/* * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet * driver for Linux. * * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include #include "t4vf_common.h" #include "t4vf_defs.h" #include "../cxgb4/t4_regs.h" #include "../cxgb4/t4_values.h" #include "../cxgb4/t4fw_api.h" /* * Wait for the device to become ready (signified by our "who am I" register * returning a value other than all 1's). Return an error if it doesn't * become ready ... */ int t4vf_wait_dev_ready(struct adapter *adapter) { const u32 whoami = T4VF_PL_BASE_ADDR + PL_VF_WHOAMI; const u32 notready1 = 0xffffffff; const u32 notready2 = 0xeeeeeeee; u32 val; val = t4_read_reg(adapter, whoami); if (val != notready1 && val != notready2) return 0; msleep(500); val = t4_read_reg(adapter, whoami); if (val != notready1 && val != notready2) return 0; else return -EIO; } /* * Get the reply to a mailbox command and store it in @rpl in big-endian order * (since the firmware data structures are specified in a big-endian layout). */ static void get_mbox_rpl(struct adapter *adapter, __be64 *rpl, int size, u32 mbox_data) { for ( ; size; size -= 8, mbox_data += 8) *rpl++ = cpu_to_be64(t4_read_reg64(adapter, mbox_data)); } /** * t4vf_record_mbox - record a Firmware Mailbox Command/Reply in the log * @adapter: the adapter * @cmd: the Firmware Mailbox Command or Reply * @size: command length in bytes * @access: the time (ms) needed to access the Firmware Mailbox * @execute: the time (ms) the command spent being executed */ static void t4vf_record_mbox(struct adapter *adapter, const __be64 *cmd, int size, int access, int execute) { struct mbox_cmd_log *log = adapter->mbox_log; struct mbox_cmd *entry; int i; entry = mbox_cmd_log_entry(log, log->cursor++); if (log->cursor == log->size) log->cursor = 0; for (i = 0; i < size / 8; i++) entry->cmd[i] = be64_to_cpu(cmd[i]); while (i < MBOX_LEN / 8) entry->cmd[i++] = 0; entry->timestamp = jiffies; entry->seqno = log->seqno++; entry->access = access; entry->execute = execute; } /** * t4vf_wr_mbox_core - send a command to FW through the mailbox * @adapter: the adapter * @cmd: the command to write * @size: command length in bytes * @rpl: where to optionally store the reply * @sleep_ok: if true we may sleep while awaiting command completion * * Sends the given command to FW through the mailbox and waits for the * FW to execute the command. If @rpl is not %NULL it is used to store * the FW's reply to the command. The command and its optional reply * are of the same length. FW can take up to 500 ms to respond. * @sleep_ok determines whether we may sleep while awaiting the response. * If sleeping is allowed we use progressive backoff otherwise we spin. * * The return value is 0 on success or a negative errno on failure. A * failure can happen either because we are not able to execute the * command or FW executes it but signals an error. In the latter case * the return value is the error code indicated by FW (negated). */ int t4vf_wr_mbox_core(struct adapter *adapter, const void *cmd, int size, void *rpl, bool sleep_ok) { static const int delay[] = { 1, 1, 3, 5, 10, 10, 20, 50, 100 }; u16 access = 0, execute = 0; u32 v, mbox_data; int i, ms, delay_idx, ret; const __be64 *p; u32 mbox_ctl = T4VF_CIM_BASE_ADDR + CIM_VF_EXT_MAILBOX_CTRL; u32 cmd_op = FW_CMD_OP_G(be32_to_cpu(((struct fw_cmd_hdr *)cmd)->hi)); __be64 cmd_rpl[MBOX_LEN / 8]; struct mbox_list entry; /* In T6, mailbox size is changed to 128 bytes to avoid * invalidating the entire prefetch buffer. */ if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) mbox_data = T4VF_MBDATA_BASE_ADDR; else mbox_data = T6VF_MBDATA_BASE_ADDR; /* * Commands must be multiples of 16 bytes in length and may not be * larger than the size of the Mailbox Data register array. */ if ((size % 16) != 0 || size > NUM_CIM_VF_MAILBOX_DATA_INSTANCES * 4) return -EINVAL; /* Queue ourselves onto the mailbox access list. When our entry is at * the front of the list, we have rights to access the mailbox. So we * wait [for a while] till we're at the front [or bail out with an * EBUSY] ... */ spin_lock(&adapter->mbox_lock); list_add_tail(&entry.list, &adapter->mlist.list); spin_unlock(&adapter->mbox_lock); delay_idx = 0; ms = delay[0]; for (i = 0; ; i += ms) { /* If we've waited too long, return a busy indication. This * really ought to be based on our initial position in the * mailbox access list but this is a start. We very rearely * contend on access to the mailbox ... */ if (i > FW_CMD_MAX_TIMEOUT) { spin_lock(&adapter->mbox_lock); list_del(&entry.list); spin_unlock(&adapter->mbox_lock); ret = -EBUSY; t4vf_record_mbox(adapter, cmd, size, access, ret); return ret; } /* If we're at the head, break out and start the mailbox * protocol. */ if (list_first_entry(&adapter->mlist.list, struct mbox_list, list) == &entry) break; /* Delay for a bit before checking again ... */ if (sleep_ok) { ms = delay[delay_idx]; /* last element may repeat */ if (delay_idx < ARRAY_SIZE(delay) - 1) delay_idx++; msleep(ms); } else { mdelay(ms); } } /* * Loop trying to get ownership of the mailbox. Return an error * if we can't gain ownership. */ v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl)); for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++) v = MBOWNER_G(t4_read_reg(adapter, mbox_ctl)); if (v != MBOX_OWNER_DRV) { spin_lock(&adapter->mbox_lock); list_del(&entry.list); spin_unlock(&adapter->mbox_lock); ret = (v == MBOX_OWNER_FW) ? -EBUSY : -ETIMEDOUT; t4vf_record_mbox(adapter, cmd, size, access, ret); return ret; } /* * Write the command array into the Mailbox Data register array and * transfer ownership of the mailbox to the firmware. * * For the VFs, the Mailbox Data "registers" are actually backed by * T4's "MA" interface rather than PL Registers (as is the case for * the PFs). Because these are in different coherency domains, the * write to the VF's PL-register-backed Mailbox Control can race in * front of the writes to the MA-backed VF Mailbox Data "registers". * So we need to do a read-back on at least one byte of the VF Mailbox * Data registers before doing the write to the VF Mailbox Control * register. */ if (cmd_op != FW_VI_STATS_CMD) t4vf_record_mbox(adapter, cmd, size, access, 0); for (i = 0, p = cmd; i < size; i += 8) t4_write_reg64(adapter, mbox_data + i, be64_to_cpu(*p++)); t4_read_reg(adapter, mbox_data); /* flush write */ t4_write_reg(adapter, mbox_ctl, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW)); t4_read_reg(adapter, mbox_ctl); /* flush write */ /* * Spin waiting for firmware to acknowledge processing our command. */ delay_idx = 0; ms = delay[0]; for (i = 0; i < FW_CMD_MAX_TIMEOUT; i += ms) { if (sleep_ok) { ms = delay[delay_idx]; if (delay_idx < ARRAY_SIZE(delay) - 1) delay_idx++; msleep(ms); } else mdelay(ms); /* * If we're the owner, see if this is the reply we wanted. */ v = t4_read_reg(adapter, mbox_ctl); if (MBOWNER_G(v) == MBOX_OWNER_DRV) { /* * If the Message Valid bit isn't on, revoke ownership * of the mailbox and continue waiting for our reply. */ if ((v & MBMSGVALID_F) == 0) { t4_write_reg(adapter, mbox_ctl, MBOWNER_V(MBOX_OWNER_NONE)); continue; } /* * We now have our reply. Extract the command return * value, copy the reply back to our caller's buffer * (if specified) and revoke ownership of the mailbox. * We return the (negated) firmware command return * code (this depends on FW_SUCCESS == 0). */ get_mbox_rpl(adapter, cmd_rpl, size, mbox_data); /* return value in low-order little-endian word */ v = be64_to_cpu(cmd_rpl[0]); if (rpl) { /* request bit in high-order BE word */ WARN_ON((be32_to_cpu(*(const __be32 *)cmd) & FW_CMD_REQUEST_F) == 0); memcpy(rpl, cmd_rpl, size); WARN_ON((be32_to_cpu(*(__be32 *)rpl) & FW_CMD_REQUEST_F) != 0); } t4_write_reg(adapter, mbox_ctl, MBOWNER_V(MBOX_OWNER_NONE)); execute = i + ms; if (cmd_op != FW_VI_STATS_CMD) t4vf_record_mbox(adapter, cmd_rpl, size, access, execute); spin_lock(&adapter->mbox_lock); list_del(&entry.list); spin_unlock(&adapter->mbox_lock); return -FW_CMD_RETVAL_G(v); } } /* We timed out. Return the error ... */ ret = -ETIMEDOUT; t4vf_record_mbox(adapter, cmd, size, access, ret); spin_lock(&adapter->mbox_lock); list_del(&entry.list); spin_unlock(&adapter->mbox_lock); return ret; } /* In the Physical Function Driver Common Code, the ADVERT_MASK is used to * mask out bits in the Advertised Port Capabilities which are managed via * separate controls, like Pause Frames and Forward Error Correction. In the * Virtual Function Common Code, since we never perform L1 Configuration on * the Link, the only things we really need to filter out are things which * we decode and report separately like Speed. */ #define ADVERT_MASK (FW_PORT_CAP32_SPEED_V(FW_PORT_CAP32_SPEED_M) | \ FW_PORT_CAP32_802_3_PAUSE | \ FW_PORT_CAP32_802_3_ASM_DIR | \ FW_PORT_CAP32_FEC_V(FW_PORT_CAP32_FEC_M) | \ FW_PORT_CAP32_ANEG) /** * fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits * @caps16: a 16-bit Port Capabilities value * * Returns the equivalent 32-bit Port Capabilities value. */ static fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16) { fw_port_cap32_t caps32 = 0; #define CAP16_TO_CAP32(__cap) \ do { \ if (caps16 & FW_PORT_CAP_##__cap) \ caps32 |= FW_PORT_CAP32_##__cap; \ } while (0) CAP16_TO_CAP32(SPEED_100M); CAP16_TO_CAP32(SPEED_1G); CAP16_TO_CAP32(SPEED_25G); CAP16_TO_CAP32(SPEED_10G); CAP16_TO_CAP32(SPEED_40G); CAP16_TO_CAP32(SPEED_100G); CAP16_TO_CAP32(FC_RX); CAP16_TO_CAP32(FC_TX); CAP16_TO_CAP32(ANEG); CAP16_TO_CAP32(MDIAUTO); CAP16_TO_CAP32(MDISTRAIGHT); CAP16_TO_CAP32(FEC_RS); CAP16_TO_CAP32(FEC_BASER_RS); CAP16_TO_CAP32(802_3_PAUSE); CAP16_TO_CAP32(802_3_ASM_DIR); #undef CAP16_TO_CAP32 return caps32; } /* Translate Firmware Pause specification to Common Code */ static inline enum cc_pause fwcap_to_cc_pause(fw_port_cap32_t fw_pause) { enum cc_pause cc_pause = 0; if (fw_pause & FW_PORT_CAP32_FC_RX) cc_pause |= PAUSE_RX; if (fw_pause & FW_PORT_CAP32_FC_TX) cc_pause |= PAUSE_TX; return cc_pause; } /* Translate Firmware Forward Error Correction specification to Common Code */ static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec) { enum cc_fec cc_fec = 0; if (fw_fec & FW_PORT_CAP32_FEC_RS) cc_fec |= FEC_RS; if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS) cc_fec |= FEC_BASER_RS; return cc_fec; } /** * Return the highest speed set in the port capabilities, in Mb/s. */ static unsigned int fwcap_to_speed(fw_port_cap32_t caps) { #define TEST_SPEED_RETURN(__caps_speed, __speed) \ do { \ if (caps & FW_PORT_CAP32_SPEED_##__caps_speed) \ return __speed; \ } while (0) TEST_SPEED_RETURN(400G, 400000); TEST_SPEED_RETURN(200G, 200000); TEST_SPEED_RETURN(100G, 100000); TEST_SPEED_RETURN(50G, 50000); TEST_SPEED_RETURN(40G, 40000); TEST_SPEED_RETURN(25G, 25000); TEST_SPEED_RETURN(10G, 10000); TEST_SPEED_RETURN(1G, 1000); TEST_SPEED_RETURN(100M, 100); #undef TEST_SPEED_RETURN return 0; } /** * fwcap_to_fwspeed - return highest speed in Port Capabilities * @acaps: advertised Port Capabilities * * Get the highest speed for the port from the advertised Port * Capabilities. It will be either the highest speed from the list of * speeds or whatever user has set using ethtool. */ static fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps) { #define TEST_SPEED_RETURN(__caps_speed) \ do { \ if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \ return FW_PORT_CAP32_SPEED_##__caps_speed; \ } while (0) TEST_SPEED_RETURN(400G); TEST_SPEED_RETURN(200G); TEST_SPEED_RETURN(100G); TEST_SPEED_RETURN(50G); TEST_SPEED_RETURN(40G); TEST_SPEED_RETURN(25G); TEST_SPEED_RETURN(10G); TEST_SPEED_RETURN(1G); TEST_SPEED_RETURN(100M); #undef TEST_SPEED_RETURN return 0; } /* * init_link_config - initialize a link's SW state * @lc: structure holding the link state * @pcaps: link Port Capabilities * @acaps: link current Advertised Port Capabilities * * Initializes the SW state maintained for each link, including the link's * capabilities and default speed/flow-control/autonegotiation settings. */ static void init_link_config(struct link_config *lc, fw_port_cap32_t pcaps, fw_port_cap32_t acaps) { lc->pcaps = pcaps; lc->lpacaps = 0; lc->speed_caps = 0; lc->speed = 0; lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX; /* For Forward Error Control, we default to whatever the Firmware * tells us the Link is currently advertising. */ lc->auto_fec = fwcap_to_cc_fec(acaps); lc->requested_fec = FEC_AUTO; lc->fec = lc->auto_fec; /* If the Port is capable of Auto-Negtotiation, initialize it as * "enabled" and copy over all of the Physical Port Capabilities * to the Advertised Port Capabilities. Otherwise mark it as * Auto-Negotiate disabled and select the highest supported speed * for the link. Note parallel structure in t4_link_l1cfg_core() * and t4_handle_get_port_info(). */ if (lc->pcaps & FW_PORT_CAP32_ANEG) { lc->acaps = acaps & ADVERT_MASK; lc->autoneg = AUTONEG_ENABLE; lc->requested_fc |= PAUSE_AUTONEG; } else { lc->acaps = 0; lc->autoneg = AUTONEG_DISABLE; lc->speed_caps = fwcap_to_fwspeed(acaps); } } /** * t4vf_port_init - initialize port hardware/software state * @adapter: the adapter * @pidx: the adapter port index */ int t4vf_port_init(struct adapter *adapter, int pidx) { struct port_info *pi = adap2pinfo(adapter, pidx); unsigned int fw_caps = adapter->params.fw_caps_support; struct fw_vi_cmd vi_cmd, vi_rpl; struct fw_port_cmd port_cmd, port_rpl; enum fw_port_type port_type; int mdio_addr; fw_port_cap32_t pcaps, acaps; int ret; /* If we haven't yet determined whether we're talking to Firmware * which knows the new 32-bit Port Capabilities, it's time to find * out now. This will also tell new Firmware to send us Port Status * Updates using the new 32-bit Port Capabilities version of the * Port Information message. */ if (fw_caps == FW_CAPS_UNKNOWN) { u32 param, val; param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32)); val = 1; ret = t4vf_set_params(adapter, 1, ¶m, &val); fw_caps = (ret == 0 ? FW_CAPS32 : FW_CAPS16); adapter->params.fw_caps_support = fw_caps; } /* * Execute a VI Read command to get our Virtual Interface information * like MAC address, etc. */ memset(&vi_cmd, 0, sizeof(vi_cmd)); vi_cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); vi_cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(vi_cmd)); vi_cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(pi->viid)); ret = t4vf_wr_mbox(adapter, &vi_cmd, sizeof(vi_cmd), &vi_rpl); if (ret != FW_SUCCESS) return ret; BUG_ON(pi->port_id != FW_VI_CMD_PORTID_G(vi_rpl.portid_pkd)); pi->rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(vi_rpl.rsssize_pkd)); t4_os_set_hw_addr(adapter, pidx, vi_rpl.mac); /* * If we don't have read access to our port information, we're done * now. Otherwise, execute a PORT Read command to get it ... */ if (!