32 csum; int ret, addr; unsigned int i; u8 first_page[SF_PAGE_SIZE]; const __be32 *p = (const __be32 *)fw_data; const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data; unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec; unsigned int fw_img_start = adap->params.sf_fw_start; unsigned int fw_start_sec = fw_img_start / sf_sec_size; if (!size) { dev_err(adap->pdev_dev, "FW image has no data\n"); return -EINVAL; } if (size & 511) { dev_err(adap->pdev_dev, "FW image size not multiple of 512 bytes\n"); return -EINVAL; } if (ntohs(hdr->len512) * 512 != size) { dev_err(adap->pdev_dev, "FW image size differs from size in FW header\n"); return -EINVAL; } if (size > FW_MAX_SIZE) { dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n", FW_MAX_SIZE); return -EFBIG; } for (csum = 0, i = 0; i < size / sizeof(csum); i++) csum += ntohl(p[i]); if (csum != 0xffffffff) { dev_err(adap->pdev_dev, "corrupted firmware image, checksum %#x\n", csum); return -EINVAL; } i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */ ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1); if (ret) goto out; /* * We write the correct version at the end so the driver can see a bad * version if the FW write fails. Start by writing a copy of the * first page with a bad version. */ memcpy(first_page, fw_data, SF_PAGE_SIZE); ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff); ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page); if (ret) goto out; addr = fw_img_start; for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) { addr += SF_PAGE_SIZE; fw_data += SF_PAGE_SIZE; ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data); if (ret) goto out; } ret = t4_write_flash(adap, fw_img_start + offsetof(struct fw_hdr, fw_ver), sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver); out: if (ret) dev_err(adap->pdev_dev, "firmware download failed, error %d\n", ret); else ret = t4_get_fw_version(adap, &adap->params.fw_vers); return ret; } #define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\ FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \ FW_PORT_CAP_ANEG) /** * t4_link_start - apply link configuration to MAC/PHY * @phy: the PHY to setup * @mac: the MAC to setup * @lc: the requested link configuration * * Set up a port's MAC and PHY according to a desired link configuration. * - If the PHY can auto-negotiate first decide what to advertise, then * enable/disable auto-negotiation as desired, and reset. * - If the PHY does not auto-negotiate just reset it. * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC, * otherwise do it later based on the outcome of auto-negotiation. */ int t4_link_start(struct adapter *adap, unsigned int mbox, unsigned int port, struct link_config *lc) { struct fw_port_cmd c; unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO); lc->link_ok = 0; if (lc->requested_fc & PAUSE_RX) fc |= FW_PORT_CAP_FC_RX; if (lc->requested_fc & PAUSE_TX) fc |= FW_PORT_CAP_FC_TX; memset(&c, 0, sizeof(c)); c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port)); c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | FW_LEN16(c)); if (!(lc->supported & FW_PORT_CAP_ANEG)) { c.u.l1cfg.rcap = htonl((lc->supported & ADVERT_MASK) | fc); lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); } else if (lc->autoneg == AUTONEG_DISABLE) { c.u.l1cfg.rcap = htonl(lc->requested_speed | fc | mdi); lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX); } else c.u.l1cfg.rcap = htonl(lc->advertising | fc | mdi); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_restart_aneg - restart autonegotiation * @adap: the adapter * @mbox: mbox to use for the FW command * @port: the port id * * Restarts autonegotiation for the selected port. */ int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port) { struct fw_port_cmd c; memset(&c, 0, sizeof(c)); c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_PORT_CMD_PORTID_V(port)); c.action_to_len16 = htonl(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) | FW_LEN16(c)); c.u.l1cfg.rcap = htonl(FW_PORT_CAP_ANEG); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } typedef void (*int_handler_t)(struct adapter *adap); struct intr_info { unsigned int mask; /* bits to check in interrupt status */ const char *msg; /* message to print or NULL */ short stat_idx; /* stat counter to increment or -1 */ unsigned short fatal; /* whether the condition reported is fatal */ int_handler_t int_handler; /* platform-specific int handler */ }; /** * t4_handle_intr_status - table driven interrupt handler * @adapter: the adapter that generated the interrupt * @reg: the interrupt status register to process * @acts: table of interrupt actions * * A table driven interrupt handler that applies a set of masks to an * interrupt status word and performs the corresponding actions if the * interrupts described by the mask have occurred. The actions include * optionally emitting a warning or alert message. The table is terminated * by an entry specifying mask 0. Returns the number of fatal interrupt * conditions. */ static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg, const struct intr_info *acts) { int fatal = 0; unsigned int mask = 0; unsigned int status = t4_read_reg(adapter, reg); for ( ; acts->mask; ++acts) { if (!(status & acts->mask)) continue; if (acts->fatal) { fatal++; dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, status & acts->mask); } else if (acts->msg && printk_ratelimit()) dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg, status & acts->mask); if (acts->int_handler) acts->int_handler(adapter); mask |= acts->mask; } status &= mask; if (status) /* clear processed interrupts */ t4_write_reg(adapter, reg, status); return fatal; } /* * Interrupt handler for the PCIE module. */ static void pcie_intr_handler(struct adapter *adapter) { static const struct intr_info sysbus_intr_info[] = { { RNPP, "RXNP array parity error", -1, 1 }, { RPCP, "RXPC array parity error", -1, 1 }, { RCIP, "RXCIF array parity error", -1, 1 }, { RCCP, "Rx completions control array parity error", -1, 1 }, { RFTP, "RXFT array parity error", -1, 1 }, { 0 } }; static const struct intr_info pcie_port_intr_info[] = { { TPCP, "TXPC array parity error", -1, 1 }, { TNPP, "TXNP array parity error", -1, 1 }, { TFTP, "TXFT array parity error", -1, 1 }, { TCAP, "TXCA array parity error", -1, 1 }, { TCIP, "TXCIF array parity error", -1, 1 }, { RCAP, "RXCA array parity error", -1, 1 }, { OTDD, "outbound request TLP discarded", -1, 1 }, { RDPE, "Rx data parity error", -1, 1 }, { TDUE, "Tx uncorrectable data error", -1, 1 }, { 0 } }; static const struct intr_info pcie_intr_info[] = { { MSIADDRLPERR, "MSI AddrL parity error", -1, 1 }, { MSIADDRHPERR, "MSI AddrH parity error", -1, 1 }, { MSIDATAPERR, "MSI data parity error", -1, 1 }, { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, { MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, { MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, { PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 }, { PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 }, { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, { CCNTPERR, "PCI CMD channel count parity error", -1, 1 }, { CREQPERR, "PCI CMD channel request parity error", -1, 1 }, { CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, { DCNTPERR, "PCI DMA channel count parity error", -1, 1 }, { DREQPERR, "PCI DMA channel request parity error", -1, 1 }, { DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, { HCNTPERR, "PCI HMA channel count parity error", -1, 1 }, { HREQPERR, "PCI HMA channel request parity error", -1, 1 }, { HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, { FIDPERR, "PCI FID parity error", -1, 1 }, { INTXCLRPERR, "PCI INTx clear parity error", -1, 1 }, { MATAGPERR, "PCI MA tag parity error", -1, 1 }, { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, { RXCPLPERR, "PCI Rx completion parity error", -1, 1 }, { RXWRPERR, "PCI Rx write parity error", -1, 1 }, { RPLPERR, "PCI replay buffer parity error", -1, 1 }, { PCIESINT, "PCI core secondary fault", -1, 1 }, { PCIEPINT, "PCI core primary fault", -1, 1 }, { UNXSPLCPLERR, "PCI unexpected split completion error", -1, 0 }, { 0 } }; static struct intr_info t5_pcie_intr_info[] = { { MSTGRPPERR, "Master Response Read Queue parity error", -1, 1 }, { MSTTIMEOUTPERR, "Master Timeout FIFO parity error", -1, 1 }, { MSIXSTIPERR, "MSI-X STI SRAM parity error", -1, 1 }, { MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 }, { MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 }, { MSIXDATAPERR, "MSI-X data parity error", -1, 1 }, { MSIXDIPERR, "MSI-X DI parity error", -1, 1 }, { PIOCPLGRPPERR, "PCI PIO completion Group FIFO parity error", -1, 1 }, { PIOREQGRPPERR, "PCI PIO request Group FIFO parity error", -1, 1 }, { TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 }, { MSTTAGQPERR, "PCI master tag queue parity error", -1, 1 }, { CREQPERR, "PCI CMD channel request parity error", -1, 1 }, { CRSPPERR, "PCI CMD channel response parity error", -1, 1 }, { DREQWRPERR, "PCI DMA channel write request parity error", -1, 1 }, { DREQPERR, "PCI DMA channel request parity error", -1, 1 }, { DRSPPERR, "PCI DMA channel response parity error", -1, 1 }, { HREQWRPERR, "PCI HMA channel count parity error", -1, 1 }, { HREQPERR, "PCI HMA channel request parity error", -1, 1 }, { HRSPPERR, "PCI HMA channel response parity error", -1, 1 }, { CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 }, { FIDPERR, "PCI FID parity error", -1, 1 }, { VFIDPERR, "PCI INTx clear parity error", -1, 1 }, { MAGRPPERR, "PCI MA group FIFO parity error", -1, 1 }, { PIOTAGPERR, "PCI PIO tag parity error", -1, 1 }, { IPRXHDRGRPPERR, "PCI IP Rx header group parity error", -1, 1 }, { IPRXDATAGRPPERR, "PCI IP Rx data group parity error", -1, 1 }, { RPLPERR, "PCI IP replay buffer parity error", -1, 1 }, { IPSOTPERR, "PCI IP SOT buffer parity error", -1, 1 }, { TRGT1GRPPERR, "PCI TRGT1 group FIFOs parity error", -1, 1 }, { READRSPERR, "Outbound read error", -1, 0 }, { 0 } }; int fat; if (is_t4(adapter->params.chip)) fat = t4_handle_intr_status(adapter, PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS, sysbus_intr_info) + t4_handle_intr_status(adapter, PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS, pcie_port_intr_info) + t4_handle_intr_status(adapter, PCIE_INT_CAUSE, pcie_intr_info); else fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE, t5_pcie_intr_info); if (fat) t4_fatal_err(adapter); } /* * TP interrupt handler. */ static void tp_intr_handler(struct adapter *adapter) { static const struct intr_info tp_intr_info[] = { { 0x3fffffff, "TP parity error", -1, 1 }, { FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, TP_INT_CAUSE, tp_intr_info)) t4_fatal_err(adapter); } /* * SGE interrupt handler. */ static void sge_intr_handler(struct adapter *adapter) { u64 v; static const struct intr_info sge_intr_info[] = { { ERR_CPL_EXCEED_IQE_SIZE, "SGE received CPL exceeding IQE size", -1, 1 }, { ERR_INVALID_CIDX_INC, "SGE GTS CIDX increment too large", -1, 0 }, { ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 }, { DBFIFO_LP_INT, NULL, -1, 0, t4_db_full }, { DBFIFO_HP_INT, NULL, -1, 0, t4_db_full }, { ERR_DROPPED_DB, NULL, -1, 0, t4_db_dropped }, { ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0, "SGE IQID > 1023 received CPL for FL", -1, 0 }, { ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1, 0 }, { ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1, 0 }, { ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1, 0 }, { ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1, 0 }, { ERR_ING_CTXT_PRIO, "SGE too many priority ingress contexts", -1, 0 }, { ERR_EGR_CTXT_PRIO, "SGE too many priority egress contexts", -1, 0 }, { INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 }, { EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 }, { 0 } }; v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1) | ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2) << 32); if (v) { dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n", (unsigned long long)v); t4_write_reg(adapter, SGE_INT_CAUSE1, v); t4_write_reg(adapter, SGE_INT_CAUSE2, v >> 32); } if (t4_handle_intr_status(adapter, SGE_INT_CAUSE3, sge_intr_info) || v != 0) t4_fatal_err(adapter); } /* * CIM interrupt handler. */ static void cim_intr_handler(struct adapter *adapter) { static const struct intr_info cim_intr_info[] = { { PREFDROPINT, "CIM control register prefetch drop", -1, 1 }, { OBQPARERR, "CIM OBQ parity error", -1, 1 }, { IBQPARERR, "CIM IBQ parity error", -1, 1 }, { MBUPPARERR, "CIM mailbox uP parity error", -1, 1 }, { MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 }, { TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 }, { TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 }, { 0 } }; static const struct intr_info cim_upintr_info[] = { { RSVDSPACEINT, "CIM reserved space access", -1, 1 }, { ILLTRANSINT, "CIM illegal transaction", -1, 1 }, { ILLWRINT, "CIM illegal write", -1, 1 }, { ILLRDINT, "CIM illegal read", -1, 1 }, { ILLRDBEINT, "CIM illegal read BE", -1, 1 }, { ILLWRBEINT, "CIM illegal write BE", -1, 1 }, { SGLRDBOOTINT, "CIM single read from boot space", -1, 1 }, { SGLWRBOOTINT, "CIM single write to boot space", -1, 1 }, { BLKWRBOOTINT, "CIM block write to boot space", -1, 1 }, { SGLRDFLASHINT, "CIM single read from flash space", -1, 1 }, { SGLWRFLASHINT, "CIM single write to flash space", -1, 1 }, { BLKWRFLASHINT, "CIM block write to flash space", -1, 1 }, { SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 }, { SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 }, { BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 }, { BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 }, { SGLRDCTLINT , "CIM single read from CTL space", -1, 1 }, { SGLWRCTLINT , "CIM single write to CTL space", -1, 1 }, { BLKRDCTLINT , "CIM block read from CTL space", -1, 1 }, { BLKWRCTLINT , "CIM block write to CTL space", -1, 1 }, { SGLRDPLINT , "CIM single read from PL space", -1, 1 }, { SGLWRPLINT , "CIM single write to PL space", -1, 1 }, { BLKRDPLINT , "CIM block read from PL space", -1, 1 }, { BLKWRPLINT , "CIM block write to PL space", -1, 1 }, { REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 }, { RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 }, { TIMEOUTINT , "CIM PIF timeout", -1, 1 }, { TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 }, { 0 } }; int fat; if (t4_read_reg(adapter, MA_PCIE_FW) & PCIE_FW_ERR) t4_report_fw_error(adapter); fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE, cim_intr_info) + t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE, cim_upintr_info); if (fat) t4_fatal_err(adapter); } /* * ULP RX interrupt handler. */ static void ulprx_intr_handler(struct adapter *adapter) { static const struct intr_info ulprx_intr_info[] = { { 0x1800000, "ULPRX context error", -1, 1 }, { 0x7fffff, "ULPRX parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE, ulprx_intr_info)) t4_fatal_err(adapter); } /* * ULP TX interrupt handler. */ static void ulptx_intr_handler(struct adapter *adapter) { static const struct intr_info ulptx_intr_info[] = { { PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1, 0 }, { PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1, 0 }, { PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1, 0 }, { PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1, 0 }, { 0xfffffff, "ULPTX parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE, ulptx_intr_info)) t4_fatal_err(adapter); } /* * PM TX interrupt handler. */ static void pmtx_intr_handler(struct adapter *adapter) { static const struct intr_info pmtx_intr_info[] = { { PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 }, { PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 }, { PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 }, { ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 }, { PMTX_FRAMING_ERROR, "PMTX framing error", -1, 1 }, { OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 }, { DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1, 1 }, { ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 }, { C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1}, { 0 } }; if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE, pmtx_intr_info)) t4_fatal_err(adapter); } /* * PM RX interrupt handler. */ static void pmrx_intr_handler(struct adapter *adapter) { static const struct intr_info pmrx_intr_info[] = { { ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 }, { PMRX_FRAMING_ERROR, "PMRX framing error", -1, 1 }, { OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 }, { DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1, 1 }, { IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 }, { E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1}, { 0 } }; if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE, pmrx_intr_info)) t4_fatal_err(adapter); } /* * CPL switch interrupt handler. */ static void cplsw_intr_handler(struct adapter *adapter) { static const struct intr_info cplsw_intr_info[] = { { CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 }, { CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 }, { TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 }, { SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 }, { CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 }, { ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE, cplsw_intr_info)) t4_fatal_err(adapter); } /* * LE interrupt handler. */ static void le_intr_handler(struct adapter *adap) { static const struct intr_info le_intr_info[] = { { LIPMISS, "LE LIP miss", -1, 0 }, { LIP0, "LE 0 LIP error", -1, 0 }, { PARITYERR, "LE parity error", -1, 1 }, { UNKNOWNCMD, "LE unknown command", -1, 1 }, { REQQPARERR, "LE request queue parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE, le_intr_info)) t4_fatal_err(adap); } /* * MPS interrupt handler. */ static void mps_intr_handler(struct adapter *adapter) { static const struct intr_info mps_rx_intr_info[] = { { 0xffffff, "MPS Rx parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_tx_intr_info[] = { { TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 }, { NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 }, { TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 }, { TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 }, { BUBBLE, "MPS Tx underflow", -1, 1 }, { SECNTERR, "MPS Tx SOP/EOP error", -1, 1 }, { FRMERR, "MPS Tx framing error", -1, 1 }, { 0 } }; static const struct intr_info mps_trc_intr_info[] = { { FILTMEM, "MPS TRC filter parity error", -1, 1 }, { PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 }, { MISCPERR, "MPS TRC misc parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_stat_sram_intr_info[] = { { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_stat_tx_intr_info[] = { { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_stat_rx_intr_info[] = { { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 }, { 0 } }; static const struct intr_info mps_cls_intr_info[] = { { MATCHSRAM, "MPS match SRAM parity error", -1, 1 }, { MATCHTCAM, "MPS match TCAM parity error", -1, 1 }, { HASHSRAM, "MPS hash SRAM parity error", -1, 1 }, { 0 } }; int fat; fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE, mps_rx_intr_info) + t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE, mps_tx_intr_info) + t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE, mps_trc_intr_info) + t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM, mps_stat_sram_intr_info) + t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO, mps_stat_tx_intr_info) + t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO, mps_stat_rx_intr_info) + t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE, mps_cls_intr_info); t4_write_reg(adapter, MPS_INT_CAUSE, CLSINT | TRCINT | RXINT | TXINT | STATINT); t4_read_reg(adapter, MPS_INT_CAUSE); /* flush */ if (fat) t4_fatal_err(adapter); } #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE) /* * EDC/MC interrupt handler. */ static void mem_intr_handler(struct adapter *adapter, int idx) { static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" }; unsigned int addr, cnt_addr, v; if (idx <= MEM_EDC1) { addr = EDC_REG(EDC_INT_CAUSE, idx); cnt_addr = EDC_REG(EDC_ECC_STATUS, idx); } else if (idx == MEM_MC) { if (is_t4(adapter->params.chip)) { addr = MC_INT_CAUSE; cnt_addr = MC_ECC_STATUS; } else { addr = MC_P_INT_CAUSE; cnt_addr = MC_P_ECC_STATUS; } } else { addr = MC_REG(MC_P_INT_CAUSE, 1); cnt_addr = MC_REG(MC_P_ECC_STATUS, 1); } v = t4_read_reg(adapter, addr) & MEM_INT_MASK; if (v & PERR_INT_CAUSE) dev_alert(adapter->pdev_dev, "%s FIFO parity error\n", name[idx]); if (v & ECC_CE_INT_CAUSE) { u32 cnt = ECC_CECNT_GET(t4_read_reg(adapter, cnt_addr)); t4_write_reg(adapter, cnt_addr, ECC_CECNT_MASK); if (printk_ratelimit()) dev_warn(adapter->pdev_dev, "%u %s correctable ECC data error%s\n", cnt, name[idx], cnt > 1 ? "s" : ""); } if (v & ECC_UE_INT_CAUSE) dev_alert(adapter->pdev_dev, "%s uncorrectable ECC data error\n", name[idx]); t4_write_reg(adapter, addr, v); if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE)) t4_fatal_err(adapter); } /* * MA interrupt handler. */ static void ma_intr_handler(struct adapter *adap) { u32 v, status = t4_read_reg(adap, MA_INT_CAUSE); if (status & MEM_PERR_INT_CAUSE) { dev_alert(adap->pdev_dev, "MA parity error, parity status %#x\n", t4_read_reg(adap, MA_PARITY_ERROR_STATUS)); if (is_t5(adap->params.chip)) dev_alert(adap->pdev_dev, "MA parity error, parity status %#x\n", t4_read_reg(adap, MA_PARITY_ERROR_STATUS2)); } if (status & MEM_WRAP_INT_CAUSE) { v = t4_read_reg(adap, MA_INT_WRAP_STATUS); dev_alert(adap->pdev_dev, "MA address wrap-around error by " "client %u to address %#x\n", MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4); } t4_write_reg(adap, MA_INT_CAUSE, status); t4_fatal_err(adap); } /* * SMB interrupt handler. */ static void smb_intr_handler(struct adapter *adap) { static const struct intr_info smb_intr_info[] = { { MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 }, { MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 }, { SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, SMB_INT_CAUSE, smb_intr_info)) t4_fatal_err(adap); } /* * NC-SI interrupt handler. */ static void ncsi_intr_handler(struct adapter *adap) { static const struct intr_info ncsi_intr_info[] = { { CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 }, { MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 }, { TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 }, { RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, NCSI_INT_CAUSE, ncsi_intr_info)) t4_fatal_err(adap); } /* * XGMAC interrupt handler. */ static void xgmac_intr_handler(struct adapter *adap, int port) { u32 v, int_cause_reg; if (is_t4(adap->params.chip)) int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE); else int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE); v = t4_read_reg(adap, int_cause_reg); v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR; if (!v) return; if (v & TXFIFO_PRTY_ERR) dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n", port); if (v & RXFIFO_PRTY_ERR) dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n", port); t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE), v); t4_fatal_err(adap); } /* * PL interrupt handler. */ static void pl_intr_handler(struct adapter *adap) { static const struct intr_info pl_intr_info[] = { { FATALPERR, "T4 fatal parity error", -1, 1 }, { PERRVFID, "PL VFID_MAP parity error", -1, 1 }, { 0 } }; if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE, pl_intr_info)) t4_fatal_err(adap); } #define PF_INTR_MASK (PFSW) #define GLBL_INTR_MASK (CIM | MPS | PL | PCIE | MC | EDC0 | \ EDC1 | LE | TP | MA | PM_TX | PM_RX | ULP_RX | \ CPL_SWITCH | SGE | ULP_TX) /** * t4_slow_intr_handler - control path interrupt handler * @adapter: the adapter * * T4 interrupt handler for non-data global interrupt events, e.g., errors. * The designation 'slow' is because it involves register reads, while * data interrupts typically don't involve any MMIOs. */ int t4_slow_intr_handler(struct adapter *adapter) { u32 cause = t4_read_reg(adapter, PL_INT_CAUSE); if (!(cause & GLBL_INTR_MASK)) return 0; if (cause & CIM) cim_intr_handler(adapter); if (cause & MPS) mps_intr_handler(adapter); if (cause & NCSI) ncsi_intr_handler(adapter); if (cause & PL) pl_intr_handler(adapter); if (cause & SMB) smb_intr_handler(adapter); if (cause & XGMAC0) xgmac_intr_handler(adapter, 0); if (cause & XGMAC1) xgmac_intr_handler(adapter, 1); if (cause & XGMAC_KR0) xgmac_intr_handler(adapter, 2); if (cause & XGMAC_KR1) xgmac_intr_handler(adapter, 3); if (cause & PCIE) pcie_intr_handler(adapter); if (cause & MC) mem_intr_handler(adapter, MEM_MC); if (!is_t4(adapter->params.chip) && (cause & MC1)) mem_intr_handler(adapter, MEM_MC1); if (cause & EDC0) mem_intr_handler(adapter, MEM_EDC0); if (cause & EDC1) mem_intr_handler(adapter, MEM_EDC1); if (cause & LE) le_intr_handler(adapter); if (cause & TP) tp_intr_handler(adapter); if (cause & MA) ma_intr_handler(adapter); if (cause & PM_TX) pmtx_intr_handler(adapter); if (cause & PM_RX) pmrx_intr_handler(adapter); if (cause & ULP_RX) ulprx_intr_handler(adapter); if (cause & CPL_SWITCH) cplsw_intr_handler(adapter); if (cause & SGE) sge_intr_handler(adapter); if (cause & ULP_TX) ulptx_intr_handler(adapter); /* Clear the interrupts just processed for which we are the master. */ t4_write_reg(adapter, PL_INT_CAUSE, cause & GLBL_INTR_MASK); (void) t4_read_reg(adapter, PL_INT_CAUSE); /* flush */ return 1; } /** * t4_intr_enable - enable interrupts * @adapter: the adapter whose interrupts should be enabled * * Enable PF-specific interrupts for the calling function and the top-level * interrupt concentrator for global interrupts. Interrupts are already * enabled at each module, here we just enable the roots of the interrupt * hierarchies. * * Note: this function should be called only when the driver manages * non PF-specific interrupts from the various HW modules. Only one PCI * function at a time should be doing this. */ void t4_intr_enable(struct adapter *adapter) { u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI)); t4_write_reg(adapter, SGE_INT_ENABLE3, ERR_CPL_EXCEED_IQE_SIZE | ERR_INVALID_CIDX_INC | ERR_CPL_OPCODE_0 | ERR_DROPPED_DB | ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 | ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 | ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO | ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR | DBFIFO_HP_INT | DBFIFO_LP_INT | EGRESS_SIZE_ERR); t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), PF_INTR_MASK); t4_set_reg_field(adapter, PL_INT_MAP0, 0, 1 << pf); } /** * t4_intr_disable - disable interrupts * @adapter: the adapter whose interrupts should be disabled * * Disable interrupts. We only disable the top-level interrupt * concentrators. The caller must be a PCI function managing global * interrupts. */ void t4_intr_disable(struct adapter *adapter) { u32 pf = SOURCEPF_GET(t4_read_reg(adapter, PL_WHOAMI)); t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE), 0); t4_set_reg_field(adapter, PL_INT_MAP0, 1 << pf, 0); } /** * hash_mac_addr - return the hash value of a MAC address * @addr: the 48-bit Ethernet MAC address * * Hashes a MAC address according to the hash function used by HW inexact * (hash) address matching. */ static int hash_mac_addr(const u8 *addr) { u32 a = ((u32)addr[0] << 16) | ((u32)addr[1] << 8) | addr[2]; u32 b = ((u32)addr[3] << 16) | ((u32)addr[4] << 8) | addr[5]; a ^= b; a ^= (a >> 12); a ^= (a >> 6); return a & 0x3f; } /** * t4_config_rss_range - configure a portion of the RSS mapping table * @adapter: the adapter * @mbox: mbox to use for the FW command * @viid: virtual interface whose RSS subtable is to be written * @start: start entry in the table to write * @n: how many table entries to write * @rspq: values for the response queue lookup table * @nrspq: number of values in @rspq * * Programs the selected part of the VI's RSS mapping table with the * provided values. If @nrspq < @n the supplied values are used repeatedly * until the full table range is populated. * * The caller must ensure the values in @rspq are in the range allowed for * @viid. */ int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid, int start, int n, const u16 *rspq, unsigned int nrspq) { int ret; const u16 *rsp = rspq; const u16 *rsp_end = rspq + nrspq; struct fw_rss_ind_tbl_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_RSS_IND_TBL_CMD_VIID_V(viid)); cmd.retval_len16 = htonl(FW_LEN16(cmd)); /* each fw_rss_ind_tbl_cmd takes up to 32 entries */ while (n > 0) { int nq = min(n, 32); __be32 *qp = &cmd.iq0_to_iq2; cmd.niqid = htons(nq); cmd.startidx = htons(start); start += nq; n -= nq; while (nq > 0) { unsigned int v; v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp); if (++rsp >= rsp_end) rsp = rspq; v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp); if (++rsp >= rsp_end) rsp = rspq; v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp); if (++rsp >= rsp_end) rsp = rspq; *qp++ = htonl(v); nq -= 3; } ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL); if (ret) return ret; } return 0; } /** * t4_config_glbl_rss - configure the global RSS mode * @adapter: the adapter * @mbox: mbox to use for the FW command * @mode: global RSS mode * @flags: mode-specific flags * * Sets the global RSS mode. */ int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode, unsigned int flags) { struct fw_rss_glb_config_cmd c; memset(&c, 0, sizeof(c)); c.op_to_write = htonl(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F); c.retval_len16 = htonl(FW_LEN16(c)); if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) { c.u.manual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) { c.u.basicvirtual.mode_pkd = htonl(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode)); c.u.basicvirtual.synmapen_to_hashtoeplitz = htonl(flags); } else return -EINVAL; return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL); } /** * t4_tp_get_tcp_stats - read TP's TCP MIB counters * @adap: the adapter * @v4: holds the TCP/IP counter values * @v6: holds the TCP/IPv6 counter values * * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters. * Either @v4 or @v6 may be %NULL to skip the corresponding stats. */ void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4, struct tp_tcp_stats *v6) { u32 val[TP_MIB_TCP_RXT_SEG_LO - TP_MIB_TCP_OUT_RST + 1]; #define STAT_IDX(x) ((TP_MIB_TCP_##x) - TP_MIB_TCP_OUT_RST) #define STAT(x) val[STAT_IDX(x)] #define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO)) if (v4) { t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val, ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST); v4->tcpOutRsts = STAT(OUT_RST); v4->tcpInSegs = STAT64(IN_SEG); v4->tcpOutSegs = STAT64(OUT_SEG); v4->tcpRetransSegs = STAT64(RXT_SEG); } if (v6) { t4_read_indirect(adap, TP_MIB_INDEX, TP_MIB_DATA, val, ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST); v6->tcpOutRsts = STAT(OUT_RST); v6->tcpInSegs = STAT64(IN_SEG); v6->tcpOutSegs = STAT64(OUT_SEG); v6->tcpRetransSegs = STAT64(RXT_SEG); } #undef STAT64 #undef STAT #undef STAT_IDX } /** * t4_read_mtu_tbl - returns the values in the HW path MTU table * @adap: the adapter * @mtus: where to store the MTU values * @mtu_log: where to store the MTU base-2 log (may be %NULL) * * Reads the HW path MTU table. */ void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log) { u32 v; int i; for (i = 0; i < NMTUS; ++i) { t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(0xff) | MTUVALUE(i)); v = t4_read_reg(adap, TP_MTU_TABLE); mtus[i] = MTUVALUE_GET(v); if (mtu_log) mtu_log[i] = MTUWIDTH_GET(v); } } /** * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register * @adap: the adapter * @addr: the indirect TP register address * @mask: specifies the field within the register to modify * @val: new value for the field * * Sets a field of an indirect TP register to the given value. */ void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr, unsigned int mask, unsigned int val) { t4_write_reg(adap, TP_PIO_ADDR, addr); val |= t4_read_reg(adap, TP_PIO_DATA) & ~mask; t4_write_reg(adap, TP_PIO_DATA, val); } /** * init_cong_ctrl - initialize congestion control parameters * @a: the alpha values for congestion control * @b: the beta values for congestion control * * Initialize the congestion control parameters. */ static void init_cong_ctrl(unsigned short *a, unsigned short *b) { a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1; a[9] = 2; a[10] = 3; a[11] = 4; a[12] = 5; a[13] = 6; a[14] = 7; a[15] = 8; a[16] = 9; a[17] = 10; a[18] = 14; a[19] = 17; a[20] = 21; a[21] = 25; a[22] = 30; a[23] = 35; a[24] = 45; a[25] = 60; a[26] = 80; a[27] = 100; a[28] = 200; a[29] = 300; a[30] = 400; a[31] = 500; b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0; b[9] = b[10] = 1; b[11] = b[12] = 2; b[13] = b[14] = b[15] = b[16] = 3; b[17] = b[18] = b[19] = b[20] = b[21] = 4; b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5; b[28] = b[29] = 6; b[30] = b[31] = 7; } /* The minimum additive increment value for the congestion control table */ #define CC_MIN_INCR 2U /** * t4_load_mtus - write the MTU and congestion control HW tables * @adap: the adapter * @mtus: the values for the MTU table * @alpha: the values for the congestion control alpha parameter * @beta: the values for the congestion control beta parameter * * Write the HW MTU table with the supplied MTUs and the high-speed * congestion control table with the supplied alpha, beta, and MTUs. * We write the two tables together because the additive increments * depend on the MTUs. */ void t4_load_mtus(struct adapter *adap, const unsigned short *mtus, const unsigned short *alpha, const unsigned short *beta) { static const unsigned int avg_pkts[NCCTRL_WIN] = { 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640, 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480, 28672, 40960, 57344, 81920, 114688, 163840, 229376 }; unsigned int i, w; for (i = 0; i < NMTUS; ++i) { unsigned int mtu = mtus[i]; unsigned int log2 = fls(mtu); if (!