(adapter->params.vfres.r_caps & FW_CMD_CAP_PORT)) return 0; memset(&port_cmd, 0, sizeof(port_cmd)); port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_PORT_CMD_PORTID_V(pi->port_id)); port_cmd.action_to_len16 = cpu_to_be32( FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 ? FW_PORT_ACTION_GET_PORT_INFO : FW_PORT_ACTION_GET_PORT_INFO32) | FW_LEN16(port_cmd)); ret = t4vf_wr_mbox(adapter, &port_cmd, sizeof(port_cmd), &port_rpl); if (ret != FW_SUCCESS) return ret; /* Extract the various fields from the Port Information message. */ if (fw_caps == FW_CAPS16) { u32 lstatus = be32_to_cpu(port_rpl.u.info.lstatus_to_modtype); port_type = FW_PORT_CMD_PTYPE_G(lstatus); mdio_addr = ((lstatus & FW_PORT_CMD_MDIOCAP_F) ? FW_PORT_CMD_MDIOADDR_G(lstatus) : -1); pcaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.pcap)); acaps = fwcaps16_to_caps32(be16_to_cpu(port_rpl.u.info.acap)); } else { u32 lstatus32 = be32_to_cpu(port_rpl.u.info32.lstatus32_to_cbllen32); port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); mdio_addr = ((lstatus32 & FW_PORT_CMD_MDIOCAP32_F) ? FW_PORT_CMD_MDIOADDR32_G(lstatus32) : -1); pcaps = be32_to_cpu(port_rpl.u.info32.pcaps32); acaps = be32_to_cpu(port_rpl.u.info32.acaps32); } pi->port_type = port_type; pi->mdio_addr = mdio_addr; pi->mod_type = FW_PORT_MOD_TYPE_NA; init_link_config(&pi->link_cfg, pcaps, acaps); return 0; } /** * t4vf_fw_reset - issue a reset to FW * @adapter: the adapter * * Issues a reset command to FW. For a Physical Function this would * result in the Firmware resetting all of its state. For a Virtual * Function this just resets the state associated with the VF. */ int t4vf_fw_reset(struct adapter *adapter) { struct fw_reset_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RESET_CMD) | FW_CMD_WRITE_F); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); } /** * t4vf_query_params - query FW or device parameters * @adapter: the adapter * @nparams: the number of parameters * @params: the parameter names * @vals: the parameter values * * Reads the values of firmware or device parameters. Up to 7 parameters * can be queried at once. */ static int t4vf_query_params(struct adapter *adapter, unsigned int nparams, const u32 *params, u32 *vals) { int i, ret; struct fw_params_cmd cmd, rpl; struct fw_params_param *p; size_t len16; if (nparams > 7) return -EINVAL; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, param[nparams].mnem), 16); cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) p->mnem = htonl(*params++); ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); if (ret == 0) for (i = 0, p = &rpl.param[0]; i < nparams; i++, p++) *vals++ = be32_to_cpu(p->val); return ret; } /** * t4vf_set_params - sets FW or device parameters * @adapter: the adapter * @nparams: the number of parameters * @params: the parameter names * @vals: the parameter values * * Sets the values of firmware or device parameters. Up to 7 parameters * can be specified at once. */ int t4vf_set_params(struct adapter *adapter, unsigned int nparams, const u32 *params, const u32 *vals) { int i; struct fw_params_cmd cmd; struct fw_params_param *p; size_t len16; if (nparams > 7) return -EINVAL; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F); len16 = DIV_ROUND_UP(offsetof(struct fw_params_cmd, param[nparams]), 16); cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); for (i = 0, p = &cmd.param[0]; i < nparams; i++, p++) { p->mnem = cpu_to_be32(*params++); p->val = cpu_to_be32(*vals++); } return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); } /** * t4vf_fl_pkt_align - return the fl packet alignment * @adapter: the adapter * * T4 has a single field to specify the packing and padding boundary. * T5 onwards has separate fields for this and hence the alignment for * next packet offset is maximum of these two. And T6 changes the * Ingress Padding Boundary Shift, so it's all a mess and it's best * if we put this in low-level Common Code ... * */ int t4vf_fl_pkt_align(struct adapter *adapter) { u32 sge_control, sge_control2; unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift; sge_control = adapter->params.sge.sge_control; /* T4 uses a single control field to specify both the PCIe Padding and * Packing Boundary. T5 introduced the ability to specify these * separately. The actual Ingress Packet Data alignment boundary * within Packed Buffer Mode is the maximum of these two * specifications. (Note that it makes no real practical sense to * have the Pading Boudary be larger than the Packing Boundary but you * could set the chip up that way and, in fact, legacy T4 code would * end doing this because it would initialize the Padding Boundary and * leave the Packing Boundary initialized to 0 (16 bytes).) * Padding Boundary values in T6 starts from 8B, * where as it is 32B for T4 and T5. */ if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) ingpad_shift = INGPADBOUNDARY_SHIFT_X; else ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X; ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift); fl_align = ingpadboundary; if (!is_t4(adapter->params.chip)) { /* T5 has a different interpretation of one of the PCIe Packing * Boundary values. */ sge_control2 = adapter->params.sge.sge_control2; ingpackboundary = INGPACKBOUNDARY_G(sge_control2); if (ingpackboundary == INGPACKBOUNDARY_16B_X) ingpackboundary = 16; else ingpackboundary = 1 << (ingpackboundary + INGPACKBOUNDARY_SHIFT_X); fl_align = max(ingpadboundary, ingpackboundary); } return fl_align; } /** * t4vf_bar2_sge_qregs - return BAR2 SGE Queue register information * @adapter: the adapter * @qid: the Queue ID * @qtype: the Ingress or Egress type for @qid * @pbar2_qoffset: BAR2 Queue Offset * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues * * Returns the BAR2 SGE Queue Registers information associated with the * indicated Absolute Queue ID. These are passed back in return value * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue * and T4_BAR2_QTYPE_INGRESS for Ingress Queues. * * This may return an error which indicates that BAR2 SGE Queue * registers aren't available. If an error is not returned, then the * following values are returned: * * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid * * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which * require the "Inferred Queue ID" ability may be used. E.g. the * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0, * then these "Inferred Queue ID" register may not be used. */ int t4vf_bar2_sge_qregs(struct adapter *adapter, unsigned int qid, enum t4_bar2_qtype qtype, u64 *pbar2_qoffset, unsigned int *pbar2_qid) { unsigned int page_shift, page_size, qpp_shift, qpp_mask; u64 bar2_page_offset, bar2_qoffset; unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred; /* T4 doesn't support BAR2 SGE Queue registers. */ if (is_t4(adapter->params.chip)) return -EINVAL; /* Get our SGE Page Size parameters. */ page_shift = adapter->params.sge.sge_vf_hps + 10; page_size = 1 << page_shift; /* Get the right Queues per Page parameters for our Queue. */ qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS ? adapter->params.sge.sge_vf_eq_qpp : adapter->params.sge.sge_vf_iq_qpp); qpp_mask = (1 << qpp_shift) - 1; /* Calculate the basics of the BAR2 SGE Queue register area: * o The BAR2 page the Queue registers will be in. * o The BAR2 Queue ID. * o The BAR2 Queue ID Offset into the BAR2 page. */ bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift); bar2_qid = qid & qpp_mask; bar2_qid_offset = bar2_qid * SGE_UDB_SIZE; /* If the BAR2 Queue ID Offset is less than the Page Size, then the * hardware will infer the Absolute Queue ID simply from the writes to * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply * write to the first BAR2 SGE Queue Area within the BAR2 Page with * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID * from the BAR2 Page and BAR2 Queue ID. * * One important censequence of this is that some BAR2 SGE registers * have a "Queue ID" field and we can write the BAR2 SGE Queue ID * there. But other registers synthesize the SGE Queue ID purely * from the writes to the registers -- the Write Combined Doorbell * Buffer is a good example. These BAR2 SGE Registers are only * available for those BAR2 SGE Register areas where the SGE Absolute * Queue ID can be inferred from simple writes. */ bar2_qoffset = bar2_page_offset; bar2_qinferred = (bar2_qid_offset < page_size); if (bar2_qinferred) { bar2_qoffset += bar2_qid_offset; bar2_qid = 0; } *pbar2_qoffset = bar2_qoffset; *pbar2_qid = bar2_qid; return 0; } unsigned int t4vf_get_pf_from_vf(struct adapter *adapter) { u32 whoami; whoami = t4_read_reg(adapter, T4VF_PL_BASE_ADDR + PL_VF_WHOAMI_A); return (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ? SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami)); } /** * t4vf_get_sge_params - retrieve adapter Scatter gather Engine parameters * @adapter: the adapter * * Retrieves various core SGE parameters in the form of hardware SGE * register values. The caller is responsible for decoding these as * needed. The SGE parameters are stored in @adapter->params.sge. */ int t4vf_get_sge_params(struct adapter *adapter) { struct sge_params *sge_params = &adapter->params.sge; u32 params[7], vals[7]; int v; params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL_A)); params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_HOST_PAGE_SIZE_A)); params[2] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE0_A)); params[3] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_FL_BUFFER_SIZE1_A)); params[4] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_0_AND_1_A)); params[5] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_2_AND_3_A)); params[6] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_TIMER_VALUE_4_AND_5_A)); v = t4vf_query_params(adapter, 7, params, vals); if (v) return v; sge_params->sge_control = vals[0]; sge_params->sge_host_page_size = vals[1]; sge_params->sge_fl_buffer_size[0] = vals[2]; sge_params->sge_fl_buffer_size[1] = vals[3]; sge_params->sge_timer_value_0_and_1 = vals[4]; sge_params->sge_timer_value_2_and_3 = vals[5]; sge_params->sge_timer_value_4_and_5 = vals[6]; /* T4 uses a single control field to specify both the PCIe Padding and * Packing Boundary. T5 introduced the ability to specify these * separately with the Padding Boundary in SGE_CONTROL and and Packing * Boundary in SGE_CONTROL2. So for T5 and later we need to grab * SGE_CONTROL in order to determine how ingress packet data will be * laid out in Packed Buffer Mode. Unfortunately, older versions of * the firmware won't let us retrieve SGE_CONTROL2 so if we get a * failure grabbing it we throw an error since we can't figure out the * right value. */ if (!is_t4(adapter->params.chip)) { params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_CONTROL2_A)); v = t4vf_query_params(adapter, 1, params, vals); if (v != FW_SUCCESS) { dev_err(adapter->pdev_dev, "Unable to get SGE Control2; " "probably old firmware.\n"); return v; } sge_params->sge_control2 = vals[0]; } params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_INGRESS_RX_THRESHOLD_A)); params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V(SGE_CONM_CTRL_A)); v = t4vf_query_params(adapter, 2, params, vals); if (v) return v; sge_params->sge_ingress_rx_threshold = vals[0]; sge_params->sge_congestion_control = vals[1]; /* For T5 and later we want to use the new BAR2 Doorbells. * Unfortunately, older firmware didn't allow the this register to be * read. */ if (!is_t4(adapter->params.chip)) { unsigned int pf, s_hps, s_qpp; params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V( SGE_EGRESS_QUEUES_PER_PAGE_VF_A)); params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_REG) | FW_PARAMS_PARAM_XYZ_V( SGE_INGRESS_QUEUES_PER_PAGE_VF_A)); v = t4vf_query_params(adapter, 2, params, vals); if (v != FW_SUCCESS) { dev_warn(adapter->pdev_dev, "Unable to get VF SGE Queues/Page; " "probably old firmware.\n"); return v; } sge_params->sge_egress_queues_per_page = vals[0]; sge_params->sge_ingress_queues_per_page = vals[1]; /* We need the Queues/Page for our VF. This is based on the * PF from which we're instantiated and is indexed in the * register we just read. Do it once here so other code in * the driver can just use it. */ pf = t4vf_get_pf_from_vf(adapter); s_hps = (HOSTPAGESIZEPF0_S + (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * pf); sge_params->sge_vf_hps = ((sge_params->sge_host_page_size >> s_hps) & HOSTPAGESIZEPF0_M); s_qpp = (QUEUESPERPAGEPF0_S + (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * pf); sge_params->sge_vf_eq_qpp = ((sge_params->sge_egress_queues_per_page >> s_qpp) & QUEUESPERPAGEPF0_M); sge_params->sge_vf_iq_qpp = ((sge_params->sge_ingress_queues_per_page >> s_qpp) & QUEUESPERPAGEPF0_M); } return 0; } /** * t4vf_get_vpd_params - retrieve device VPD paremeters * @adapter: the adapter * * Retrives various device Vital Product Data parameters. The parameters * are stored in @adapter->params.vpd. */ int t4vf_get_vpd_params(struct adapter *adapter) { struct vpd_params *vpd_params = &adapter->params.vpd; u32 params[7], vals[7]; int v; params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK)); v = t4vf_query_params(adapter, 1, params, vals); if (v) return v; vpd_params->cclk = vals[0]; return 0; } /** * t4vf_get_dev_params - retrieve device paremeters * @adapter: the adapter * * Retrives various device parameters. The parameters are stored in * @adapter->params.dev. */ int t4vf_get_dev_params(struct adapter *adapter) { struct dev_params *dev_params = &adapter->params.dev; u32 params[7], vals[7]; int v; params[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWREV)); params[1] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) | FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_TPREV)); v = t4vf_query_params(adapter, 2, params, vals); if (v) return v; dev_params->fwrev = vals[0]; dev_params->tprev = vals[1]; return 0; } /** * t4vf_get_rss_glb_config - retrieve adapter RSS Global Configuration * @adapter: the adapter * * Retrieves global RSS mode and parameters with which we have to live * and stores them in the @adapter's RSS parameters. */ int t4vf_get_rss_glb_config(struct adapter *adapter) { struct rss_params *rss = &adapter->params.rss; struct fw_rss_glb_config_cmd cmd, rpl; int v; /* * Execute an RSS Global Configuration read command to retrieve * our RSS configuration. */ memset(&cmd, 0, sizeof(cmd)); cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); if (v) return v; /* * Transate the big-endian RSS Global Configuration into our * cpu-endian format based on the RSS mode. We also do first level * filtering at this point to weed out modes which don't support * VF Drivers ... */ rss->mode = FW_RSS_GLB_CONFIG_CMD_MODE_G( be32_to_cpu(rpl.u.manual.mode_pkd)); switch (rss->mode) { case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { u32 word = be32_to_cpu( rpl.u.basicvirtual.synmapen_to_hashtoeplitz); rss->u.basicvirtual.synmapen = ((word & FW_RSS_GLB_CONFIG_CMD_SYNMAPEN_F) != 0); rss->u.basicvirtual.syn4tupenipv6 = ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV6_F) != 0); rss->u.basicvirtual.syn2tupenipv6 = ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV6_F) != 0); rss->u.basicvirtual.syn4tupenipv4 = ((word & FW_RSS_GLB_CONFIG_CMD_SYN4TUPENIPV4_F) != 0); rss->u.basicvirtual.syn2tupenipv4 = ((word & FW_RSS_GLB_CONFIG_CMD_SYN2TUPENIPV4_F) != 0); rss->u.basicvirtual.ofdmapen = ((word & FW_RSS_GLB_CONFIG_CMD_OFDMAPEN_F) != 0); rss->u.basicvirtual.tnlmapen = ((word & FW_RSS_GLB_CONFIG_CMD_TNLMAPEN_F) != 0); rss->u.basicvirtual.tnlalllookup = ((word & FW_RSS_GLB_CONFIG_CMD_TNLALLLKP_F) != 0); rss->u.basicvirtual.hashtoeplitz = ((word & FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ_F) != 0); /* we need at least Tunnel Map Enable to be set */ if (!rss->u.basicvirtual.tnlmapen) return -EINVAL; break; } default: /* all unknown/unsupported RSS modes result in an error */ return -EINVAL; } return 0; } /** * t4vf_get_vfres - retrieve VF resource limits * @adapter: the adapter * * Retrieves configured resource limits and capabilities for a virtual * function. The results are stored in @adapter->vfres. */ int t4vf_get_vfres(struct adapter *adapter) { struct vf_resources *vfres = &adapter->params.vfres; struct fw_pfvf_cmd cmd, rpl; int v; u32 word; /* * Execute PFVF Read command to get VF resource limits; bail out early * with error on command failure. */ memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); if (v) return v; /* * Extract VF