(mtu & ((1 << log2) >> 2))) /* round */ log2--; t4_write_reg(adap, TP_MTU_TABLE, MTUINDEX(i) | MTUWIDTH(log2) | MTUVALUE(mtu)); for (w = 0; w < NCCTRL_WIN; ++w) { unsigned int inc; inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w], CC_MIN_INCR); t4_write_reg(adap, TP_CCTRL_TABLE, (i << 21) | (w << 16) | (beta[w] << 13) | inc); } } } /** * get_mps_bg_map - return the buffer groups associated with a port * @adap: the adapter * @idx: the port index * * Returns a bitmap indicating which MPS buffer groups are associated * with the given port. Bit i is set if buffer group i is used by the * port. */ static unsigned int get_mps_bg_map(struct adapter *adap, int idx) { u32 n = NUMPORTS_GET(t4_read_reg(adap, MPS_CMN_CTL)); if (n == 0) return idx == 0 ? 0xf : 0; if (n == 1) return idx < 2 ? (3 << (2 * idx)) : 0; return 1 << idx; } /** * t4_get_port_type_description - return Port Type string description * @port_type: firmware Port Type enumeration */ const char *t4_get_port_type_description(enum fw_port_type port_type) { static const char *const port_type_description[] = { "R XFI", "R XAUI", "T SGMII", "T XFI", "T XAUI", "KX4", "CX4", "KX", "KR", "R SFP+", "KR/KX", "KR/KX/KX4", "R QSFP_10G", "", "R QSFP", "R BP40_BA", }; if (port_type < ARRAY_SIZE(port_type_description)) return port_type_description[port_type]; return "UNKNOWN"; } /** * t4_get_port_stats - collect port statistics * @adap: the adapter * @idx: the port index * @p: the stats structure to fill * * Collect statistics related to the given port from HW. */ void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p) { u32 bgmap = get_mps_bg_map(adap, idx); #define GET_STAT(name) \ t4_read_reg64(adap, \ (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \ T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L))) #define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L) p->tx_octets = GET_STAT(TX_PORT_BYTES); p->tx_frames = GET_STAT(TX_PORT_FRAMES); p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST); p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST); p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST); p->tx_error_frames = GET_STAT(TX_PORT_ERROR); p->tx_frames_64 = GET_STAT(TX_PORT_64B); p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B); p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B); p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B); p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B); p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B); p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX); p->tx_drop = GET_STAT(TX_PORT_DROP); p->tx_pause = GET_STAT(TX_PORT_PAUSE); p->tx_ppp0 = GET_STAT(TX_PORT_PPP0); p->tx_ppp1 = GET_STAT(TX_PORT_PPP1); p->tx_ppp2 = GET_STAT(TX_PORT_PPP2); p->tx_ppp3 = GET_STAT(TX_PORT_PPP3); p->tx_ppp4 = GET_STAT(TX_PORT_PPP4); p->tx_ppp5 = GET_STAT(TX_PORT_PPP5); p->tx_ppp6 = GET_STAT(TX_PORT_PPP6); p->tx_ppp7 = GET_STAT(TX_PORT_PPP7); p->rx_octets = GET_STAT(RX_PORT_BYTES); p->rx_frames = GET_STAT(RX_PORT_FRAMES); p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST); p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST); p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST); p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR); p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR); p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR); p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR); p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR); p->rx_runt = GET_STAT(RX_PORT_LESS_64B); p->rx_frames_64 = GET_STAT(RX_PORT_64B); p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B); p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B); p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B); p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B); p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B); p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX); p->rx_pause = GET_STAT(RX_PORT_PAUSE); p->rx_ppp0 = GET_STAT(RX_PORT_PPP0); p->rx_ppp1 = GET_STAT(RX_PORT_PPP1); p->rx_ppp2 = GET_STAT(RX_PORT_PPP2); p->rx_ppp3 = GET_STAT(RX_PORT_PPP3); p->rx_ppp4 = GET_STAT(RX_PORT_PPP4); p->rx_ppp5 = GET_STAT(RX_PORT_PPP5); p->rx_ppp6 = GET_STAT(RX_PORT_PPP6); p->rx_ppp7 = GET_STAT(RX_PORT_PPP7); p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0; p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0; p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0; p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0; p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0; p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0; p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0; p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0; #undef GET_STAT #undef GET_STAT_COM } /** * t4_wol_magic_enable - enable/disable magic packet WoL * @adap: the adapter * @port: the physical port index * @addr: MAC address expected in magic packets, %NULL to disable * * Enables/disables magic packet wake-on-LAN for the selected port. */ void t4_wol_magic_enable(struct adapter *adap, unsigned int port, const u8 *addr) { u32 mag_id_reg_l, mag_id_reg_h, port_cfg_reg; if (is_t4(adap->params.chip)) { mag_id_reg_l = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_LO); mag_id_reg_h = PORT_REG(port, XGMAC_PORT_MAGIC_MACID_HI); port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2); } else { mag_id_reg_l = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_LO); mag_id_reg_h = T5_PORT_REG(port, MAC_PORT_MAGIC_MACID_HI); port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2); } if (addr) { t4_write_reg(adap, mag_id_reg_l, (addr[2] << 24) | (addr[3] << 16) | (addr[4] << 8) | addr[5]); t4_write_reg(adap, mag_id_reg_h, (addr[0] << 8) | addr[1]); } t4_set_reg_field(adap, port_cfg_reg, MAGICEN, addr ? MAGICEN : 0); } /** * t4_wol_pat_enable - enable/disable pattern-based WoL * @adap: the adapter * @port: the physical port index * @map: bitmap of which HW pattern filters to set * @mask0: byte mask for bytes 0-63 of a packet * @mask1: byte mask for bytes 64-127 of a packet * @crc: Ethernet CRC for selected bytes * @enable: enable/disable switch * * Sets the pattern filters indicated in @map to mask out the bytes * specified in @mask0/@mask1 in received packets and compare the CRC of * the resulting packet against @crc. If @enable is %true pattern-based * WoL is enabled, otherwise disabled. */ int t4_wol_pat_enable(struct adapter *adap, unsigned int port, unsigned int map, u64 mask0, u64 mask1, unsigned int crc, bool enable) { int i; u32 port_cfg_reg; if (is_t4(adap->params.chip)) port_cfg_reg = PORT_REG(port, XGMAC_PORT_CFG2); else port_cfg_reg = T5_PORT_REG(port, MAC_PORT_CFG2); if (!enable) { t4_set_reg_field(adap, port_cfg_reg, PATEN, 0); return 0; } if (map > 0xff) return -EINVAL; #define EPIO_REG(name) \ (is_t4(adap->params.chip) ? PORT_REG(port, XGMAC_PORT_EPIO_##name) : \ T5_PORT_REG(port, MAC_PORT_EPIO_##name)) t4_write_reg(adap, EPIO_REG(DATA1), mask0 >> 32); t4_write_reg(adap, EPIO_REG(DATA2), mask1); t4_write_reg(adap, EPIO_REG(DATA3), mask1 >> 32); for (i = 0; i < NWOL_PAT; i++, map >>= 1) { if (!(map & 1)) continue; /* write byte masks */ t4_write_reg(adap, EPIO_REG(DATA0), mask0); t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i) | EPIOWR); t4_read_reg(adap, EPIO_REG(OP)); /* flush */ if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY) return -ETIMEDOUT; /* write CRC */ t4_write_reg(adap, EPIO_REG(DATA0), crc); t4_write_reg(adap, EPIO_REG(OP), ADDRESS(i + 32) | EPIOWR); t4_read_reg(adap, EPIO_REG(OP)); /* flush */ if (t4_read_reg(adap, EPIO_REG(OP)) & SF_BUSY) return -ETIMEDOUT; } #undef EPIO_REG t4_set_reg_field(adap, PORT_REG(port, XGMAC_PORT_CFG2), 0, PATEN); return 0; } /* t4_mk_filtdelwr - create a delete filter WR * @ftid: the filter ID * @wr: the filter work request to populate * @qid: ingress queue to receive the delete notification * * Creates a filter work request to delete the supplied filter. If @qid is * negative the delete notification is suppressed. */ void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid) { memset(wr, 0, sizeof(*wr)); wr->op_pkd = htonl(FW_WR_OP_V(FW_FILTER_WR)); wr->len16_pkd = htonl(FW_WR_LEN16_V(sizeof(*wr) / 16)); wr->tid_to_iq = htonl(FW_FILTER_WR_TID_V(ftid) | FW_FILTER_WR_NOREPLY_V(qid < 0)); wr->del_filter_to_l2tix = htonl(FW_FILTER_WR_DEL_FILTER_F); if (qid >= 0) wr->rx_chan_rx_rpl_iq = htons(FW_FILTER_WR_RX_RPL_IQ_V(qid)); } #define INIT_CMD(var, cmd, rd_wr) do { \ (var).op_to_write = htonl(FW_CMD_OP_V(FW_##cmd##_CMD) | \ FW_CMD_REQUEST_F | FW_CMD_##rd_wr##_F); \ (var).retval_len16 = htonl(FW_LEN16(var)); \ } while (0) int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox, u32 addr, u32 val) { struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE)); c.cycles_to_len16 = htonl(FW_LEN16(c)); c.u.addrval.addr = htonl(addr); c.u.addrval.val = htonl(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_mdio_rd - read a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to read * @valp: where to store the value * * Issues a FW command through the given mailbox to read a PHY register. */ int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, u16 *valp) { int ret; struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO)); c.cycles_to_len16 = htonl(FW_LEN16(c)); c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) | FW_LDST_CMD_MMD_V(mmd)); c.u.mdio.raddr = htons(reg); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) *valp = ntohs(c.u.mdio.rval); return ret; } /** * t4_mdio_wr - write a PHY register through MDIO * @adap: the adapter * @mbox: mailbox to use for the FW command * @phy_addr: the PHY address * @mmd: the PHY MMD to access (0 for clause 22 PHYs) * @reg: the register to write * @valp: value to write * * Issues a FW command through the given mailbox to write a PHY register. */ int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr, unsigned int mmd, unsigned int reg, u16 val) { struct fw_ldst_cmd c; memset(&c, 0, sizeof(c)); c.op_to_addrspace = htonl(FW_CMD_OP_V(FW_LDST_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO)); c.cycles_to_len16 = htonl(FW_LEN16(c)); c.u.mdio.paddr_mmd = htons(FW_LDST_CMD_PADDR_V(phy_addr) | FW_LDST_CMD_MMD_V(mmd)); c.u.mdio.raddr = htons(reg); c.u.mdio.rval = htons(val); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_sge_decode_idma_state - decode the idma state * @adap: the adapter * @state: the state idma is stuck in */ void t4_sge_decode_idma_state(struct adapter *adapter, int state) { static const char * const t4_decode[] = { "IDMA_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "Not used", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATA_FL_PREP", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", "IDMA_FL_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATAFL_DONE", "IDMA_FL_REQ_HEADERFL_DONE", }; static const char * const t5_decode[] = { "IDMA_IDLE", "IDMA_ALMOST_IDLE", "IDMA_PUSH_MORE_CPL_FIFO", "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO", "IDMA_SGEFLRFLUSH_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PCIEHDR", "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST", "IDMA_PHYSADDR_SEND_PAYLOAD", "IDMA_SEND_FIFO_TO_IMSG", "IDMA_FL_REQ_DATA_FL", "IDMA_FL_DROP", "IDMA_FL_DROP_SEND_INC", "IDMA_FL_H_REQ_HEADER_FL", "IDMA_FL_H_SEND_PCIEHDR", "IDMA_FL_H_PUSH_CPL_FIFO", "IDMA_FL_H_SEND_CPL", "IDMA_FL_H_SEND_IP_HDR_FIRST", "IDMA_FL_H_SEND_IP_HDR", "IDMA_FL_H_REQ_NEXT_HEADER_FL", "IDMA_FL_H_SEND_NEXT_PCIEHDR", "IDMA_FL_H_SEND_IP_HDR_PADDING", "IDMA_FL_D_SEND_PCIEHDR", "IDMA_FL_D_SEND_CPL_AND_IP_HDR", "IDMA_FL_D_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_PCIEHDR", "IDMA_FL_PUSH_CPL_FIFO", "IDMA_FL_SEND_CPL", "IDMA_FL_SEND_PAYLOAD_FIRST", "IDMA_FL_SEND_PAYLOAD", "IDMA_FL_REQ_NEXT_DATA_FL", "IDMA_FL_SEND_NEXT_PCIEHDR", "IDMA_FL_SEND_PADDING", "IDMA_FL_SEND_COMPLETION_TO_IMSG", }; static const u32 sge_regs[] = { SGE_DEBUG_DATA_LOW_INDEX_2, SGE_DEBUG_DATA_LOW_INDEX_3, SGE_DEBUG_DATA_HIGH_INDEX_10, }; const char **sge_idma_decode; int sge_idma_decode_nstates; int i; if (is_t4(adapter->params.chip)) { sge_idma_decode = (const char **)t4_decode; sge_idma_decode_nstates = ARRAY_SIZE(t4_decode); } else { sge_idma_decode = (const char **)t5_decode; sge_idma_decode_nstates = ARRAY_SIZE(t5_decode); } if (state < sge_idma_decode_nstates) CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]); else CH_WARN(adapter, "idma state %d unknown\n", state); for (i = 0; i < ARRAY_SIZE(sge_regs); i++) CH_WARN(adapter, "SGE register %#x value %#x\n", sge_regs[i], t4_read_reg(adapter, sge_regs[i])); } /** * t4_fw_hello - establish communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @evt_mbox: mailbox to receive async FW events * @master: specifies the caller's willingness to be the device master * @state: returns the current device state (if non-NULL) * * Issues a command to establish communication with FW. Returns either * an error (negative integer) or the mailbox of the Master PF. */ int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox, enum dev_master master, enum dev_state *state) { int ret; struct fw_hello_cmd c; u32 v; unsigned int master_mbox; int retries = FW_CMD_HELLO_RETRIES; retry: memset(&c, 0, sizeof(c)); INIT_CMD(c, HELLO, WRITE); c.err_to_clearinit = htonl( FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) | FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) | FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ? mbox : FW_HELLO_CMD_MBMASTER_M) | FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) | FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) | FW_HELLO_CMD_CLEARINIT_F); /* * Issue the HELLO command to the firmware. If it's not successful * but indicates that we got a "busy" or "timeout" condition, retry * the HELLO until we exhaust our retry limit. If we do exceed our * retry limit, check to see if the firmware left us any error * information and report that if so. */ ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret < 0) { if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0) goto retry; if (t4_read_reg(adap, MA_PCIE_FW) & PCIE_FW_ERR) t4_report_fw_error(adap); return ret; } v = ntohl(c.err_to_clearinit); master_mbox = FW_HELLO_CMD_MBMASTER_G(v); if (state) { if (v & FW_HELLO_CMD_ERR_F) *state = DEV_STATE_ERR; else if (v & FW_HELLO_CMD_INIT_F) *state = DEV_STATE_INIT; else *state = DEV_STATE_UNINIT; } /* * If we're not the Master PF then we need to wait around for the * Master PF Driver to finish setting up the adapter. * * Note that we also do this wait if we're a non-Master-capable PF and * there is no current Master PF; a Master PF may show up momentarily * and we wouldn't want to fail pointlessly. (This can happen when an * OS loads lots of different drivers rapidly at the same time). In * this case, the Master PF returned by the firmware will be * PCIE_FW_MASTER_M so the test below will work ... */ if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 && master_mbox != mbox) { int waiting = FW_CMD_HELLO_TIMEOUT; /* * Wait for the firmware to either indicate an error or * initialized state. If we see either of these we bail out * and report the issue to the caller. If we exhaust the * "hello timeout" and we haven't exhausted our retries, try * again. Otherwise bail with a timeout error. */ for (;;) { u32 pcie_fw; msleep(50); waiting -= 50; /* * If neither Error nor Initialialized are indicated * by the firmware keep waiting till we exaust our * timeout ... and then retry if we haven't exhausted * our retries ... */ pcie_fw = t4_read_reg(adap, MA_PCIE_FW); if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) { if (waiting <= 0) { if (retries-- > 0) goto retry; return -ETIMEDOUT; } continue; } /* * We either have an Error or Initialized condition * report errors preferentially. */ if (state) { if (pcie_fw & PCIE_FW_ERR) *state = DEV_STATE_ERR; else if (pcie_fw & PCIE_FW_INIT) *state = DEV_STATE_INIT; } /* * If we arrived before a Master PF was selected and * there's not a valid Master PF, grab its identity * for our caller. */ if (master_mbox == PCIE_FW_MASTER_M && (pcie_fw & PCIE_FW_MASTER_VLD)) master_mbox = PCIE_FW_MASTER_G(pcie_fw); break; } } return master_mbox; } /** * t4_fw_bye - end communication with FW * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to terminate communication with FW. */ int t4_fw_bye(struct adapter *adap, unsigned int mbox) { struct fw_bye_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, BYE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_init_cmd - ask FW to initialize the device * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to FW to partially initialize the device. This * performs initialization that generally doesn't depend on user input. */ int t4_early_init(struct adapter *adap, unsigned int mbox) { struct fw_initialize_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, INITIALIZE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_reset - issue a reset to FW * @adap: the adapter * @mbox: mailbox to use for the FW command * @reset: specifies the type of reset to perform * * Issues a reset command of the specified type to FW. */ int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = htonl(reset); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_fw_halt - issue a reset/halt to FW and put uP into RESET * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @force: force uP into RESET even if FW RESET command fails * * Issues a RESET command to firmware (if desired) with a HALT indication * and then puts the microprocessor into RESET state. The RESET command * will only be issued if a legitimate mailbox is provided (mbox <= * PCIE_FW_MASTER_M). * * This is generally used in order for the host to safely manipulate the * adapter without fear of conflicting with whatever the firmware might * be doing. The only way out of this state is to RESTART the firmware * ... */ static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force) { int ret = 0; /* * If a legitimate mailbox is provided, issue a RESET command * with a HALT indication. */ if (mbox <= PCIE_FW_MASTER_M) { struct fw_reset_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, RESET, WRITE); c.val = htonl(PIORST | PIORSTMODE); c.halt_pkd = htonl(FW_RESET_CMD_HALT_F); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /* * Normally we won't complete the operation if the firmware RESET * command fails but if our caller insists we'll go ahead and put the * uP into RESET. This can be useful if the firmware is hung or even * missing ... We'll have to take the risk of putting the uP into * RESET without the cooperation of firmware in that case. * * We also force the firmware's HALT flag to be on in case we bypassed * the firmware RESET command above or we're dealing with old firmware * which doesn't have the HALT capability. This will serve as a flag * for the incoming firmware to know that it's coming out of a HALT * rather than a RESET ... if it's new enough to understand that ... */ if (ret == 0 || force) { t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, UPCRST); t4_set_reg_field(adap, PCIE_FW, PCIE_FW_HALT_F, PCIE_FW_HALT_F); } /* * And we always return the result of the firmware RESET command * even when we force the uP into RESET ... */ return ret; } /** * t4_fw_restart - restart the firmware by taking the uP out of RESET * @adap: the adapter * @reset: if we want to do a RESET to restart things * * Restart firmware previously halted by t4_fw_halt(). On successful * return the previous PF Master remains as the new PF Master and there * is no need to issue a new HELLO command, etc. * * We do this in two ways: * * 1. If we're dealing with newer firmware we'll simply want to take * the chip's microprocessor out of RESET. This will cause the * firmware to start up from its start vector. And then we'll loop * until the firmware indicates it's started again (PCIE_FW.HALT * reset to 0) or we timeout. * * 2. If we're dealing with older firmware then we'll need to RESET * the chip since older firmware won't recognize the PCIE_FW.HALT * flag and automatically RESET itself on startup. */ static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset) { if (reset) { /* * Since we're directing the RESET instead of the firmware * doing it automatically, we need to clear the PCIE_FW.HALT * bit. */ t4_set_reg_field(adap, PCIE_FW, PCIE_FW_HALT_F, 0); /* * If we've been given a valid mailbox, first try to get the * firmware to do the RESET. If that works, great and we can * return success. Otherwise, if we haven't been given a * valid mailbox or the RESET command failed, fall back to * hitting the chip with a hammer. */ if (mbox <= PCIE_FW_MASTER_M) { t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0); msleep(100); if (t4_fw_reset(adap, mbox, PIORST | PIORSTMODE) == 0) return 0; } t4_write_reg(adap, PL_RST, PIORST | PIORSTMODE); msleep(2000); } else { int ms; t4_set_reg_field(adap, CIM_BOOT_CFG, UPCRST, 0); for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) { if (!