resource limits and return success. */ word = be32_to_cpu(rpl.niqflint_niq); vfres->niqflint = FW_PFVF_CMD_NIQFLINT_G(word); vfres->niq = FW_PFVF_CMD_NIQ_G(word); word = be32_to_cpu(rpl.type_to_neq); vfres->neq = FW_PFVF_CMD_NEQ_G(word); vfres->pmask = FW_PFVF_CMD_PMASK_G(word); word = be32_to_cpu(rpl.tc_to_nexactf); vfres->tc = FW_PFVF_CMD_TC_G(word); vfres->nvi = FW_PFVF_CMD_NVI_G(word); vfres->nexactf = FW_PFVF_CMD_NEXACTF_G(word); word = be32_to_cpu(rpl.r_caps_to_nethctrl); vfres->r_caps = FW_PFVF_CMD_R_CAPS_G(word); vfres->wx_caps = FW_PFVF_CMD_WX_CAPS_G(word); vfres->nethctrl = FW_PFVF_CMD_NETHCTRL_G(word); return 0; } /** * t4vf_read_rss_vi_config - read a VI's RSS configuration * @adapter: the adapter * @viid: Virtual Interface ID * @config: pointer to host-native VI RSS Configuration buffer * * Reads the Virtual Interface's RSS configuration information and * translates it into CPU-native format. */ int t4vf_read_rss_vi_config(struct adapter *adapter, unsigned int viid, union rss_vi_config *config) { struct fw_rss_vi_config_cmd cmd, rpl; int v; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_RSS_VI_CONFIG_CMD_VIID(viid)); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); if (v) return v; switch (adapter->params.rss.mode) { case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { u32 word = be32_to_cpu(rpl.u.basicvirtual.defaultq_to_udpen); config->basicvirtual.ip6fourtupen = ((word & FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F) != 0); config->basicvirtual.ip6twotupen = ((word & FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F) != 0); config->basicvirtual.ip4fourtupen = ((word & FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F) != 0); config->basicvirtual.ip4twotupen = ((word & FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F) != 0); config->basicvirtual.udpen = ((word & FW_RSS_VI_CONFIG_CMD_UDPEN_F) != 0); config->basicvirtual.defaultq = FW_RSS_VI_CONFIG_CMD_DEFAULTQ_G(word); break; } default: return -EINVAL; } return 0; } /** * t4vf_write_rss_vi_config - write a VI's RSS configuration * @adapter: the adapter * @viid: Virtual Interface ID * @config: pointer to host-native VI RSS Configuration buffer * * Write the Virtual Interface's RSS configuration information * (translating it into firmware-native format before writing). */ int t4vf_write_rss_vi_config(struct adapter *adapter, unsigned int viid, union rss_vi_config *config) { struct fw_rss_vi_config_cmd cmd, rpl; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_RSS_VI_CONFIG_CMD_VIID(viid)); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); switch (adapter->params.rss.mode) { case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL: { u32 word = 0; if (config->basicvirtual.ip6fourtupen) word |= FW_RSS_VI_CONFIG_CMD_IP6FOURTUPEN_F; if (config->basicvirtual.ip6twotupen) word |= FW_RSS_VI_CONFIG_CMD_IP6TWOTUPEN_F; if (config->basicvirtual.ip4fourtupen) word |= FW_RSS_VI_CONFIG_CMD_IP4FOURTUPEN_F; if (config->basicvirtual.ip4twotupen) word |= FW_RSS_VI_CONFIG_CMD_IP4TWOTUPEN_F; if (config->basicvirtual.udpen) word |= FW_RSS_VI_CONFIG_CMD_UDPEN_F; word |= FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V( config->basicvirtual.defaultq); cmd.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(word); break; } default: return -EINVAL; } return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); } /** * t4vf_config_rss_range - configure a portion of the RSS mapping table * @adapter: the adapter * @viid: Virtual Interface of RSS Table Slice * @start: starting entry in the table to write * @n: how many table entries to write * @rspq: values for the "Response Queue" (Ingress Queue) lookup table * @nrspq: number of values in @rspq * * Programs the selected part of the VI's RSS mapping table with the * provided values. If @nrspq < @n the supplied values are used repeatedly * until the full table range is populated. * * The caller must ensure the values in @rspq are in the range 0..1023. */ int t4vf_config_rss_range(struct adapter *adapter, unsigned int viid, int start, int n, const u16 *rspq, int nrspq) { const u16 *rsp = rspq; const u16 *rsp_end = rspq+nrspq; struct fw_rss_ind_tbl_cmd cmd; /* * Initialize firmware command template to write the RSS table. */ memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_RSS_IND_TBL_CMD_VIID_V(viid)); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); /* * Each firmware RSS command can accommodate up to 32 RSS Ingress * Queue Identifiers. These Ingress Queue IDs are packed three to * a 32-bit word as 10-bit values with the upper remaining 2 bits * reserved. */ while (n > 0) { __be32 *qp = &cmd.iq0_to_iq2; int nq = min(n, 32); int ret; /* * Set up the firmware RSS command header to send the next * "nq" Ingress Queue IDs to the firmware. */ cmd.niqid = cpu_to_be16(nq); cmd.startidx = cpu_to_be16(start); /* * "nq" more done for the start of the next loop. */ start += nq; n -= nq; /* * While there are still Ingress Queue IDs to stuff into the * current firmware RSS command, retrieve them from the * Ingress Queue ID array and insert them into the command. */ while (nq > 0) { /* * Grab up to the next 3 Ingress Queue IDs (wrapping * around the Ingress Queue ID array if necessary) and * insert them into the firmware RSS command at the * current 3-tuple position within the commad. */ u16 qbuf[3]; u16 *qbp = qbuf; int nqbuf = min(3, nq); nq -= nqbuf; qbuf[0] = qbuf[1] = qbuf[2] = 0; while (nqbuf) { nqbuf--; *qbp++ = *rsp++; if (rsp >= rsp_end) rsp = rspq; } *qp++ = cpu_to_be32(FW_RSS_IND_TBL_CMD_IQ0_V(qbuf[0]) | FW_RSS_IND_TBL_CMD_IQ1_V(qbuf[1]) | FW_RSS_IND_TBL_CMD_IQ2_V(qbuf[2])); } /* * Send this portion of the RRS table update to the firmware; * bail out on any errors. */ ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); if (ret) return ret; } return 0; } /** * t4vf_alloc_vi - allocate a virtual interface on a port * @adapter: the adapter * @port_id: physical port associated with the VI * * Allocate a new Virtual Interface and bind it to the indicated * physical port. Return the new Virtual Interface Identifier on * success, or a [negative] error number on failure. */ int t4vf_alloc_vi(struct adapter *adapter, int port_id) { struct fw_vi_cmd cmd, rpl; int v; /* * Execute a VI command to allocate Virtual Interface and return its * VIID. */ memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_F); cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | FW_VI_CMD_ALLOC_F); cmd.portid_pkd = FW_VI_CMD_PORTID_V(port_id); v = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); if (v) return v; return FW_VI_CMD_VIID_G(be16_to_cpu(rpl.type_viid)); } /** * t4vf_free_vi -- free a virtual interface * @adapter: the adapter * @viid: the virtual interface identifier * * Free a previously allocated Virtual Interface. Return an error on * failure. */ int t4vf_free_vi(struct adapter *adapter, int viid) { struct fw_vi_cmd cmd; /* * Execute a VI command to free the Virtual Interface. */ memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F); cmd.alloc_to_len16 = cpu_to_be32(FW_LEN16(cmd) | FW_VI_CMD_FREE_F); cmd.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid)); return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); } /** * t4vf_enable_vi - enable/disable a virtual interface * @adapter: the adapter * @viid: the Virtual Interface ID * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * * Enables/disables a virtual interface. */ int t4vf_enable_vi(struct adapter *adapter, unsigned int viid, bool rx_en, bool tx_en) { struct fw_vi_enable_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) | FW_VI_ENABLE_CMD_EEN_V(tx_en) | FW_LEN16(cmd)); return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); } /** * t4vf_enable_pi - enable/disable a Port's virtual interface * @adapter: the adapter * @pi: the Port Information structure * @rx_en: 1=enable Rx, 0=disable Rx * @tx_en: 1=enable Tx, 0=disable Tx * * Enables/disables a Port's virtual interface. If the Virtual * Interface enable/disable operation is successful, we notify the * OS-specific code of a potential Link Status change via the OS Contract * API t4vf_os_link_changed(). */ int t4vf_enable_pi(struct adapter *adapter, struct port_info *pi, bool rx_en, bool tx_en) { int ret = t4vf_enable_vi(adapter, pi->viid, rx_en, tx_en); if (ret) return ret; t4vf_os_link_changed(adapter, pi->pidx, rx_en && tx_en && pi->link_cfg.link_ok); return 0; } /** * t4vf_identify_port - identify a VI's port by blinking its LED * @adapter: the adapter * @viid: the Virtual Interface ID * @nblinks: how many times to blink LED at 2.5 Hz * * Identifies a VI's port by blinking its LED. */ int t4vf_identify_port(struct adapter *adapter, unsigned int viid, unsigned int nblinks) { struct fw_vi_enable_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F | FW_VI_ENABLE_CMD_VIID_V(viid)); cmd.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(cmd)); cmd.blinkdur = cpu_to_be16(nblinks); return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); } /** * t4vf_set_rxmode - set Rx properties of a virtual interface * @adapter: the adapter * @viid: the VI id * @mtu: the new MTU or -1 for no change * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change * @vlanex: 1 to enable hardware VLAN Tag extraction, 0 to disable it, * -1 no change * * Sets Rx properties of a virtual interface. */ int t4vf_set_rxmode(struct adapter *adapter, unsigned int viid, int mtu, int promisc, int all_multi, int bcast, int vlanex, bool sleep_ok) { struct fw_vi_rxmode_cmd cmd; /* convert to FW values */ if (mtu < 0) mtu = FW_VI_RXMODE_CMD_MTU_M; if (promisc < 0) promisc = FW_VI_RXMODE_CMD_PROMISCEN_M; if (all_multi < 0) all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M; if (bcast < 0) bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M; if (vlanex < 0) vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_RXMODE_CMD_VIID_V(viid)); cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd)); cmd.mtu_to_vlanexen = cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) | FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) | FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) | FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) | FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex)); return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); } /** * t4vf_alloc_mac_filt - allocates exact-match filters for MAC addresses * @adapter: the adapter * @viid: the Virtual Interface Identifier * @free: if true any existing filters for this VI id are first removed * @naddr: the number of MAC addresses to allocate filters for (up to 7) * @addr: the MAC address(es) * @idx: where to store the index of each allocated filter * @hash: pointer to hash address filter bitmap * @sleep_ok: call is allowed to sleep * * Allocates an exact-match filter for each of the supplied addresses and * sets it to the corresponding address. If @idx is not %NULL it should * have at least @naddr entries, each of which will be set to the index of * the filter allocated for the corresponding MAC address. If a filter * could not be allocated for an address its index is set to 0xffff. * If @hash is not %NULL addresses that fail to allocate an exact filter * are hashed and update the hash filter bitmap pointed at by @hash. * * Returns a negative error number or the number of filters allocated. */ int t4vf_alloc_mac_filt(struct adapter *adapter, unsigned int viid, bool free, unsigned int naddr, const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok) { int offset, ret = 0; unsigned nfilters = 0; unsigned int rem = naddr; struct fw_vi_mac_cmd cmd, rpl; unsigned int max_naddr = adapter->params.arch.mps_tcam_size; if (naddr > max_naddr) return -EINVAL; for (offset = 0; offset < naddr; /**/) { unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ? rem : ARRAY_SIZE(cmd.u.exact)); size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[fw_naddr]), 16); struct fw_vi_mac_exact *p; int i; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | (free ? FW_CMD_EXEC_F : 0) | FW_VI_MAC_CMD_VIID_V(viid)); cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) | FW_CMD_LEN16_V(len16)); for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { p->valid_to_idx = cpu_to_be16( FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_ADD_MAC)); memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); } ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &rpl, sleep_ok); if (ret && ret != -ENOMEM) break; for (i = 0, p = rpl.u.exact; i < fw_naddr; i++, p++) { u16 index = FW_VI_MAC_CMD_IDX_G( be16_to_cpu(p->valid_to_idx)); if (idx) idx[offset+i] = (index >= max_naddr ? 0xffff : index); if (index < max_naddr) nfilters++; else if (hash) *hash |= (1ULL << hash_mac_addr(addr[offset+i])); } free = false; offset += fw_naddr; rem -= fw_naddr; } /* * If there were no errors or we merely ran out of room in our MAC * address arena, return the number of filters actually written. */ if (ret == 0 || ret == -ENOMEM) ret = nfilters; return ret; } /** * t4vf_free_mac_filt - frees exact-match filters of given MAC addresses * @adapter: the adapter * @viid: the VI id * @naddr: the number of MAC addresses to allocate filters for (up to 7) * @addr: the MAC address(es) * @sleep_ok: call is allowed to sleep * * Frees the exact-match filter for each of the supplied addresses * * Returns a negative error number or the number of filters freed. */ int t4vf_free_mac_filt(struct adapter *adapter, unsigned int viid, unsigned int naddr, const u8 **addr, bool sleep_ok) { int offset, ret = 0; struct fw_vi_mac_cmd cmd; unsigned int nfilters = 0; unsigned int max_naddr = adapter->params.arch.mps_tcam_size; unsigned int rem = naddr; if (naddr > max_naddr) return -EINVAL; for (offset = 0; offset < (int)naddr ; /**/) { unsigned int fw_naddr = (rem < ARRAY_SIZE(cmd.u.exact) ? rem : ARRAY_SIZE(cmd.u.exact)); size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[fw_naddr]), 16); struct fw_vi_mac_exact *p; int i; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_CMD_EXEC_V(0) | FW_VI_MAC_CMD_VIID_V(viid)); cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) | FW_CMD_LEN16_V(len16)); for (i = 0, p = cmd.u.exact; i < (int)fw_naddr; i++, p++) { p->valid_to_idx = cpu_to_be16( FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE)); memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr)); } ret = t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), &cmd, sleep_ok); if (ret) break; for (i = 0, p = cmd.u.exact; i < fw_naddr; i++, p++) { u16 index = FW_VI_MAC_CMD_IDX_G( be16_to_cpu(p->valid_to_idx)); if (index < max_naddr) nfilters++; } offset += fw_naddr; rem -= fw_naddr; } if (ret == 0) ret = nfilters; return ret; } /** * t4vf_change_mac - modifies the exact-match filter for a MAC address * @adapter: the adapter * @viid: the Virtual Interface ID * @idx: index of existing filter for old value of MAC address, or -1 * @addr: the new MAC address value * @persist: if idx < 0, the new MAC allocation should be persistent * * Modifies an exact-match filter and sets it to the new MAC address. * Note that in general it is not possible to modify the value of a given * filter so the generic way to modify an address filter is to free the * one being used by the old address value and allocate a new filter for * the new address value. @idx can be -1 if the address is a new * addition. * * Returns a negative error number or the index of the filter with the new * MAC value. */ int t4vf_change_mac(struct adapter *adapter, unsigned int viid, int idx, const u8 *addr, bool persist) { int ret; struct fw_vi_mac_cmd cmd, rpl; struct fw_vi_mac_exact *p = &cmd.u.exact[0]; size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[1]), 16); unsigned int max_mac_addr = adapter->params.arch.mps_tcam_size; /* * If this is a new allocation, determine whether it should be * persistent (across a "freemacs" operation) or not. */ if (idx < 0) idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_MAC_CMD_VIID_V(viid)); cmd.