(t4_read_reg(adap, PCIE_FW) & PCIE_FW_HALT_F)) return 0; msleep(100); ms += 100; } return -ETIMEDOUT; } return 0; } /** * t4_fw_upgrade - perform all of the steps necessary to upgrade FW * @adap: the adapter * @mbox: mailbox to use for the FW RESET command (if desired) * @fw_data: the firmware image to write * @size: image size * @force: force upgrade even if firmware doesn't cooperate * * Perform all of the steps necessary for upgrading an adapter's * firmware image. Normally this requires the cooperation of the * existing firmware in order to halt all existing activities * but if an invalid mailbox token is passed in we skip that step * (though we'll still put the adapter microprocessor into RESET in * that case). * * On successful return the new firmware will have been loaded and * the adapter will have been fully RESET losing all previous setup * state. On unsuccessful return the adapter may be completely hosed ... * positive errno indicates that the adapter is ~probably~ intact, a * negative errno indicates that things are looking bad ... */ int t4_fw_upgrade(struct adapter *adap, unsigned int mbox, const u8 *fw_data, unsigned int size, int force) { const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data; int reset, ret; ret = t4_fw_halt(adap, mbox, force); if (ret < 0 && !force) return ret; ret = t4_load_fw(adap, fw_data, size); if (ret < 0) return ret; /* * Older versions of the firmware don't understand the new * PCIE_FW.HALT flag and so won't know to perform a RESET when they * restart. So for newly loaded older firmware we'll have to do the * RESET for it so it starts up on a clean slate. We can tell if * the newly loaded firmware will handle this right by checking * its header flags to see if it advertises the capability. */ reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0); return t4_fw_restart(adap, mbox, reset); } /** * t4_fixup_host_params - fix up host-dependent parameters * @adap: the adapter * @page_size: the host's Base Page Size * @cache_line_size: the host's Cache Line Size * * Various registers in T4 contain values which are dependent on the * host's Base Page and Cache Line Sizes. This function will fix all of * those registers with the appropriate values as passed in ... */ int t4_fixup_host_params(struct adapter *adap, unsigned int page_size, unsigned int cache_line_size) { unsigned int page_shift = fls(page_size) - 1; unsigned int sge_hps = page_shift - 10; unsigned int stat_len = cache_line_size > 64 ? 128 : 64; unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size; unsigned int fl_align_log = fls(fl_align) - 1; t4_write_reg(adap, SGE_HOST_PAGE_SIZE, HOSTPAGESIZEPF0(sge_hps) | HOSTPAGESIZEPF1(sge_hps) | HOSTPAGESIZEPF2(sge_hps) | HOSTPAGESIZEPF3(sge_hps) | HOSTPAGESIZEPF4(sge_hps) | HOSTPAGESIZEPF5(sge_hps) | HOSTPAGESIZEPF6(sge_hps) | HOSTPAGESIZEPF7(sge_hps)); if (is_t4(adap->params.chip)) { t4_set_reg_field(adap, SGE_CONTROL, INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE_MASK, INGPADBOUNDARY(fl_align_log - 5) | EGRSTATUSPAGESIZE(stat_len != 64)); } else { /* T5 introduced the separation of the Free List Padding and * Packing Boundaries. Thus, we can select a smaller Padding * Boundary to avoid uselessly chewing up PCIe Link and Memory * Bandwidth, and use a Packing Boundary which is large enough * to avoid false sharing between CPUs, etc. * * For the PCI Link, the smaller the Padding Boundary the * better. For the Memory Controller, a smaller Padding * Boundary is better until we cross under the Memory Line * Size (the minimum unit of transfer to/from Memory). If we * have a Padding Boundary which is smaller than the Memory * Line Size, that'll involve a Read-Modify-Write cycle on the * Memory Controller which is never good. For T5 the smallest * Padding Boundary which we can select is 32 bytes which is * larger than any known Memory Controller Line Size so we'll * use that. * * T5 has a different interpretation of the "0" value for the * Packing Boundary. This corresponds to 16 bytes instead of * the expected 32 bytes. We never have a Packing Boundary * less than 32 bytes so we can't use that special value but * on the other hand, if we wanted 32 bytes, the best we can * really do is 64 bytes. */ if (fl_align <= 32) { fl_align = 64; fl_align_log = 6; } t4_set_reg_field(adap, SGE_CONTROL, INGPADBOUNDARY_MASK | EGRSTATUSPAGESIZE_MASK, INGPADBOUNDARY(INGPCIEBOUNDARY_32B_X) | EGRSTATUSPAGESIZE(stat_len != 64)); t4_set_reg_field(adap, SGE_CONTROL2_A, INGPACKBOUNDARY_V(INGPACKBOUNDARY_M), INGPACKBOUNDARY_V(fl_align_log - INGPACKBOUNDARY_SHIFT_X)); } /* * Adjust various SGE Free List Host Buffer Sizes. * * This is something of a crock since we're using fixed indices into * the array which are also known by the sge.c code and the T4 * Firmware Configuration File. We need to come up with a much better * approach to managing this array. For now, the first four entries * are: * * 0: Host Page Size * 1: 64KB * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode) * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode) * * For the single-MTU buffers in unpacked mode we need to include * space for the SGE Control Packet Shift, 14 byte Ethernet header, * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet * Padding boundry. All of these are accommodated in the Factory * Default Firmware Configuration File but we need to adjust it for * this host's cache line size. */ t4_write_reg(adap, SGE_FL_BUFFER_SIZE0, page_size); t4_write_reg(adap, SGE_FL_BUFFER_SIZE2, (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2) + fl_align-1) & ~(fl_align-1)); t4_write_reg(adap, SGE_FL_BUFFER_SIZE3, (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3) + fl_align-1) & ~(fl_align-1)); t4_write_reg(adap, ULP_RX_TDDP_PSZ, HPZ0(page_shift - 12)); return 0; } /** * t4_fw_initialize - ask FW to initialize the device * @adap: the adapter * @mbox: mailbox to use for the FW command * * Issues a command to FW to partially initialize the device. This * performs initialization that generally doesn't depend on user input. */ int t4_fw_initialize(struct adapter *adap, unsigned int mbox) { struct fw_initialize_cmd c; memset(&c, 0, sizeof(c)); INIT_CMD(c, INITIALIZE, WRITE); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_query_params - query FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * * Reads the value of FW or device parameters. Up to 7 parameters can be * queried at once. */ int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, u32 *val) { int i, ret; struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_PARAMS_CMD_PFN_V(pf) | FW_PARAMS_CMD_VFN_V(vf)); c.retval_len16 = htonl(FW_LEN16(c)); for (i = 0; i < nparams; i++, p += 2) *p = htonl(*params++); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2) *val++ = ntohl(*p); return ret; } /** * t4_set_params_nosleep - sets FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * * Does not ever sleep * Sets the value of FW or device parameters. Up to 7 parameters can be * specified at once. */ int t4_set_params_nosleep(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val) { struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) | FW_PARAMS_CMD_VFN_V(vf)); c.retval_len16 = cpu_to_be32(FW_LEN16(c)); while (nparams--) { *p++ = cpu_to_be32(*params++); *p++ = cpu_to_be32(*val++); } return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); } /** * t4_set_params - sets FW or device parameters * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF * @vf: the VF * @nparams: the number of parameters * @params: the parameter names * @val: the parameter values * * Sets the value of FW or device parameters. Up to 7 parameters can be * specified at once. */ int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int nparams, const u32 *params, const u32 *val) { struct fw_params_cmd c; __be32 *p = &c.param[0].mnem; if (nparams > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_PARAMS_CMD_PFN_V(pf) | FW_PARAMS_CMD_VFN_V(vf)); c.retval_len16 = htonl(FW_LEN16(c)); while (nparams--) { *p++ = htonl(*params++); *p++ = htonl(*val++); } return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_cfg_pfvf - configure PF/VF resource limits * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF being configured * @vf: the VF being configured * @txq: the max number of egress queues * @txq_eth_ctrl: the max number of egress Ethernet or control queues * @rxqi: the max number of interrupt-capable ingress queues * @rxq: the max number of interruptless ingress queues * @tc: the PCI traffic class * @vi: the max number of virtual interfaces * @cmask: the channel access rights mask for the PF/VF * @pmask: the port access rights mask for the PF/VF * @nexact: the maximum number of exact MPS filters * @rcaps: read capabilities * @wxcaps: write/execute capabilities * * Configures resource limits and capabilities for a physical or virtual * function. */ int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl, unsigned int rxqi, unsigned int rxq, unsigned int tc, unsigned int vi, unsigned int cmask, unsigned int pmask, unsigned int nexact, unsigned int rcaps, unsigned int wxcaps) { struct fw_pfvf_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) | FW_PFVF_CMD_VFN_V(vf)); c.retval_len16 = htonl(FW_LEN16(c)); c.niqflint_niq = htonl(FW_PFVF_CMD_NIQFLINT_V(rxqi) | FW_PFVF_CMD_NIQ_V(rxq)); c.type_to_neq = htonl(FW_PFVF_CMD_CMASK_V(cmask) | FW_PFVF_CMD_PMASK_V(pmask) | FW_PFVF_CMD_NEQ_V(txq)); c.tc_to_nexactf = htonl(FW_PFVF_CMD_TC_V(tc) | FW_PFVF_CMD_NVI_V(vi) | FW_PFVF_CMD_NEXACTF_V(nexact)); c.r_caps_to_nethctrl = htonl(FW_PFVF_CMD_R_CAPS_V(rcaps) | FW_PFVF_CMD_WX_CAPS_V(wxcaps) | FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_alloc_vi - allocate a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @port: physical port associated with the VI * @pf: the PF owning the VI * @vf: the VF owning the VI * @nmac: number of MAC addresses needed (1 to 5) * @mac: the MAC addresses of the VI * @rss_size: size of RSS table slice associated with this VI * * Allocates a virtual interface for the given physical port. If @mac is * not %NULL it contains the MAC addresses of the VI as assigned by FW. * @mac should be large enough to hold @nmac Ethernet addresses, they are * stored consecutively so the space needed is @nmac * 6 bytes. * Returns a negative error number or the non-negative VI id. */ int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port, unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac, unsigned int *rss_size) { int ret; struct fw_vi_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F | FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf)); c.alloc_to_len16 = htonl(FW_VI_CMD_ALLOC_F | FW_LEN16(c)); c.portid_pkd = FW_VI_CMD_PORTID_V(port); c.nmac = nmac - 1; ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret) return ret; if (mac) { memcpy(mac, c.mac, sizeof(c.mac)); switch (nmac) { case 5: memcpy(mac + 24, c.nmac3, sizeof(c.nmac3)); case 4: memcpy(mac + 18, c.nmac2, sizeof(c.nmac2)); case 3: memcpy(mac + 12, c.nmac1, sizeof(c.nmac1)); case 2: memcpy(mac + 6, c.nmac0, sizeof(c.nmac0)); } } if (rss_size) *rss_size = FW_VI_CMD_RSSSIZE_G(ntohs(c.rsssize_pkd)); return FW_VI_CMD_VIID_G(ntohs(c.type_viid)); } /** * t4_set_rxmode - set Rx properties of a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @mtu: the new MTU or -1 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change * @sleep_ok: if true we may sleep while awaiting command