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F | FW_VI_MAC_CMD_IDX_V(idx)); memcpy(p->macaddr, addr, sizeof(p->macaddr)); ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &rpl); if (ret == 0) { p = &rpl.u.exact[0]; ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx)); if (ret >= max_mac_addr) ret = -ENOMEM; } return ret; } /** * t4vf_set_addr_hash - program the MAC inexact-match hash filter * @adapter: the adapter * @viid: the Virtual Interface Identifier * @ucast: whether the hash filter should also match unicast addresses * @vec: the value to be written to the hash filter * @sleep_ok: call is allowed to sleep * * Sets the 64-bit inexact-match hash filter for a virtual interface. */ int t4vf_set_addr_hash(struct adapter *adapter, unsigned int viid, bool ucast, u64 vec, bool sleep_ok) { struct fw_vi_mac_cmd cmd; size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd, u.exact[0]), 16); memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_WRITE_F | FW_VI_ENABLE_CMD_VIID_V(viid)); cmd.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F | FW_VI_MAC_CMD_HASHUNIEN_V(ucast) | FW_CMD_LEN16_V(len16)); cmd.u.hash.hashvec = cpu_to_be64(vec); return t4vf_wr_mbox_core(adapter, &cmd, sizeof(cmd), NULL, sleep_ok); } /** * t4vf_get_port_stats - collect "port" statistics * @adapter: the adapter * @pidx: the port index * @s: the stats structure to fill * * Collect statistics for the "port"'s Virtual Interface. */ int t4vf_get_port_stats(struct adapter *adapter, int pidx, struct t4vf_port_stats *s) { struct port_info *pi = adap2pinfo(adapter, pidx); struct fw_vi_stats_vf fwstats; unsigned int rem = VI_VF_NUM_STATS; __be64 *fwsp = (__be64 *)&fwstats; /* * Grab the Virtual Interface statistics a chunk at a time via mailbox * commands. We could use a Work Request and get all of them at once * but that's an asynchronous interface which is awkward to use. */ while (rem) { unsigned int ix = VI_VF_NUM_STATS - rem; unsigned int nstats = min(6U, rem); struct fw_vi_stats_cmd cmd, rpl; size_t len = (offsetof(struct fw_vi_stats_cmd, u) + sizeof(struct fw_vi_stats_ctl)); size_t len16 = DIV_ROUND_UP(len, 16); int ret; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_STATS_CMD) | FW_VI_STATS_CMD_VIID_V(pi->viid) | FW_CMD_REQUEST_F | FW_CMD_READ_F); cmd.retval_len16 = cpu_to_be32(FW_CMD_LEN16_V(len16)); cmd.u.ctl.nstats_ix = cpu_to_be16(FW_VI_STATS_CMD_IX_V(ix) | FW_VI_STATS_CMD_NSTATS_V(nstats)); ret = t4vf_wr_mbox_ns(adapter, &cmd, len, &rpl); if (ret) return ret; memcpy(fwsp, &rpl.u.ctl.stat0, sizeof(__be64) * nstats); rem -= nstats; fwsp += nstats; } /* * Translate firmware statistics into host native statistics. */ s->tx_bcast_bytes = be64_to_cpu(fwstats.tx_bcast_bytes); s->tx_bcast_frames = be64_to_cpu(fwstats.tx_bcast_frames); s->tx_mcast_bytes = be64_to_cpu(fwstats.tx_mcast_bytes); s->tx_mcast_frames = be64_to_cpu(fwstats.tx_mcast_frames); s->tx_ucast_bytes = be64_to_cpu(fwstats.tx_ucast_bytes); s->tx_ucast_frames = be64_to_cpu(fwstats.tx_ucast_frames); s->tx_drop_frames = be64_to_cpu(fwstats.tx_drop_frames); s->tx_offload_bytes = be64_to_cpu(fwstats.tx_offload_bytes); s->tx_offload_frames = be64_to_cpu(fwstats.tx_offload_frames); s->rx_bcast_bytes = be64_to_cpu(fwstats.rx_bcast_bytes); s->rx_bcast_frames = be64_to_cpu(fwstats.rx_bcast_frames); s->rx_mcast_bytes = be64_to_cpu(fwstats.rx_mcast_bytes); s->rx_mcast_frames = be64_to_cpu(fwstats.rx_mcast_frames); s->rx_ucast_bytes = be64_to_cpu(fwstats.rx_ucast_bytes); s->rx_ucast_frames = be64_to_cpu(fwstats.rx_ucast_frames); s->rx_err_frames = be64_to_cpu(fwstats.rx_err_frames); return 0; } /** * t4vf_iq_free - free an ingress queue and its free lists * @adapter: the adapter * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.) * @iqid: ingress queue ID * @fl0id: FL0 queue ID or 0xffff if no attached FL0 * @fl1id: FL1 queue ID or 0xffff if no attached FL1 * * Frees an ingress queue and its associated free lists, if any. */ int t4vf_iq_free(struct adapter *adapter, unsigned int iqtype, unsigned int iqid, unsigned int fl0id, unsigned int fl1id) { struct fw_iq_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F); cmd.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(cmd)); cmd.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype)); cmd.iqid = cpu_to_be16(iqid); cmd.fl0id = cpu_to_be16(fl0id); cmd.fl1id = cpu_to_be16(fl1id); return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); } /** * t4vf_eth_eq_free - free an Ethernet egress queue * @adapter: the adapter * @eqid: egress queue ID * * Frees an Ethernet egress queue. */ int t4vf_eth_eq_free(struct adapter *adapter, unsigned int eqid) { struct fw_eq_eth_cmd cmd; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) | FW_CMD_REQUEST_F | FW_CMD_EXEC_F); cmd.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(cmd)); cmd.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid)); return t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), NULL); } /** * t4vf_link_down_rc_str - return a string for a Link Down Reason Code * @link_down_rc: Link Down Reason Code * * Returns a string representation of the Link Down Reason Code. */ static const char *t4vf_link_down_rc_str(unsigned char link_down_rc) { static const char * const reason[] = { "Link Down", "Remote Fault", "Auto-negotiation Failure", "Reserved", "Insufficient Airflow", "Unable To Determine Reason", "No RX Signal Detected", "Reserved", }; if (link_down_rc >= ARRAY_SIZE(reason)) return "Bad Reason Code"; return reason[link_down_rc]; } /** * t4vf_handle_get_port_info - process a FW reply message * @pi: the port info * @rpl: start of the FW message * * Processes a GET_PORT_INFO FW reply message. */ static void t4vf_handle_get_port_info(struct port_info *pi, const struct fw_port_cmd *cmd) { fw_port_cap32_t pcaps, acaps, lpacaps, linkattr; struct link_config *lc = &pi->link_cfg; struct adapter *adapter = pi->adapter; unsigned int speed, fc, fec, adv_fc; enum fw_port_module_type mod_type; int action, link_ok, linkdnrc; enum fw_port_type port_type; /* Extract the various fields from the Port Information message. */ action = FW_PORT_CMD_ACTION_G(be32_to_cpu(cmd->action_to_len16)); switch (action) { case FW_PORT_ACTION_GET_PORT_INFO: { u32 lstatus = be32_to_cpu(cmd->u.info.lstatus_to_modtype); link_ok = (lstatus & FW_PORT_CMD_LSTATUS_F) != 0; linkdnrc = FW_PORT_CMD_LINKDNRC_G(lstatus); port_type = FW_PORT_CMD_PTYPE_G(lstatus); mod_type = FW_PORT_CMD_MODTYPE_G(lstatus); pcaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.pcap)); acaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.acap)); lpacaps = fwcaps16_to_caps32(be16_to_cpu(cmd->u.info.lpacap)); /* Unfortunately the format of the Link Status in the old * 16-bit Port Information message isn't the same as the * 16-bit Port Capabilities bitfield used everywhere else ... */ linkattr = 0; if (lstatus & FW_PORT_CMD_RXPAUSE_F) linkattr |= FW_PORT_CAP32_FC_RX; if (lstatus & FW_PORT_CMD_TXPAUSE_F) linkattr |= FW_PORT_CAP32_FC_TX; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M)) linkattr |= FW_PORT_CAP32_SPEED_100M; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G)) linkattr |= FW_PORT_CAP32_SPEED_1G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G)) linkattr |= FW_PORT_CAP32_SPEED_10G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G)) linkattr |= FW_PORT_CAP32_SPEED_25G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G)) linkattr |= FW_PORT_CAP32_SPEED_40G; if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G)) linkattr |= FW_PORT_CAP32_SPEED_100G; break; } case FW_PORT_ACTION_GET_PORT_INFO32: { u32 lstatus32; lstatus32 = be32_to_cpu(cmd->u.info32.lstatus32_to_cbllen32); link_ok = (lstatus32 & FW_PORT_CMD_LSTATUS32_F) != 0; linkdnrc = FW_PORT_CMD_LINKDNRC32_G(lstatus32); port_type = FW_PORT_CMD_PORTTYPE32_G(lstatus32); mod_type = FW_PORT_CMD_MODTYPE32_G(lstatus32); pcaps = be32_to_cpu(cmd->u.info32.pcaps32); acaps = be32_to_cpu(cmd->u.info32.acaps32); lpacaps = be32_to_cpu(cmd->u.info32.lpacaps32); linkattr = be32_to_cpu(cmd->u.info32.linkattr32); break; } default: dev_err(adapter->pdev_dev, "Handle Port Information: Bad Command/Action %#x\n", be32_to_cpu(cmd->action_to_len16)); return; } fec = fwcap_to_cc_fec(acaps); adv_fc = fwcap_to_cc_pause(acaps); fc = fwcap_to_cc_pause(linkattr); speed = fwcap_to_speed(linkattr); if (mod_type != pi->mod_type) { /* When a new Transceiver Module is inserted, the Firmware * will examine any Forward Error Correction parameters * present in the Transceiver Module i2c EPROM and determine * the supported and recommended FEC settings from those * based on IEEE 802.3 standards. We always record the * IEEE 802.3 recommended "automatic" settings. */ lc->auto_fec = fec; /* Some versions of the early T6 Firmware "cheated" when * handling different Transceiver Modules by changing the * underlaying Port Type reported to the Host Drivers. As * such we need to capture whatever Port Type the Firmware * sends us and record it in case it's different from what we * were told earlier. Unfortunately, since Firmware is * forever, we'll need to keep this code here forever, but in * later T6 Firmware it should just be an assignment of the * same value already recorded. */ pi->port_type = port_type; pi->mod_type = mod_type; t4vf_os_portmod_changed(adapter, pi->pidx); } if (link_ok != lc->link_ok || speed != lc->speed || fc != lc->fc || adv_fc != lc->advertised_fc || fec != lc->fec) { /* something changed */ if (!link_ok && lc->link_ok) { lc->link_down_rc = linkdnrc; dev_warn_ratelimited(adapter->pdev_dev, "Port %d link down, reason: %s\n", pi->port_id, t4vf_link_down_rc_str(linkdnrc)); } lc->link_ok = link_ok; lc->speed = speed; lc->advertised_fc = adv_fc; lc->fc = fc; lc->fec = fec; lc->pcaps = pcaps; lc->lpacaps = lpacaps; lc->acaps = acaps & ADVERT_MASK; /* If we're not physically capable of Auto-Negotiation, note * this as Auto-Negotiation disabled. Otherwise, we track * what Auto-Negotiation settings we have. Note parallel * structure in init_link_config(). */ if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) { lc->autoneg = AUTONEG_DISABLE; } else if (lc->acaps & FW_PORT_CAP32_ANEG) { lc->autoneg = AUTONEG_ENABLE; } else { /* When Autoneg is disabled, user needs to set * single speed. * Similar to cxgb4_ethtool.c: set_link_ksettings */ lc->acaps = 0; lc->speed_caps = fwcap_to_speed(acaps); lc->autoneg = AUTONEG_DISABLE; } t4vf_os_link_changed(adapter, pi->pidx, link_ok); } } /** * t4vf_update_port_info - retrieve and update port information if changed * @pi: the port_info * * We issue a Get Port Information Command to the Firmware and, if * successful, we check to see if anything is different from what we * last recorded and update things accordingly. */ int t4vf_update_port_info(struct port_info *pi) { unsigned int fw_caps = pi->adapter->params.fw_caps_support; struct fw_port_cmd port_cmd; int ret; memset(&port_cmd, 0, sizeof(port_cmd)); port_cmd.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F | FW_PORT_CMD_PORTID_V(pi->port_id)); port_cmd.action_to_len16 = cpu_to_be32( FW_PORT_CMD_ACTION_V(fw_caps == FW_CAPS16 ? FW_PORT_ACTION_GET_PORT_INFO : FW_PORT_ACTION_GET_PORT_INFO32) | FW_LEN16(port_cmd)); ret = t4vf_wr_mbox(pi->adapter, &port_cmd, sizeof(port_cmd), &port_cmd); if (ret) return ret; t4vf_handle_get_port_info(pi, &port_cmd); return 0; } /** * t4vf_handle_fw_rpl - process a firmware reply message * @adapter: the adapter * @rpl: start of the firmware message * * Processes a firmware message, such as link state change messages. */ int t4vf_handle_fw_rpl(struct adapter *adapter, const __be64 *rpl) { const struct fw_cmd_hdr *cmd_hdr = (const struct fw_cmd_hdr *)rpl; u8 opcode = FW_CMD_OP_G(be32_to_cpu(cmd_hdr->hi)); switch (opcode) { case FW_PORT_CMD: { /* * Link/module state change message. */ const struct fw_port_cmd *port_cmd = (const struct fw_port_cmd *)rpl; int action = FW_PORT_CMD_ACTION_G( be32_to_cpu(port_cmd->action_to_len16)); int port_id, pidx; if (action != FW_PORT_ACTION_GET_PORT_INFO && action != FW_PORT_ACTION_GET_PORT_INFO32) { dev_err(adapter->pdev_dev, "Unknown firmware PORT reply action %x\n", action); break; } port_id = FW_PORT_CMD_PORTID_G( be32_to_cpu(port_cmd->op_to_portid)); for_each_port(adapter, pidx) { struct port_info *pi = adap2pinfo(adapter, pidx); if (pi->port_id != port_id) continue; t4vf_handle_get_port_info(pi, port_cmd); } break; } default: dev_err(adapter->pdev_dev, "Unknown firmware reply %X\n", opcode); } return 0; } /** */ int t4vf_prep_adapter(struct adapter *adapter) { int err; unsigned int chipid; /* Wait for the device to become ready before proceeding ... */ err = t4vf_wait_dev_ready(adapter); if (err) return err; /* Default port and clock for debugging in case we can't reach * firmware. */ adapter->params.nports = 1; adapter->params.vfres.pmask = 1; adapter->params.vpd.cclk = 50000; adapter->params.chip = 0; switch (CHELSIO_PCI_ID_VER(adapter->pdev->device)) { case CHELSIO_T4: adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, 0); adapter->params.arch.sge_fl_db = DBPRIO_F; adapter->params.arch.mps_tcam_size = NUM_MPS_CLS_SRAM_L_INSTANCES; break; case CHELSIO_T5: chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A)); adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, chipid); adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F; adapter->params.arch.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES; break; case CHELSIO_T6: chipid = REV_G(t4_read_reg(adapter, PL_VF_REV_A)); adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, chipid); adapter->params.arch.sge_fl_db = 0; adapter->params.arch.mps_tcam_size = NUM_MPS_T5_CLS_SRAM_L_INSTANCES; break; } return 0; } /** * t4vf_get_vf_mac_acl - Get the MAC address to be set to * the VI of this VF. * @adapter: The adapter * @pf: The pf associated with vf * @naddr: the number of ACL MAC addresses returned in addr * @addr: Placeholder for MAC addresses * * Find the MAC address to be set to the VF's VI. The requested MAC address * is from the host OS via callback in the PF driver. */ int t4vf_get_vf_mac_acl(struct adapter *adapter, unsigned int pf, unsigned int *naddr, u8 *addr) { struct fw_acl_mac_cmd cmd; int ret; memset(&cmd, 0, sizeof(cmd)); cmd.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_ACL_MAC_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd); if (ret) return ret; if (cmd.nmac < *naddr) *naddr = cmd.nmac; switch (pf) { case 3: memcpy(addr, cmd.macaddr3, sizeof(cmd.macaddr3)); break; case 2: memcpy(addr, cmd.macaddr2, sizeof(cmd.macaddr2)); break; case 1: memcpy(addr, cmd.macaddr1, sizeof(cmd.macaddr1)); break; case 0: memcpy(addr, cmd.macaddr0, sizeof(cmd.macaddr0)); break; } return ret; } /** * t4vf_get_vf_vlan_acl - Get the VLAN ID to be set to * the VI of this VF. * @adapter: The adapter * * Find the VLAN ID to be set to the VF's VI. The requested VLAN ID * is from the host OS via callback in the PF driver. */ int t4vf_get_vf_vlan_acl(struct adapter *adapter) { struct fw_acl_vlan_cmd cmd; int vlan = 0; int ret = 0; cmd.op_to_vfn = htonl(FW_CMD_OP_V(FW_ACL_VLAN_CMD) | FW_CMD_REQUEST_F | FW_CMD_READ_F); /* Note: Do not enable the ACL */ cmd.en_to_len16 = cpu_to_be32((unsigned int)FW_LEN16(cmd)); ret = t4vf_wr_mbox(adapter, &cmd, sizeof(cmd), &cmd); if (!ret) vlan = be16_to_cpu(cmd.vlanid[0]); return vlan; }