completion * * Sets Rx properties of a virtual interface. */ int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid, int mtu, int promisc, int all_multi, int bcast, int vlanex, bool sleep_ok) { struct fw_vi_rxmode_cmd c; /* convert to FW values */ if (mtu < 0) mtu = FW_RXMODE_MTU_NO_CHG; if (promisc < 0) promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; if (all_multi < 0) all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; if (bcast < 0) bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; if (vlanex < 0) vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid)); c.retval_len16 = htonl(FW_LEN16(c)); c.mtu_to_vlanexen = htonl(FW_VI_RXMODE_CMD_MTU_V(mtu) | FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); } /** * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @free: if true any existing filters for this VI id are first removed * @naddr: the number of MAC addresses to allocate filters for (up to 7) * @addr: the MAC address(es) * @idx: where to store the index of each allocated filter * @hash: pointer to hash address filter bitmap * @sleep_ok: call is allowed to sleep * * Allocates an exact-match filter for each of the supplied addresses and * sets it to the corresponding address. If @idx is not %NULL it should * have at least @naddr entries, each of which will be set to the index of * the filter allocated for the corresponding MAC address. If a filter * could not be allocated for an address its index is set to 0xffff. * If @hash is not %NULL addresses that fail to allocate an exact filter * are hashed and update the hash filter bitmap pointed at by @hash. * * Returns a negative error number or the number of filters allocated. */ int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox, unsigned int viid, bool free, unsigned int naddr, const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) { int i, ret; struct fw_vi_mac_cmd c; struct fw_vi_mac_exact *p; unsigned int max_naddr = is_t4(adap->params.chip) ? NUM_MPS_CLS_SRAM_L_INSTANCES : NUM_MPS_T5_CLS_SRAM_L_INSTANCES; if (naddr > 7) return -EINVAL; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) | FW_VI_MAC_CMD_VIID_V(viid)); c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_FREEMACS_V(free) | FW_CMD_LEN16_V((naddr + 2) / 2)); for (i = 0, p = c.u.exact; i < naddr; i++, p++) { p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); memcpy(p->macaddr, addr[i], sizeof(p->macaddr)); } ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok); if (ret) return ret; for (i = 0, p = c.u.exact; i < naddr; i++, p++) { u16 index = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx)); if (idx) idx[i] = index >= max_naddr ? 0xffff : index; if (index < max_naddr) ret++; else if (hash) *hash |= (1ULL << hash_mac_addr(addr[i])); } return ret; } /** * t4_change_mac - modifies the exact-match filter for a MAC address * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @idx: index of existing filter for old value of MAC address, or -1 * @addr: the new MAC address value * @persist: whether a new MAC allocation should be persistent * @add_smt: if true also add the address to the HW SMT * * Modifies an exact-match filter and sets it to the new MAC address. * Note that in general it is not possible to modify the value of a given * filter so the generic way to modify an address filter is to free the one * being used by the old address value and allocate a new filter for the * new address value. @idx can be -1 if the address is a new addition. * * Returns a negative error number or the index of the filter with the new * MAC value. */ int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid, int idx, const u8 *addr, bool persist, bool add_smt) { int ret, mode; struct fw_vi_mac_cmd c; struct fw_vi_mac_exact *p = c.u.exact; unsigned int max_mac_addr = is_t4(adap->params.chip) ? NUM_MPS_CLS_SRAM_L_INSTANCES : NUM_MPS_T5_CLS_SRAM_L_INSTANCES; if (idx < 0) /* new allocation */ idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid)); c.freemacs_to_len16 = htonl(FW_CMD_LEN16_V(1)); p->valid_to_idx = htons(FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_SMAC_RESULT_V(mode) | FW_VI_MAC_CMD_IDX_V(idx)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret == 0) { ret = FW_VI_MAC_CMD_IDX_G(ntohs(p->valid_to_idx)); if (ret >= max_mac_addr) ret = -ENOMEM; } return ret; } /** * t4_set_addr_hash - program the MAC inexact-match hash filter * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @ucast: whether the hash filter should also match unicast addresses * @vec: the value to be written to the hash filter * @sleep_ok: call is allowed to sleep * * Sets the 64-bit inexact-match hash filter for a virtual interface. */ int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid, bool ucast, u64 vec, bool sleep_ok) { struct fw_vi_mac_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid)); c.freemacs_to_len16 = htonl(FW_VI_MAC_CMD_HASHVECEN_F | FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | FW_CMD_LEN16_V(1)); c.u.hash.hashvec = cpu_to_be64(vec); return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok); } /** * t4_enable_vi_params - enable/disable a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * @dcb_en: 1=enable delivery of Data Center Bridging messages. * * Enables/disables a virtual interface. Note that setting DCB Enable * only makes sense when enabling a Virtual Interface ... */ int t4_enable_vi_params(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en, bool dcb_en) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_IEN_V(rx_en) | FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(c) | FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en)); return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL); } /** * t4_enable_vi - enable/disable a virtual interface * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * * Enables/disables a virtual interface. */ int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid, bool rx_en, bool tx_en) { return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0); } /** * t4_identify_port - identify a VI's port by blinking its LED * @adap: the adapter * @mbox: mailbox to use for the FW command * @viid: the VI id * @nblinks: how many times to blink LED at 2.5 Hz * * Identifies a VI's port by blinking its LED. */ int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid, unsigned int nblinks) { struct fw_vi_enable_cmd c; memset(&c, 0, sizeof(c)); c.op_to_viid = htonl(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); c.ien_to_len16 = htonl(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c)); c.blinkdur = htons(nblinks); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_iq_free - free an ingress queue and its FLs * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queues * @vf: the VF owning the queues * @iqtype: the ingress queue type * @iqid: ingress queue id * @fl0id: FL0 queue id or 0xffff if no attached FL0 * @fl1id: FL1 queue id or 0xffff if no attached FL1 * * Frees an ingress queue and its associated FLs, if any. */ int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) | FW_IQ_CMD_VFN_V(vf)); c.alloc_to_len16 = htonl(FW_IQ_CMD_FREE_F | FW_LEN16(c)); c.type_to_iqandstindex = htonl(FW_IQ_CMD_TYPE_V(iqtype)); c.iqid = htons(iqid); c.fl0id = htons(fl0id); c.fl1id = htons(fl1id); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_eth_eq_free - free an Ethernet egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees an Ethernet egress queue. */ int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_eth_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_EQ_ETH_CMD_PFN_V(pf) | FW_EQ_ETH_CMD_VFN_V(vf)); c.alloc_to_len16 = htonl(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c)); c.eqid_pkd = htonl(FW_EQ_ETH_CMD_EQID_V(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ctrl_eq_free - free a control egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ctrl_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_CTRL_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_EQ_CTRL_CMD_PFN_V(pf) | FW_EQ_CTRL_CMD_VFN_V(vf)); c.alloc_to_len16 = htonl(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c)); c.cmpliqid_eqid = htonl(FW_EQ_CTRL_CMD_EQID_V(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_ofld_eq_free - free an offload egress queue * @adap: the adapter * @mbox: mailbox to use for the FW command * @pf: the PF owning the queue * @vf: the VF owning the queue * @eqid: egress queue id * * Frees a control egress queue. */ int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf, unsigned int vf, unsigned int eqid) { struct fw_eq_ofld_cmd c; memset(&c, 0, sizeof(c)); c.op_to_vfn = htonl(FW_CMD_OP_V(FW_EQ_OFLD_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_EQ_OFLD_CMD_PFN_V(pf) | FW_EQ_OFLD_CMD_VFN_V(vf)); c.alloc_to_len16 = htonl(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c)); c.eqid_pkd = htonl(FW_EQ_OFLD_CMD_EQID_V(eqid)); return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL); } /** * t4_handle_fw_rpl - process a FW reply message * @adap: the adapter * @rpl: start of the FW message * * Processes a FW message, such as link state change messages. */ int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl) { u8 opcode = *(const u8 *)rpl; if (opcode == FW_PORT_CMD) { /* link/module state change message */ int speed = 0, fc = 0; const struct fw_port_cmd *p = (void *)rpl; int chan = FW_PORT_CMD_PORTID_G(ntohl(p->op_to_portid)); int port = adap->chan_map[chan]; struct port_info *pi = adap2pinfo(adap, port); struct link_config *lc = &pi->link_cfg; u32 stat = ntohl(p->u.info.lstatus_to_modtype); int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0; u32 mod = FW_PORT_CMD_MODTYPE_G(stat); if (stat & FW_PORT_CMD_RXPAUSE_F) fc |= PAUSE_RX; if (stat & FW_PORT_CMD_TXPAUSE_F) fc |= PAUSE_TX; if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) speed = 100; else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) speed = 1000; else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) speed = 10000; else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) speed = 40000; if (link_ok != lc->link_ok || speed != lc->speed || fc != lc->fc) { /* something changed */ lc->link_ok = link_ok; lc->speed = speed; lc->fc = fc; lc->supported = be16_to_cpu(p->u.info.pcap); t4_os_link_changed(adap, port, link_ok); } if (mod != pi->mod_type) { pi->mod_type = mod; t4_os_portmod_changed(adap, port); } } return 0; } static void get_pci_mode(struct adapter *adapter, struct pci_params *p) { u16 val; if (pci_is_pcie(adapter->pdev)) { pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val); p->speed = val & PCI_EXP_LNKSTA_CLS; p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4; } } /** * init_link_config - initialize a link's SW state * @lc: structure holding the link state * @caps: link capabilities * * Initializes the SW state maintained for each link, including the link's * capabilities and default speed/flow-control/autonegotiation settings. */ static void init_link_config(struct link_config *lc, unsigned int caps) { lc->supported = caps; lc->requested_speed = 0; lc->speed = 0; lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; if (lc->supported & FW_PORT_CAP_ANEG) { lc->advertising = lc->supported & ADVERT_MASK; lc->autoneg = AUTONEG_ENABLE; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->advertising = 0; lc->autoneg = AUTONEG_DISABLE; } } #define CIM_PF_NOACCESS 0xeeeeeeee int t4_wait_dev_ready(void __iomem *regs) { u32 whoami; whoami = readl(regs + PL_WHOAMI); if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS) return 0; msleep(500); whoami = readl(regs + PL_WHOAMI); return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO); } struct flash_desc { u32 vendor_and_model_id; u32 size_mb; }; static int get_flash_params(struct adapter *adap) { /* Table for non-Numonix supported flash parts. Numonix parts are left * to the preexisting code. All flash parts have 64KB sectors. */ static struct flash_desc supported_flash[] = { { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */ }; int ret; u32 info; ret = sf1_write(adap, 1, 1, 0, SF_RD_ID); if (!ret) ret = sf1_read(adap, 3, 0, 1, &info); t4_write_reg(adap, SF_OP, 0); /* unlock SF */ if (ret) return ret; for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret) if (supported_flash[ret].vendor_and_model_id == info) { adap->params.sf_size = supported_flash[ret].size_mb; adap->params.sf_nsec = adap->params.sf_size / SF_SEC_SIZE; return 0; } if ((info & 0xff) != 0x20) /* not a Numonix flash */ return -EINVAL; info >>= 16; /* log2 of size */ if (info >= 0x14 && info < 0x18) adap->params.sf_nsec = 1 << (info - 16); else if (info == 0x18) adap->params.sf_nsec = 64; else return -EINVAL; adap->params.sf_size = 1 << info; adap->params.sf_fw_start = t4_read_reg(adap, CIM_BOOT_CFG) & BOOTADDR_MASK; if (adap->params.sf_size < FLASH_MIN_SIZE) dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n", adap->params.sf_size, FLASH_MIN_SIZE); return 0; } /** * t4_prep_adapter - prepare SW and HW for operation * @adapter: the adapter * @reset: if true perform a HW reset * * Initialize adapter SW state for the various HW modules, set initial * values for some adapter tunables, take PHYs out of reset, and * initialize the MDIO interface. */ int t4_prep_adapter(struct adapter *adapter) { int ret, ver; uint16_t device_id; u32 pl_rev; get_pci_mode(adapter, &adapter->params.pci); pl_rev = G_REV(t4_read_reg(adapter, PL_REV)); ret = get_flash_params(adapter); if (ret < 0) { dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret); return ret; } /* Retrieve adapter's device ID */ pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id); ver = device_id >> 12; adapter->params.chip = 0; switch (ver) { case CHELSIO_T4: adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev); break; case CHELSIO_T5: adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev); break; default: dev_err(adapter->pdev_dev, "Device %d is not supported\n", device_id); return -EINVAL; } init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd); /* * Default port for debugging in case we can't reach FW. */ adapter->params.nports = 1; adapter->params.portvec = 1; adapter->params.vpd.cclk = 50000; return 0; } /** * t4_bar2_sge_qregs - return BAR2 SGE Queue register information * @adapter: the adapter * @qid: the Queue ID * @qtype: the Ingress or Egress type for @qid * @pbar2_qoffset: BAR2 Queue Offset * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues * * Returns the BAR2 SGE Queue Registers information associated with the * indicated Absolute Queue ID. These are passed back in return value * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. * * This may return an error which indicates that BAR2 SGE Queue * registers aren't available. If an error is not returned, then the * following values are returned: * * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid * * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which * require the "Inferred Queue ID" ability may be used. E.g. the * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, * then these "Inferred Queue ID" register may not be used. */ int t4_bar2_sge_qregs(struct adapter *adapter, unsigned int qid, enum t4_bar2_qtype qtype, u64 *pbar2_qoffset, unsigned int *pbar2_qid) { unsigned int page_shift, page_size, qpp_shift, qpp_mask; u64 bar2_page_offset, bar2_qoffset; unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; /* T4 doesn't support BAR2 SGE Queue registers. */ if (is_t4(adapter->params.chip)) return -EINVAL; /* Get our SGE Page Size parameters. */ page_shift = adapter->params.sge.hps + 10; page_size = 1 << page_shift; /* Get the right Queues per Page parameters for our Queue. */ qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ? adapter->params.sge.eq_qpp : adapter->params.sge.iq_qpp); qpp_mask = (1 << qpp_shift) - 1; /* Calculate the basics of the BAR2 SGE Queue register area: * o The BAR2 page the Queue registers will be in. * o The BAR2 Queue ID. * o The BAR2 Queue ID Offset into the BAR2 page. */ bar2_page_offset = ((qid >> qpp_shift) << page_shift); bar2_qid = qid & qpp_mask; bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; /* If the BAR2 Queue ID Offset is less than the Page Size, then the * hardware will infer the Absolute Queue ID simply from the writes to * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply * write to the first BAR2 SGE Queue Area within the BAR2 Page with * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID * from the BAR2 Page and BAR2 Queue ID. * * One important censequence of this is that some BAR2 SGE registers * have a "Queue ID" field and we can write the BAR2 SGE Queue ID * there. But other registers synthesize the SGE Queue ID purely * from the writes to the registers -- the Write Combined Doorbell * Buffer is a good example. These BAR2 SGE Registers are only * available for those BAR2 SGE Register areas where the SGE Absolute * Queue ID can be inferred from simple writes. */ bar2_qoffset = bar2_page_offset; bar2_qinferred = (bar2_qid_offset < page_size); if (bar2_qinferred) { bar2_qoffset += bar2_qid_offset; bar2_qid = 0; } *pbar2_qoffset = bar2_qoffset; *pbar2_qid = bar2_qid; return 0; } /** * t4_init_sge_params - initialize adap->params.sge * @adapter: the adapter * * Initialize various fields of the adapter's SGE Parameters structure. */ int t4_init_sge_params(struct adapter *adapter) { struct sge_params *sge_params = &adapter->params.sge; u32 hps, qpp; unsigned int s_hps, s_qpp; /* Extract the SGE Page Size for our PF. */ hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE); s_hps = (HOSTPAGESIZEPF0_S + (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->fn); sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M); /* Extract the SGE Egress and Ingess Queues Per Page for our PF. */ s_qpp = (QUEUESPERPAGEPF0_S + (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->fn); qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF); sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_MASK); qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF); sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_MASK); return 0; } /** * t4_init_tp_params - initialize adap->params.tp * @adap: the adapter * * Initialize various fields of the adapter's TP Parameters structure. */ int t4_init_tp_params(struct adapter *adap) { int chan; u32 v; v = t4_read_reg(adap, TP_TIMER_RESOLUTION); adap->params.tp.tre = TIMERRESOLUTION_GET(v); adap->params.tp.dack_re = DELAYEDACKRESOLUTION_GET(v); /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */ for (chan = 0; chan < NCHAN; chan++) adap->params.tp.tx_modq[chan] = chan; /* Cache the adapter's Compressed Filter Mode and global Incress * Configuration. */ t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, &adap->params.tp.vlan_pri_map, 1, TP_VLAN_PRI_MAP); t4_read_indirect(adap, TP_PIO_ADDR, TP_PIO_DATA, &adap->params.tp.ingress_config, 1, TP_INGRESS_CONFIG); /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field * shift positions of several elements of the Compressed Filter Tuple * for this adapter which we need frequently ... */ adap->params.tp.vlan_shift = t4_filter_field_shift(adap, F_VLAN); adap->params.tp.vnic_shift = t4_filter_field_shift(adap, F_VNIC_ID); adap->params.tp.port_shift = t4_filter_field_shift(adap, F_PORT); adap->params.tp.protocol_shift = t4_filter_field_shift(adap, F_PROTOCOL); /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID * represents the presense of an Outer VLAN instead of a VNIC ID. */ if ((adap->params.tp.ingress_config & F_VNIC) == 0) adap->params.tp.vnic_shift = -1; return 0; } /** * t4_filter_field_shift - calculate filter field shift * @adap: the adapter * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits) * * Return the shift position of a filter field within the Compressed * Filter Tuple. The filter field is specified via its selection bit * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN. */ int t4_filter_field_shift(const struct adapter *adap, int filter_sel) { unsigned int filter_mode = adap->params.tp.vlan_pri_map; unsigned int sel; int field_shift; if ((filter_mode & filter_sel) == 0) return -1; for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) { switch (filter_mode & sel) { case F_FCOE: field_shift += W_FT_FCOE; break; case F_PORT: field_shift += W_FT_PORT; break; case F_VNIC_ID: field_shift += W_FT_VNIC_ID; break; case F_VLAN: field_shift += W_FT_VLAN; break; case F_TOS: field_shift += W_FT_TOS; break; case F_PROTOCOL: field_shift += W_FT_PROTOCOL; break; case F_ETHERTYPE: field_shift += W_FT_ETHERTYPE; break; case F_MACMATCH: field_shift += W_FT_MACMATCH; break; case F_MPSHITTYPE: field_shift += W_FT_MPSHITTYPE; break; case F_FRAGMENTATION: field_shift += W_FT_FRAGMENTATION; break; } } return field_shift; } int t4_port_init(struct adapter *adap, int mbox, int pf, int vf) { u8 addr[6]; int ret, i, j = 0; struct fw_port_cmd c; struct fw_rss_vi_config_cmd rvc; memset(&c, 0, sizeof(c)); memset(&rvc, 0, sizeof(rvc)); for_each_port(adap, i) { unsigned int rss_size; struct port_info *p = adap2pinfo(adap, i); while ((adap->params.portvec & (1 << j)) == 0) j++; c.op_to_portid = htonl(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_PORT_CMD_PORTID_V(j)); c.action_to_len16 = htonl( FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) | FW_LEN16(c)); ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c); if (ret) return ret; ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size); if (ret < 0) return ret; p->viid = ret; p->tx_chan = j; p->lport = j; p->rss_size = rss_size; memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN); adap->port[i]->dev_port = j; ret = ntohl(c.u.info.lstatus_to_modtype); p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ? FW_PORT_CMD_MDIOADDR_G(ret) : -1; p->port_type = FW_PORT_CMD_PTYPE_G(ret); p->mod_type = FW_PORT_MOD_TYPE_NA; rvc.op_to_viid = htonl(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_RSS_VI_CONFIG_CMD_VIID(p->viid)); rvc.retval_len16 = htonl(FW_LEN16(rvc)); ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc); if (ret) return ret; p->rss_mode = ntohl(rvc.u.basicvirtual.defaultq_to_udpen); init_link_config(&p->link_cfg, ntohs(c.u.info.pcap)); j++; } return 0; }